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PARACOMPACTNESS IN LOCALLY LINDELÔF 
SPACES 

ZOLTÂN BALOGH 

This paper contains a set of results concerning paracompactness of 
locally nice spaces which can be proved by (variations on) the technique 
of "stationary sets and chaining" combined with other techniques 
available at the present stage of knowledge in the field. The material 
covered by the paper is arranged in three sections, each containing, in 
essence, one main result. 

The main result of Section 1 says that a locally Lindelôf, submeta­
Lindelôf ( = 50-refinable) space is paracompact if and only if it is strongly 
collectionwise Hausdorff. Two consequences of this theorem, respectively, 
answer a question raised by Tall [7], and strengthen a result of Watson [9]. 
In the last two sections, connected spaces are dealt with. The main result 
of the second section can be best understood from one of its consequences 
which says that under 2Wl > 2W, connected, locally Lindelôf, normal 
Moore spaces are metrizable. In the third section we prove that under 
2<o, > 2W

5 all connected, normal, locally compact, submetaLindelôf spaces 
are paracompact. In connection to both of these results, there is a number 
of related examples and theorems known (in the literature). These are 
briefly discussed in the remarks. The conclusion is that in our theorems, 
all the hypotheses are necessary. 

Our terminology and notation will follow the standards of set-theoretic 
topology. All spaces are assumed to be regular Tj topological spaces. 
In particular [v4]=K will denote the set of all subsets of A of cardinality 
^ K. Given a collection s/ — {At:i e / } of sets, {A'f.i e / } will be called 
an expansion of stf \i 

A'{ Pi (Us/) = At for every / e /. 

A space is said to be strongly collectionwise Hausdorff (or T2) if every 
closed discrete collection of points has an open discrete expansion. In an 
analogy of H. Yunnila's term "submetacompact" we introduce the 
corresponding term "submetaLindelôf in place of the old term 
"o0-refineable". We shall say that a space X is submetaLindelôf if for 
every open cover of X, there is a sequence {^n\n e co} of open refine­
ments such that each <&n covers X, and for every point x e X, there is an 
n = n(x) e (o such that 

Received September 10, 1984. 

719 

https://doi.org/10.4153/CJM-1986-037-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-037-7


720 ZOLTÂN BALOGH 

(%)x = {G e %:x e G) 

is countable. If the requirement "each @n is a cover" is weakened to 
"u>7<E<o ^ is a cover", then we shall speak about weakly submetaLindelôf 
spaces. 

1. Paracompactness of locally Lindelôf spaces. 

LEMMA 1.1. Let K > CÛ be a regular cardinal, and S c K be a stationary 
subset. Suppose that Y = {ya\a G S} is a set of distinct points of a 
submetaLindelôf space X such that each point of X has a neighbourhood 
which meets Y in a set of cardinality < K. Then there is a stationary (in K) set 
S' c S such that 

T = {ya.a e S'} 

is a closed discrete subset of X. 
Moreover, if K = X for some X = to, then Y is the union of =X closed 

discrete subsets of X. 

Proof Since Xis submetaLindelôf, we can find a sequence {^n'.n G CO} 
of open covers of X such that 

(i) for every G G 0 = U„eco &n9 \G n Y\ < /c; 
(ii) for every x G X, there is an n(x) G co with (@n(x\)x countable. 
Define Yn by 

Yn = {ya ^ Y:n(ya) = n) (n G <O). 

Since Y = UnŒoi Yni there is an n0 G CO such that 

s„0 = {« e s % G y„o} 

is stationary. Now, define the equivalence relation ~ on Yw by putting 
x ~ y if and only if there is a finite sequence G0, . . . , Gz G ^ such that 
x e G 0 , J G G( and 

G, n G,+1 n Yno¥:<0 (7 = 0 , . . . , i - l). 

Let ^ be the set of equivalence classes. By regularity of K, |2S| < /c for 
every E G (f. Now, for every £" G <f put 

a(E) = min{a G ^ Q % G £ } . 

By the Pressing Down Lemma, 

S" = {«(£):£ G «?} 

is a stationary subset of K. On the other hand, by the definition of ~ , every 
member of ^„ meets 

Y> = {ya.a G S'} 

in at most a singleton. Therefore Y is a closed discrete subset of X. 
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Now, let K = iV (X è (o). Then \E\ ^ X for each E e <£ so 

in such a way that |£ Pi Y^\ ^ 1 for every £ e <f, and ^ e À. Again, for 
each ^ G À, ^ witnesses that Y^ is closed discrete in X. 

LEMMA 1.2. Le/ K ^ co be a cardinal, and X be a submetaLindelof space 
such that 

(1.2) every closed discrete set A of K many distinct points has a subset A' 
of size /c + such that A' has a locally countable open expansion in X. 

Then the closure of every K-Lindelof subspace of X is K-Lindelof 

Proof Let Z be a /c-Lindelof subspace of X and suppose indirectly that 
Z is not /c-Lindelof. 

Then first we show that Z contains a closed discrete subset A of size /c+. 
To see this, let ^ be an open (in X) cover of X with no subcover of 
cardinality ^ /c. Since X is submetaLindelof, we may assume that 
^ = UnŒo} yn in such a way that each ^ covers Z, and for every x e Z, 
there is an «(JC) e co with 

I (^(x))J ^ «. 
Let 

Z^ = [x e Z:«(x) = «}. 

By Zorn's Lemma, for every n e <O, there is a maximal subset ^ n of Zn 

such that no member of &n contains two points of An. By maximality, 

& = U „ e „ ( U { (*„) , :* &An}) 

covers Zn. Since ^ h a s no subcover of cardinality ^ /c, there is an n e CO 
with |v4j ^ /c+. 

Now, let us take a closed discrete subset A of Z of size /c + . By (1.2) we 
may assume that A has a locally countable open expansion 0 in X. Clearly, 
\0\ = /c+, and since A c Z, each member of 0 meets Z. This contradicts 
our assumption that Z is /c-Lindelof. 

THEOREM 1.3. A locally Lindelôf submetaLindelof space X is paracom-
pact if and only if it is strongly collectionwise Hausdorff 

Proof. Only the "if" part needs proof. 
We shall prove the "if" part by induction on the Lindelôf degree L(X) 

of X. If L(X) = co, then there is nothing to prove, so let L(X) = K > to 
and assume that for every space with Lindelôf degree < /c we have already 
proved the theorem. Then there are two cases. 

Case 1. K is regular. Then let ^ = {Ga\a e /c} be a cover of X by open 
sets with Lindelôf closures. 

To make use of our induction hypothesis, it is enough to show that 
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S = {a Œ K: U^a Gp - UfiGa Gp * 0} 

is a non-stationary subset of K. (Indeed, if S is non-stationary, then X is 
the free union of subspaces with Lindelôf degree < K.) 

Suppose indirectly that S is stationary, and pick, for every a G S, a 
point 

Let v(a) be the least element of K with xa e G^a). Clearly, v(a) ^ a. 
Let C be a c.u.b. subset of K such that for every a e C, 

*>"(£ n a) c a. 

Then the points of A = {xa:a e 5 O C} are all distinct, and S n C is 
stationary in /c. By Lemma 1.1, there is a stationary S" c S n C such 
that 

A' = {xa:a e S"} 

is a closed discrete set. (Remember that \A n Gg| < K for every /? e K.) 
Since X is strongly collectionwise T2, there is an open discrete 
expansion 

0 = {Oa.a e 5'} 

of .4' in X Since 

for every a e 5', there is a n / ( a ) G a such that 

By the Pressing Down Lemma, there is an ordinal fi e K with 
\f*~((î) I = K, i.e., K many members of 0 intersect G p. This contradicts our 
assumption that G^ is Lindelôf. 

Case 2. /c is singular. Then let cf(/c) = T < /c, and let {*£:£ ^ T} be an 
increasing sequence of regular cardinals < K converging to K. Again, let us 
consider a cover @ = {Ga:a G K} oî Xby open sets with Lindelôf closures. 
By Lemma 1.2, the subspaces 

Z(= U{Ga:a e K() 

have Lindelôf degrees < K (£ G T), and are paracompact by our 

induction hypothesis. Therefore, for each £ e T, there is a discrete in X 

family J ^ of open sets with Lindelôf closures (in X) such that 

Let us consider the open cover s# = U|G T J ^ of X Since every member of 
J ^ meets ^ T other members of J ^ by a standard chaining argument, X 
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is the free union of clopen subspaces with Lindelôf degrees ^ T. Applying 
the inductive hypothesis once more, we are done. 

Remark. Note that the proof of Theorem 1.3 works if, instead of 
"strongly collectionwise Hausdorff", we only assume that "every closed 
discrete collection of points has a a-locally countable expansion." In the 
present formulation of the theorem, however, we sacrificed maximal 
strength for the sake of brevity. 

COROLLARY 1.4. Every normal, locally Lindelôf, screenable space is 
paracompact. 

This corollary answers Question E in [7]. 
In [9], S. Watson proved that in V = L, every normal, locally compact 

space is (strongly) collectionwise Hausdorff. Combining his result with 
Theorem 1.3 gives 

COROLLARY 1.5 (V = L). Every normal, locally compact, submeta­
Lindelof space is paracompact. 

Making use of the technique of proof of Theorem 1.3 the author also 
proved the following results. 

THEOREM 1.6. (a) Every locally c.c.c, submetaLindelof collectionwise 
Hausdorff space is the free union of Lindelôf subspaces. 

(b) Every locally c.c.c, weakly submetaLindelof hereditarily collectionwise 
Hausdorff space is the free union of Lindelôf subspaces. 

A further application of the technique is given by 

THEOREM 1.7. A normal, locally co^-compact, collectionwise Hausdorff 
space is collectionwise normal with respect to closed Lindelôf subsets. 

The proofs of all these results are (simplified) versions of the proof of 
Theorem 1.3, and are therefore omitted. 

2. Paracompactness in locally Lindelôf, connected spaces. In the rest of 
the paper, essential use is made of a result of Taylor [8]. We shall state and 
use here a somewhat more general form of his theorem which, however, 
can be proved in the same way as Lemma 2.1 in [8]. 

LEMMA 2.1 (Taylor, in essence). Assume 2*°' > 2W. Then in a normal 
space X, the following principle holds: 

(2.1) If C is a c.u.b. subset of ux, and {Fa:a e C} is a o-closed discrete 
family in X such that x(̂ «> X) = 2" holds for every a e C, then there is a 
stationary subset S c coA such that {Fa:a e S} has an open discrete 
expansion. 
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LEMMA 2.2. Suppose X is a connected, ux~ Lindelôf locally Lindelôf, 
submetaLindelôf space such that 

(2.2) if C is a c.u.b. subset ofcû] and Y = {ya'.cc e C] is o-closed discrete 
set of distinct points in X, then there is a stationary subset S c co, such that 
Y = {ya'.a ^ S} has an open locally countable expansion. 

Then X is Lindelôf 

Proof Suppose indirectly that there is a cover & = {Ga:a <E CO}} of Xby 
open sets with Lindelôf closures such that 

Ga ~~ U/?€E« Gp ^ $ f° r every a G w,. 

Since Xis connected, for every 0 ¥= a e <ol5 there is point 

As in the proof of Theorem 1.3 we may assume that the points ya are 
distinct on a c.u.b. C c co,. Further, since each Gg contains ^ for only 
countably many a E C, by Lemma 1.1 we conclude that Y = {ya'.a ^ C} 
is a a-closed discrete subset of X. By (2.2) there is a stationary subset 
S c coj such that Y = {ya:a ^ S) has an open locally countable 
expansion {Oa:a e S} . As in the proof of Theorem 1.3 again, the Pressing 
Down Lemma implies that there are co] many sets Oa meeting the same Gg 
for some /? e coj. This contradicts our assumption that G^ is Lindelôf. 

THEOREM 2.3 (2"1 > 2W). Le/ X be a connected, normal, locally Lindelôf 
submetaLindelôf space with t(X) ^ co #«d x(^0 = ^• Then X is 
paracompact (and thus, Lindelôf}. 

Proof. By Lemma 2.1, X satisfies Condition (2.2) of Lemma 2.2. 
Therefore, to apply Lemma 2.2, it is enough to show that X is 
co j-Lindelôf. 

To see this, take an arbitrary cover ^ of X by open sets with Lindelôf 
closures. Since, by Lemma 1.2, the closure of every Lindelôf subspace of X 
is Lindelôf, we can inductively define a sequence 

{9fi:p e <o,} c [9]=° 

in such a way that U^g c U ^ + 1 holds for every j8 E COJ. Let 

& = u^Gtti % 

Since we are in a space of countable tightness, 

v& = u/8etti("û^) 

is a clopen subset of X Since X is connected, it follows that <&' c ^ is a 
cover of X w i t h | ^ | ^ co,. 

Remark. One may ask whether the tightness and character restrictions 
on X in Theorem 2.3 are really necessary. The present author can prove 
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with methods similar to those used in this section that CH -f 2e02 > 2Wl 

together imply that t(X) ^ co can be omitted from Theorem 2.3. The case 
with the character restriction seems to be more complicated, because in 
the absence of x(^0 = 2e0 it is not immediate how to obtain the separation 
principle (2.2). In case of locally compact spaces, however, we shall show 
that both restrictions can be omitted (see Section 3). 

COROLLARY 2.4 (2Wl > 2W). Every connected, locally Lindelof (or locally 
c.c.c.) normal Moore space is metrizable. 

Remark. Some set-theoretic hypothesis in Corollary 2.4 (and thus, in 
Theorem 2.3) is needed, since under MA + 1CH, the "bubble space 
derived from a g-set" (see [6], e.g.) is an example of a (locally) connected, 
locally Lindelôf, nonmetrizable Moore space. "Connected" is also 
necessary, since Devlin and Shelah [2] gave an example, consistent with 
CH, of a locally countable, nonmetrizable normal Moore space. (Note, 
however, that under V = L, the conclusion of Corollary 2.4 remains true 
even if "connected" is omitted. This follows from Fleissner's theorem in 
[3], and a result of Worrel [10], independently obtained by Alster and Pol 
[1].) Thus Corollary 2.4 seems to be the "strongest possible" metrization 
theorem for normal Moore spaces which is implied by 2"1 > 2W. 

We can prove a result corresponding to Theorem 2.3 in the class of 
locally c.c.c. spaces: 

THEOREM 2.5. Let X be a connected, locally c.c.c, submetaLindelof space 
such that 

(2.5) if C is a c.u.b. subset of ux and Y = {ya'.oi e C) is a o-closed 
discrete collection of distinct points ofX, then there is a stationary subset S of 
coj such that Yf = {ya:a e S} has an open disjoint expansion. 

Then X is Lindelof 

Assuming Condition (2.5) hereditarily, we can weaken "submetaLinde­
lôf" to "weakly submetaLindelôf." 

3. Paracompactness in locally compact, connected spaces. 

LEMMA 3.1 [9]. Let X be a normal, locally compact space, and *$ — 
{Co: fi e CO]} be a closed discrete family of compact subsets in X. Then there 
is a closed discrete expansion {C^'.fi G coj} of <£such that 

X(Cp', X) ^ <o, 

holds for /? G CO]. 

LEMMA 3.2. Let X be a connected, locally compact, submetaLindelôf space 
such that every Lindelof subset has Lindelof closure. Then X is coj-
Lindelof. 
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Proof. Since X is submetaLindelôf, there is a sequence {%'.n £ co} of 
covers of X by open sets with compact closures such that for every x e X 
there is an n(x) e co with 

I (%(X))J ^ *>• 
Let ^ = U,7Gw S?w, and define 

Xn = {x e ZinCx) = «} (« e <o). 

Since the closure of every Lindelôf subspace in X is Lindelôf we can 
inductively define an increasing sequence {^:j8 G w j c [@]=cc in such a 
way that U^g c U ^ + 1 holds for every ]8 E WJ. We are going to prove 
that f = U ^ ^ ^ covers X By connectedness of X, it is enough to 
prove that 

is a closed subset of X. Suppose indirectly that there is a point 
x e U ^ ' — U^ ' . Take a compact neighbourhood C of x, and let 
P = C f l U ̂ ' . We shall show that for every « E w , P H = P n I t t can be 
covered by some ^ . This will lead us to a contradiction since then there is 
y G coj with 

P c P c u^y c u^ ' S x, 

and this implies that C — P is a neighbourhood of x avoiding U ̂ ' . 
So let « E w , and take a maximal subset An of Pn such that each G e ^ 

meets An in at most a singleton. Then ,4W is a closed discrete subset of X, 
and thus of 

P = C n ( u y ) = u ^ ^ U ^ n c). 

Since each U^g n C is compact, P is countably compact. Hence 4̂W is 
finite. By maximality, 

V{(9„)x:x ^An) c Sf 

is a countable cover of Pw, and so it is included in some ^g. 

THEOREM 3.3 (2e01 > 2W). £very connected, normal, locally compact, 
submetaLindelôf space X is paracompact. 

Proof. By Lemmas 3.1 and 2.1, X satisfies (2.2) of Lemma 2.2. 
Therefore, by Lemma 1.1, every Lindelôf subspace of X has Lindelôf 
closure. Hence by Lemma 3.2, X is <orLindelof. By Lemma 2.2 we 
conclude that X is Lindelôf. 

Remarks. 2Wl > 2W in the hypothesis of Theorem 3.3 cannot be omit­
ted, since Gary Gruenhage has a construction which modifies, under 
MA + 1CH, the Cantor tree space to obtain an example of a con-
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nected, locally compact, nonmetrizable normal Moore space. Since the 
example of [2] is also locally compact, "connected" cannot be omitted 
under 2Wl > 2W, either. However, as is shown by Corollary 1.5, 
"connected" can be omitted under V = L. (Note that for submetacompact 
spaces, this is a result of Watson [9].) Finally, it is a result of Gruenhage 
[4] that every locally connected, normal, locally compact, submetacompact 
space is paracompact (in ZFC). 
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