
JFP 16 (3): 327–372, 2006. c© 2006 Cambridge University Press

doi:10.1017/S0956796806005892 Printed in the United Kingdom

327

Consistency of the theory of contexts

ANNA BUCALO, FURIO HONSELL, MARINO MICULAN,

IVAN SCAGNETTO

Department of Mathematics and Computer Science, University of Udine, Italy

email: miculan@dimi.uniud.it

MARTIN HOFFMAN

Institut für Informatik, Ludwig-Maximilians-Universität, München, Germany

Abstract

The Theory of Contexts is a type-theoretic axiomatization aiming to give a metalogical account

of the fundamental notions of variable and context as they appear in Higher Order Abstract

Syntax. In this paper, we prove that this theory is consistent by building a model based

on functor categories. By means of a suitable notion of forcing, we prove that this model

validates Classical Higher Order Logic, the Theory of Contexts, and also (parametrised)

structural induction and recursion principles over contexts. Our approach, which we present in

full detail, should also be useful for reasoning on other models based on functor categories.

Moreover, the construction could also be adopted, and possibly generalized, for validating

other theories of names and binders.

1 Introduction

In recent years there has been growing interest in developing systems for defining,

programming with and reasoning about, languages with variable binding construct-

ors (binders). Dealing with these syntactical structures requires context-sensitive

notions such as scope, free and bound variables, α-conversion, generation of fresh

names, capture-avoiding susbstitution, and so on. It is well-known that traditional

representations of languages with binders, such as those based on first-order abstract

syntax or de Bruijn indexes, are not satisfactory because of the lack of a general

and smooth account for these notions.

An approach to this issue, originated with Church and widely adopted in Logical

Frameworks and proof assistants, is that of Higher-Order Abstract Syntax (HOAS)

(Church, 1940; Harper et al., 1993; Pfenning & Elliott, 1988; Miculan, 1997). The

key idea is to represent variables and binders of object languages with variables and

binders of a metalanguage based on some type-theoretic λ-calculus. In this way, we

shift the treatment of variables and binders to the metalanguage, where where we

can establish all the required properties and notions once and for all.

However, this approach has some drawbacks. First of all, being equated to

metalanguage variables (i.e., metavariables), object level variables cannot be defined

inductively without introducing exotic terms, i.e. metalevel terms which do not

correspond to any object level term (Despeyroux et al., 1995; Miculan, 1997). A

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

328 A. Bucalo et al.

similar difficulty arises with term contexts, i.e. terms with holes, which are rendered

as functional terms. Reasoning by induction and definition by recursion on object

level terms is therefore problematic.

To address these problems, some of the authors proposed an axiomatic strategy.

First, a small set of basic properties, aiming to characterize the “natural” behaviour

of term contexts and names as intended in weak HOAS encodings, has been identified

and proposed (Honsell et al., 2001b) and generalized later (Honsell et al., 2001a).

These properties, called the Theory of Contexts, can be assumed (as “axioms”) in

existing logical frameworks and metalanguages based on type theories corresponding

to (Intuitionistic) Higher Order Logics (such as the Calculus of Constructions, or

CC (Co)Ind), for gaining the extra expressive power required for reasoning about form-

alizations using weak HOAS. The Theory of Contexts has been shown to be practic-

ally useful and well-suited also for large, non trivial languages and systems: successful

case studies include, but are not limited to, the metatheory of strong late bisimilarity

of the π-calculus (Honsell et al., 2001b), the metatheory of the λ-calculus, (Miculan,

2001), the metatheory of Mobile Ambients and its logic (Scagnetto & Miculan, 2002).

We have still to accomplish the second part of the “axiomatic” strategy: we have

to prove the consistency of these axioms. This is the main aim of the present work.

More precisely, we present a basic logical framework, composed by a type theory à

la Church and a classical Higher Order Logic extended with the Theory of Contexts.

This simple yet expressive metalanguage can be used for representing a broad class

of object languages and logics with binders; as an example, we show how to encode

(a subset of) the π-calculus. Then, we present a sound model for this type theory and

classical logic, which validates also the axioms of the Theory of Contexts. Moreover,

we prove that suitable structural induction and recursion principles over terms with

binders and even term contexts are validated by this model.

To achieve these results, we have to resort to rather sophisticated mathematical

tools. Categorical models of languages with binders and local names have been

around for a while. In most cases, they are based on (covariant) (pre)sheaf catego-

ries, i.e. functors of the form C → Set, for some suitable index category C. Types are

then interpreted as “stratified sets”, indexed by the objects of C which are finite sets

(of variables/names). The morphisms in C express the kind of “replacement law”

we are requiring the terms to satisfy: if we are interested in modeling languages with

variables (which can be unified), then morphisms are all (finite) functions (Fiore

et al., 1999; Crole, 2003); on the other hand, if we are interested in names (which

cannot be unified), the morphisms are only injective functions (Moggi, 1993; Stark,

1994; Fiore & Turi, 2001).

However, using a functor category is not enough for modeling the Theory of

Contexts. In fact, a peculiarity of the Theory of Contexts is that it contradicts the

Axiom of Unique Choice (Honsell et al., 2001b; Honsell et al., 2001a). Since the

Axiom of Unique Choice holds in all topoi, this means that no (pre)sheaf category

alone can be used for building such a model.

The problem is that to model a metalanguage embodying the Theory of Contexts

we must address at once two related, but different, aspects. The first one is the

interpretation of terms of the metalanguage itself, whose variables, like for any

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 329

λ-calculus, may be subject to substitution and unification. The other is that variables

ranging over the specific type of “names” are given a particular meaning by the

axioms of the Theory of Contexts. Therefore, the properties of such variables must

be obtained from some model of names, which cannot be unified.

The solution to this problem has been devised in Hofmann (1999), by “gluing”

together a model of variables and a model of names. Essentially, we need to deal

with two presheaf categories, over two different index categories. Datatypes of

the metalanguage are interpreted as presheaves over the category of all variable

substitutions, while predicates are interpreted as subsheaves in the Schanuel topos,

which is a sheaf category of presheaves over injective variable substitutions only.

The right technical notion for best describing this construction is that of tripos, a

useful generalization of topoi (Hyland et al., 1980; Pitts, 1999). However, our aim is

to describe this construction in elementary terms, in order to make it accessible also

to the reader with little knowledge of category theory.

In fact, this paper has a pedagogical purpose. It illustrates through a concrete

example the novelty of the approach in Hofmann (1999) for modeling a logic

for reasoning on systems in HOAS, using a tripos-like construction for interpreting

predicates. The construction is described in full detail, without resorting to advanced

categorical theoretic notions.

This paper has also the technical purpose of working out the details of the

category-theoretic ideas and constructions outlined in §7. One of the crucial tools

that we introduce to this end is a notion of forcing which allows us to streamline the

computation of the truth value of a proposition. This methodology can be useful

also for validating other theories of names and binders, and reasoning about other

models based on functor categories.

Finally, this paper has also the speculative purpose of discussing, besides consist-

ency, also independence and completeness of our axiomatization for variables and

contexts in HOAS.

Synopsis

In section 2 we present Υ, a simple logical framework geared toward encodings in

weak HOAS (and containing the Theory of Contexts).

In section 3 we define from scratch the model U and the interpretation of the

term language and of predicates of Υ. In section 4 we will verify that this model

validates the (classical) higher order logic, and the Theory of Contexts, thus proving

its soundness. In section 5 we will clarify the connection of this model with tripos

theory; in fact, the reader familiar with tripos theory is encouraged to read section

5 in parallel to (or even before) section 3.

Then, in section 6 we extend Υ with recursion and induction principles, possibly

also over higher-order terms (i.e., term contexts).

Finally, a comparison of our approach with similar works in the literature is given

in section 7. Concluding remarks and directions for future work are in section 8.

Some category-theoretic preliminaries, together with longer proofs, are gathered

in an appendix available online at the JFP web site (Bucalo et al., 2005).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

330 A. Bucalo et al.

2 The logical framework Υ

In this section we present Υ, a simple logical framework geared toward encodings

in weak Higher Order Abstract Syntax.

Υ consists of a simply typed λ-calculus a la Church, suited for representing

a broad class of object languages, and a Classical Higher Order Logic extended

with the Theory of Contexts. This theory is “parametric” in the specific signature

we are focusing on; thus, in order to exemplify the framework and the encoding

methodology, we fix a simple object language, namely a fragment of the π-calculus.

For a more general presentation we refer to Honsell et al. (2001a). Finally, we discuss

some design choices and issues of the Theory of Contexts.

2.1 Theory of terms

The metalanguage Υ is a theory of Simple Types/Higher Order Logic à la Church

over a particular signature encoding an object language. Many details of the

underlying type theory are not strictly intrinsic. The machinery that we define

in this section could have been based on any sufficiently expressive type theory,

e.g. the Calculus of Inductive Constructions (INRIA, 2003). We picked Church’s

Simple Theory of Types only for simplicity. Thus, types, ranged over by σ, τ (possibly

with indices or apices), are defined by the following abstract syntax:

σ ::= o | ι | υ | σ → τ

For each type there is a countably infinite disjoint set of variables x, y, z . . . Since

these are variables of the metalanguage, we sometimes call them metavariables.

An object system is defined by a signature Σ, which is a finite collection of constant

symbols together with their type. Given a signature Σ, the (pre)terms over Σ are

defined by the following syntax:

M ::= x | MN | λxσ.M | M ⇒ N | ∀σ.M
| c(M1, . . . ,Mn) where c:σ1 → . . . σn → σ ∈ Σ

As usual, we denote by M[N/x] the capture-avoiding substitution. Terms are identi-

fied up-to α-conversion and are ranged over by M,N, P , Q, R (possibly with indices).

In the case of terms of type o, we also use p, q, r

Terms of types ι, o are intended to denote object-level terms and propositions

of any given system. Terms of type υ represent variables and names of the object

system, the exact behaviour being enforced by suitable logical assumptions, as we

will see. We require signatures to do not have constructors of type υ; hence the only

terms (in normal form) inhabiting υ can be metavariables.

In the following, we restrict our attention to well-typed terms only. An environment

Γ is a finite set of typing assertions over distinct variables of Υ, denoted by

{x1 : σ1, x2 : σ2, . . . , xn : σn}, possibly without curly brackets. Its domain is the set

{x1, . . . , xn}. Then, as usual, the typing judgment is of the form

Γ �Σ M : σ

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 331

−
Γ, x : σ �Σ x : σ

(VAR)

Γ, x : σ′ �Σ M : σ

Γ �Σ λxσ
′
.M : σ′ → σ

(ABS)

Γ �Σ M : σ′ → σ Γ �Σ N : σ′

Γ �Σ MN : σ
(APP)

Γ �Σ M : σ → o

Γ �Σ ∀σ.M : o
(∀)

Γ �Σ M : o Γ �Σ N : o

Γ �Σ M ⇒ N : o
(⇒)

Γ �Σ M1 : σ1 . . . Γ �Σ Mn : σn
Γ �Σ c(M1, . . . ,Mn) : σ

(c : σ1 → · · · → σn → σ) ∈ Σ (CONST)

Fig. 1. Typing rules.

expressing the fact that M is a term of type σ, starting from environment Γ and

using the typed constants in signature Σ. The rules for typing are listed in Figure 1.

The term language given so far allows for an adequate encoding of a broad

class of object languages, following the second-order encoding procedure of the

Edinburgh Logical Framework (Harper et al., 1993; Miculan, 1997). As a simple

example object system, here we consider a fragment of π-calculus (Milner et al.,

1992); a complete and general treatment can be found in Honsell et al. (2001a).

The object system: syntax: In the π-calculus there are two basic syntactical entities:

• Names: the set N is an infinite set of names;

• Processes: the set P, ranged over by P , Q, is defined by the following abstract

syntax, where the operators are listed in decreasing order of precedence:

P ::= 0 | τ.P | P1|P2 | [x �= y]P | (νx)P

It is worthwhile to recall here the difference between (object-level) names and

(metalanguage) variables. A name is an atomic data structures, distinguished from

all other names. On the other hand, a variable of the metalanguage acts as a

placeholder: it can be instantiated by any term of the type it ranges over.

In the case of π-calculus, a variable of type υ (i.e., ranging over names) can be

bound by the restriction operator ν. Processes are taken up to α-equivalence, and

variables bound by ν’s are intended to denote a fresh (i.e. local) name. Since we can

always choose different variables for bound names, we can assume that different

variables of type υ are intended to denote different names.

For each process P we can define in the standard way the sets of its free names

fn(P) as the set of free variables of type υ. Let X be a finite set of (variables

denoting) names; then, PX denotes the set {P ⊂ P | fn(P) ⊆ X}. Capture-avoiding

substitution of a single name y in place of x in P is denoted by P [y/x]. A (process)

context is a process with a (possibly repeated) hole for a name.

This fragment has been chosen by striving for simplicity in order to highlight

the problematic issues of reasoning about names in higher-order abstract syntax. It

lacks the computational expressivity of the original system, since it features neither

synchronization nor mobility of processes; still, the presence of the τ prefix leads

to a a non-trivial theory of strong bisimulation. For a formalization of the full

π-calculus, see Honsell et al. (2001b).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

332 A. Bucalo et al.

The above language can be encoded in Υ by the following signature Σ:

0 : ι τ : ι → ι | : ι → ι → ι

[· �= ·]· : υ → υ → ι → ι ν : (υ → ι) → ι

Let X = {x1, . . . , xn} a finite set of variables, and let us consider the object language

terms PX . The corresponding terms of the metalanguage are the terms in long

βη-normal form defined as follows, using infix notation:

x ::= x1 | . . . | xn P ::= 0 | τP | P |Q | [x1 �= x2]P | νλyυ.P

We denote the set of such normal forms by ProcX .

Proposition 2.1

There is a bijective correspondence between PX and the normal forms of type ι in

the signature Σ and in the environment ΓX � {x1 : υ, . . . , xn : υ}.

The proof (omitted) follows a standard induction on the syntax of terms and on

the derivation of the typing judgment (Harper et al., 1993; Miculan, 1997).

2.2 Theory of predicates

The main aim of Υ is to provide a formal setting for reasoning on the properties of

the object language, especially those involving names, variables and binders. To this

end, beside the theory of terms, Υ has to support also a sufficiently expressive theory

of predicates. In fact, terms inhabiting the basic type o are supposed to represent

propositions stating facts about the (terms representing the) object languages.

Since the main aim of this paper is to prove the consistency of the Theory of

Contexts, whereas proof theory is not an issue, we choose to use a Hilbert-style

deductive logical system, because this style is simpler to deal with for model-

theoretical investigations. Of course, Natural-Deduction and sequent presentations

are possible as well (Honsell et al., 2001a). Thus, the logical judgment is of the form

Γ �Σ p well-formed when Γ �Σ p : o

to express the fact that a proposition p involving free variables from Γ is valid.

The rules for this judgment are given in two parts. The first part provides the

general logical axioms and rules for classical higher-order logic; the second part

consists of the three axioms of the Theory of Contexts. Only the latter depends

on the particular object system (i.e., signature) we are interested in. (A third part,

providing recursion and induction principles, will be considered in section 6).

The logical rules are given in Figure 3; we note that permutation, weakening, and

contraction are admissible rules. In Figure 2 we define some other logical connectives

used in the following, using the usual higher-order encodings in terms of ∀σ and ⇒.

Before introducing the second part of the system, we need to define the auxiliary

predicate of occurrence-checking of variables in (terms representing) object-level

terms. Intuitively, this can be defined by induction on the structure of terms; in fact,

we can define �∈: υ → ι → o by means of an impredicative inductive definition for

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 333

∀xσ.p � ∀σ(λxσ.p) p ∧ q � ¬(p ⇒ ¬q)
⊥ � ∀xo.x p ∨ q � ¬p ⇒ q

¬p � p ⇒ ⊥ p ⇔ q � (p ⇒ q) ∧ (q ⇒ p)

∃xσ.p � ¬∀xσ.¬p M =σ N � ∀xσ→o. xM ⇒ xN

Fig. 2. Syntactic abbreviations.

Γ �Σ p : o Γ �Σ q : o Γ �Σ r : o

Γ �Σ (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r
(S)

Γ �Σ p : o Γ �Σ q : o

Γ �Σ p ⇒ q ⇒ p
(K)

Γ �Σ P : σ → o Γ �Σ M : σ

Γ �Σ ∀σ(P) ⇒ PM
(∀-E)

Γ �Σ p : o

Γ �Σ ¬¬p ⇒ p
(DN)

Γ �Σ p ⇒ q Γ �Σ p

Γ �Σ q
(MP)

Γ, x : σ �Σ M : σ′ Γ �Σ N : σ

Γ �Σ (λxσ.M)N =σ′
M[N/x]

(β)

Γ �Σ M : σ → σ′

Γ �Σ λxσ.Mx =σ→σ′
M
x �∈ FV (M) (η)

Γ, x : σ �Σ M : σ′ Γ, x : σ �Σ N : σ′

Γ�Σ(∀xσ.M =σ′
N)

⇒ λxσ.M =σ→σ′
λxσ.N

(ξ)

Γ �Σ p : o Γ, x : σ �Σ p ⇒ q

Γ �Σ p ⇒ ∀xσ.q (Gen)

Fig. 3. Logical axioms and rules.

a suitable “closure” operator T�∈ (Figure 4). The definition of the operator T�∈ is

completely syntax driven, after the signature we have chosen.

The second part of the logical system of Υ is given by the axioms in Figure 5, which

represent the Theory of Contexts (for the given signature Σ). These properties reflect

in the metalogic some core properties of names and higher-order terms over names.

In section 2.3.1 we illustrate how to apply the axioms of the Theory of Contexts in

order to derive some fundamental metatheoretic properties about process algebras.

According to our experience (Honsell et al., 2001b; Scagnetto, 2002), these axioms

are very useful for proving metatheoretic properties about encodings in higher-order

abstract syntax. For a general account and discussion of these axioms we refer to

Honsell et al. (2001a), (where Fresh was called Unsat).

It is worthwhile noticing that these additional axioms are not derivable from the

logical ones; in fact, as we will see in section 3, the axioms of Figure 5 are not

validated by any set-theoretic semantics.

T�∈ : (υ → ι → o) → (υ → ι → o)

� λRυ→ι→o.λxυ.λP ι.P = 0∨
(∃Qι.P = τ.Q ∧ (R x Q))∨
(∃P ι

1 .∃P ι
2 .P = P1|P2 ∧ (R x P1) ∧ (R x P2))∨

(∃Qι.∃yυ.∃zυ.P = [y �= z]Q ∧ ¬(x =υ y) ∧ ¬(x =υ z) ∧ (R x Q))∨
(∃Qυ→ι.P = νQ ∧ (∀yυ.¬(x =υ y) ⇒ (R x (Q y))))

�∈ � λxυ.λP ι.∀Rυ→ι→o.(∀yυ.∀Qι.(T�∈ R y Q) ⇒ (R y Q)) ⇒ (R x P)

∈ � λxυ.λP ι.¬(x �∈ P)

�∈n � λxυ.λP υn→ι.x �∈ (νλxυ1. . . . νλx
υ
n−1.ν(P x1 . . . xn−1)) (n � 1)

Fig. 4. The occurrence-checking predicates.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

334 A. Bucalo et al.

Γ �Σ P : ι

Γ �Σ ∃xυ.x �∈ P
(Fresh ι)

Γ �Σ P : υn+1 → ι Γ �Σ Q : υn+1 → ι Γ �Σ x : υ

Γ �Σ x �∈n+1P ⇒ x �∈n+1Q ⇒ (P x) =υn→ι (Q x) ⇒ P =υn+1→ι Q
(Ext υ

n+1→ι)

Γ �Σ P : υn → ι Γ �Σ x : υ

Γ �Σ ∃Qυn+1→ι.x �∈n+1 Q ∧ P =υn→ι (Q x)
(β expυ

n→ι)

Fig. 5. Axioms of the Theory of Contexts.

The object system: semantics. We show how to use Υ to encode predicates of object

systems. For the simplified π-calculus presented in the previous section, let us

consider an operational semantics −→⊆ P × P inductively defined by the following

rules:

−
τ.P −→ P

(TAU)
P −→ P ′

(νy)P −→ (νy)P ′ (RES)
P −→ P ′

P |Q −→ P ′|Q (PAR1)

Q −→ Q′

P |Q −→ P |Q′ (PAR2)
P −→ P ′

[x �= y]P −→ P ′ x �= y (MISMATCH)

This operational semantics is a relation over Proc × Proc which can be encoded

in Υ by a predicate −→: ι → ι → o, defined by an impredicative inductive clause for

a closure operator T−→ (Incidentally, this definition makes use of the �∈ previously

defined, but this does not hold in general):

T−→ :(ι → ι → o) → (ι → ι → o)

�λRι→ι→o.λP ι.λQι.P = τ.Q ∨
(∃P ι

1 .∃Qι1.∃Sι.P = P1|S ∧ Q = Q1|S ∧ (R P1 Q1)) ∨
(∃P ι

2 .∃Qι2.∃Sι.P = S |P2 ∧ Q = S |Q2 ∧ (R P2 Q2)) ∨
(∃P ′ι.∃xυ.∃yυ.P = [x �= y]P ′ ∧ ¬(x =υ y) ∧ (R P ′ Q)) ∨
(∃P ′υ→ι

.∃Q′υ→ι
.P = νP ′ ∧ Q = νQ′ ∧ (∀xυ.x �∈ P ′ ⇒ (R (P ′ x) (Q′ x))))

−→�λP ι.λQι.∀Rι→ι→o.(∀P ′ι.∀Q′ι.(T−→ R P ′ Q′) ⇒ (R P ′ Q′)) ⇒ (R P Q)

This encoding technique applies to coinductive predicates as well, such as the

quite common case of bisimilarity. Recall that a binary relation S on processes

is a simulation iff, for all P ,Q processes, if P S Q and P −→ P ′ then for some

Q′, Q −→ Q′ and P ′ S Q′. S is a bisimulation if both S and S−1 are simulations.

Bisimilarity is the greatest bisimulation, that is the binary relation
.∼ defined by

P
.∼ Q ⇐⇒ ∃S.S bisimulation and (P S Q).

The corresponding formalization in Υ is by means of a coinductive definition for

a “denseness” operator “T .∼”:

T .∼ :(ι → ι → o) → (ι → ι → o)

�λRι→ι→o.λP ι.λQι.(∀P ′ι.(P −→ P ′) ⇒ ∃Q′ι.(Q −→ Q′) ∧ (R P ′ Q′))

∧ (∀Q′ι.(Q −→ Q′) ⇒ ∃P ′ι.(P −→ P ′) ∧ (R P ′ Q′))

.∼�λP ι.λQι.∃Rι→ι→o.(∀P ′ι.∀Q′ι.(R P ′ Q′) ⇒ (T .∼ R P ′ Q′)) ∧ (R P Q)

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 335

In this paper we will not deal with the properties of −→ and
.∼; we refer the

interested reader to Honsell et al. (2001b).

2.3 Remarks on the design of Υ

2.3.1 Motivations and rationale

In this subsection we will try to convey the reader the rationale behind the Theory

of Contexts. The axioms of this theory aim to reflect in the logic, some fundamental

and natural properties of object level “term contexts”, “variables” and “name”, when

these are represented by meta-level abstractions and variables following the weak

HOAS paradigm. Their informal meaning is the following:

Freshness: for any term, there exists a variable which does not occur free in it.

Extensionality: two term contexts are equal if they are equal on a fresh variable;

that is, if M(x) = N(x) and x �∈ M(·), N(·), then M = N.

β-expansion: it is always possible to split a term into a context applied to a variable,

that is: given a term M and a variable x, there is a context N(·) such that

N(x) = M and x does not occur in N(·).

These properties have been first suggested by practical reasoning about process

calculi, and have been proved to be quite useful in a number of situation. A simple

and recurring situation, faced in all the formal developments of the metatheory of

process calculi (like the π-calculus), and in which the Theory of Contexts is put

to work is the following: proving that crucial properties are preserved by fresh

renamings, i.e., by replacing a given name with a fresh one. An example is Lemma 3

of Milner et al. (1992) (adapted to the π-calculus fragment used in this paper):

For all processes P ,Q and y �∈ fn(P) ∪ fn(Q), if P −→ Q then P {y/x} −→ Q{y/x}.

All these lemmata are instances of the following general pattern of renaming lemma

(expressed in natural deduction style):

for all C1(·), . . . , Cn(·) :
for some x �∈

⋃n
i=1 fn(Ci(·)) : R(C1(x), . . . , Cn(x))

for all y �∈
⋃n
i=1 fn(Ci(·)) : R(C1(y), . . . , Cn(y))

(1)

where R : τ1 → · · · → τn → o is a given n-ary relation and C1(·). . . , Cn(·) are meta-

variables ranging over contexts of terms (e.g., contexts of π-calculus processes). For

instance, Lemma 3 above can be expressed in Υ as follows:

P : υ → ι, Q : υ → ι, x : υ�Σ x �∈1 P ⇒ x �∈1 Q ⇒ (P x) −→ (Q x) ⇒
∀yυ.y �∈1 P ⇒ y �∈1 Q ⇒ (P y) −→ (Q y)

here, R =−→, and C1 = P , C2 = Q.

“On paper”, this kind of properties is usually proved by structural induction either

on the derivation of the premise R(C1(x), . . . , Cn(x)) or on one of the arguments Ci(x)

or else on a “measure” of an argument (e.g., the number of symbols it contains).

The problem is that the term Ci(x) is not a “plain” metavariable, but rather the

application of the metavariable Ci to the metavariable x. Thus, we cannot apply the

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

336 A. Bucalo et al.

induction principle over Ci(x), because this would require a second-order unification

which is not usually available in proof-assistants.

To circumvent this problem, we need to prove a preliminary version of the

renaming lemma, where the necessary second-order unifications are all made explicit

in order to recover sufficient inductive information on the structure of the contexts

Ci(·) from their instantiations Ci(x). In other words, we “lift” structural information

to the level of functional terms, using the β-expansion and the extensionality axioms.

This lifting follows a general pattern. First of all, we replace the original goal of the

form (1) with the following one

for all C1(·), . . . , Cn(·), for all T1, . . . , Tn :

for some x �∈
⋃n
i=1 fn(Ci(·)) : T1 = C1(x), . . . , Tn = Cn(x) ⇒ R(T1, . . . , Tn)

for all y �∈
⋃n
i=1 fn(Ci(·)) : R(C1(y), . . . , Cn(y))

(2)

where T1, . . . , Tn are plain terms and T1 = C1(x), . . . , Tn = Cn(x) are the required

unifications. Clearly we can infer the former goal (1) from (2) by taking Ti = Ci(x).

In proving (2), we can proceed by structural induction over Ti. We can take

advantage of the structural information on T1, . . . , Tn given by the inductive

hypothesis: using the β-expansion axiom, we can rewrite each term Ti as a

context applied to x, yielding the equations T1 = T ′
1(x), . . . , Tn = T ′

n(x), where

x �∈
⋃n
i=1 fn(T ′

i (·)). Differently from Ci(·), T ′
i (·) is not a variable, but a concrete

λ-abstraction. By transitivity of equality, we obtain the equations Ci(x) = T ′
i (x);

thus, by the extensionality axiom, we can infer Ci(·) = T ′
i (·), i.e., the structural

information we needed on the variable Ci(·). Such an information can then be

used in the instantiations over y in the current goal, in order to apply the suitable

constructor of R and solve the subsequent subgoal by means of the inductive

hypothesis.

It should be noticed that this kind of “fresh-renaming” properties cannot be

derived in standard type theories, using HOAS-based encodings. In the proof sketch

above, the use of β-expansion and extensionality is essential.

2.3.2 Independence

It is worth noticing that, according to our experience, in order to reason about the

metatheory of nominal calculi, full classical logic is not strictly needed. Indeed, we

could replace DN in Figure 3 with either an axiom stating the decidability of Leibniz

equality over names or an axiom stating the decidability of occurrence predicates of

names into terms. This is the approach we adopted in Honsell et al. (2001b). In our

framework Υ, these two axioms can be rendered as follows:

Γ �Σ x : υ Γ �Σ y : υ

Γ �Σ x =υ y ∨ x �=υ y
(EM =υ)

Γ �Σ x : υ Γ �Σ P : ι

Γ �Σ x �∈ P ∨ ¬(x �∈ P)
(EM �∈)

While EM =υ derives directly from EM �∈, on the converse, EM �∈ can be derived from

EM =υ using Fresh ι and the induction principles Indι, Indυ→ι (section 6.3) over plain

terms and contexts.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 337

Thus, the minimal classical flavour that Υ must have in order to allow metatheor-

etic reasoning about the representation of the π-calculus amounts to decidability of

equality of names. However, for simplicity we prefer to stick to full classical logic.

In Honsell et al. (2001b) the Theory of Contexts is enriched by another axiom

stating the congruence of �∈ with respect to ν (there called “monotonicity”):

Γ �Σ x : υ Γ �Σ y : υ Γ �Σ P : υ → ι

Γ �Σ x �∈ (P y) ⇒ x �∈ νP
(CONG �∈)

Recently, we discovered that this law is indeed derivable from Fresh ι, EM �∈ and

Indι. Another possibility of deriving CONG �∈ is to exploit Indυ→ι without any other

axioms, i.e., to reason by induction on the structure of the term context P (·) (for the

details see Section 4.5.1 of Scagnetto, 2002).

We remark here that congruence of ∈ w.r.t. ν, i.e.

Γ �Σ x : υ Γ �Σ y : υ Γ �Σ P : υ → ι

Γ �Σ ¬x =υ y ⇒ x ∈ (P y) ⇒ x ∈ νP
(CONG∈)

is trivially derivable by exploiting the inductive nature of �∈.

Finally, for what concerns the axioms schemata β expυ
n→ι and Ext υ

n+1→ι, we have

the following result:

Proposition 2.2

For all n ∈ �: Indυ
n→ι allows to derive β expυ

n→ι from β expυ
n+1→ι and (if n > 0)

Ext υ
n→ι from Ext υ

n+1→ι.

Proof

By structural induction on contexts of type υn → ι, using Indυ
n→ι. Most cases

are trivial; in the case of the ν constructor, we apply the axioms β expυ
n+1→ι and

Ext υ
n+1→ι. �

2.3.3 Simplicity, adequacy and expressiveness

In the present work we define the predicate ∈ in terms of �∈ and =υ rather than

giving an independent constructive definition, like in Honsell et al. (2001b). This

approach is motivated by the fact that in nominal calculi a crucial rôle is played by

freshness (i.e. non-occurrence) of names within terms. However, it would be clearly

possible to give a constructive definition of such a predicate as follows:

∈c � λxυ.λP ι.∀Rυ→ι→o.(∀yυ.∀Qι.(T∈c(R) y Q) ⇒ (R y Q)) ⇒ (R x P)

where

T∈c : (υ → ι → o) → (υ → ι → o)

� λRυ→ι→o.λxυ.λP ι.

(∃Qι.P = τ.Q ∧ (R x Q)) ∨
(∃P ι

1 .∃P ι
2 .P = P1|P2 ∧ ((R x P1) ∨ (R x P2))) ∨

(∃Qι.∃yυ.∃zυ.P = [y �= z]Q ∧ (x =υ y ∨ x =υ z ∨ (R x Q))) ∨
(∃Qυ→ι.P = νQ ∧ (∀yυ.(R x (Q y))))

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

338 A. Bucalo et al.

The two definitions are provably equivalent. We have in fact the following:

x : υ, P : ι�Σ x ∈ P ⇐⇒ x ∈c P

where Σ denotes the signature introduced so far together with the operator T∈c

defined above. Without going into the details of the proof, we simply note that the

left (⇐) implication required Fresh ι (see Figure 5), while the right (⇒) direction has

been proved by means of Indι (see Figure 8), EM =υ (which is trivially derivable in

classical logic), Fresh ι and CONG �∈ (which, as we pointed out before, can be derived

from Indυ→ι).

3 The construction of the model U

Proving that the axioms of the Theory of Contexts are sound is not trivial. In fact,

they cannot be validated in any set-theoretic interpretation of the metalanguage of

Υ. Let us consider an interpretation of the types of Υ as sets, in particular o as the

set of truth values {⊥,�}, function spaces as sets of all functions, υ, ι as an arbitrary

set, truth of a proposition as giving � under all valuations of the environment with

∀,⇒ given their usual meaning.

So that Fresh ι be validated we must necessarily interpret υ as an infinite set, so

suppose that n0, n1, . . . is an enumeration of (the interpretation of) υ. Let Q : υ ⇒ ι

be the function that maps ni to [ni+1 �= n0]0. Then, by unfolding the definition of �∈
we obtain ni ∈ ν(Q) for all i which is in conflict with Fresh ι.

More subtly even, under an arbitrary interpretation of function spaces we get a

contradiction if we furthermore assume the Axiom of Unique Choice, as explained in

Hofmann (1999):

Γ �Σ p : τ1 → τ2 → o

Γ �Σ (∀xτ1 .∃yτ2 .p(x, y) ∧ ∀zτ2 .p(x, z) ⇒ y =τ2 z) ⇒ ∃fτ1→τ2 .∀xτ1 .p(x, f(x))
Now, the Axiom of Unique Choice is validated in any topos, not only in set theory.

Therefore, in order to model consistently the Theory of Contexts, we have to go

beyond the theory of topoi.

The solution to this problem has been suggested in Hofmann (1999), by “gluing”

together a model of variables and a model of names. The interpretation of types

and environments as set-valued functors from the category of finite sets of names

and functions. The meaning of a term depends on the set of names which can be

associated to its free variables. The functor interpreting a type, therefore, gives the

set of possible values for every set of names, while its action on a function between

two sets of names corresponds to the capture-avoiding substitution of names in

terms. The meaning of a well-typed term is then the interpretation of its typing

judgment, which is a natural transformation from the meaning of the environment

to the meaning of the type. Naturality ensures that this interpretation is compatible

with all possible substitutions of names for interpreting free variables.

Given a set of names for interpreting free variables, the meaning of a formula is the

set of name substitutions under which it is verified. Intuitively, a valid proposition

must be satisfied under all injective substitutions, since these keep distinct the

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 339

meaning given to different variables. Therefore a proposition is valid if, for all sets

of names, its intepretation contains at least all injective substitutions.

We will proceed as follows: in section 3.1 we introduce the base categories V̌
and Ǐ, which will be used in section 3.2 for interpreting the types of Υ. The

interpretation of terms will be given in section 3.3. Finally in section 3.4 we will give

the interpretation of the logical judgment.

We suppose the reader familiar at least with basic concepts and notions of the

theory; e.g. see Mac Lane (1971) and Barr & Wells (1999) for a first introduction. An

account of the basic notions and constructions we are going to use is in Appendix A.

A suitable model can be constructed directly using the theory of triposes (Pitts,

1999; Jacobs, 1999), an advanced categorical notion used for building models of

higher-order logic. However, our aim is to describe the model, and the subtle

techniques in it, also to readers with little knowledge of category theory; hence,

we have decided to describe in detail the construction. The connections with tripos

theory will be described in section 5; in fact, the cognoscenti is encouraged to read

section 5 in parallel (or before) the present one.

3.1 The ambient categories V̌ and Ǐ

In this section we introduce the categories we will use to build the model and we

state some useful properties. We will mainly work in V̌ � SetV, where V is the

category whose objects are finite sets of variables, ranged over by X,Y , Z, . . . , and

whose morphisms are functions between them. The intended meaning of morphisms

is that of variable substitutions. We will use the fact that V has coproducts, given by

disjoint union, and also that, by the Yoneda Lemma, for all F ∈ V̌, V̌(1, F) ∼= F∅.

Though the category V̌ would suffice to interpret basic datatypes, in order

to obtain a consistent model for our extra logical axioms (Fresh ι, Ext υ
n+1→ι and

β expυ
n→ι), we must interpret the type of propositions o in a non-standard way.

Following Hofmann (1999), we introduce the auxiliary notion of predicate over a

given type exploiting the subcategory of V whose objects are the same of V and

morphisms are injective functions. We will denote this category by I; notice that it

inherits coproducts from V.

The following proposition is an instance of a general result on subcategories (see

Mac Lane, 1971, § X.3). It will be fundamental in the construction of the model.

Proposition 3.1

There is an adjunction (()r, ()∗, φ) from V̌ to Ǐ with ()r the restriction to Ǐ of

functors in V̌ and the identity on morphisms, and ()∗ and φ defined as follows:

()∗: for G ∈ Ǐ, G∗ : V̌ −→ Set is the functor whose action is

G∗
X � Ǐ(V(X,)r, G), (G∗

f(t))Z (h) � tZ (h ◦ f),

and for s ∈ V̌(F,G), s∗ ∈ V̌(F∗, G∗) is the natural trasformation defined by

(s∗
X(m))Y (f) � sY (mY (f)),

φ: for all F ∈ V̌, G ∈ Ǐ, α ∈ V̌(F,G∗), x ∈ FX: (φFG(α))X(x) � (αX(x))X(idX).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

340 A. Bucalo et al.

It will be useful to have the explicit definition of the inverse ψ of φ: for F ∈ V̌,

G ∈ Ǐ, α ∈ Ǐ(Fr, G), X,Y ∈ V, t ∈ FX and g ∈ V(X,Y)):

((ψFG(α))X(t))Y (g) � αY (Fg(t)).

3.2 Interpreting types

3.2.1 Variables and Processes

The interpretation of the type of variables is the functor [[υ]] � Var : V −→ Set

defined by VarX � X and, for h ∈ V(X,Y), x ∈ X, Varh(x) � h(x). In other words,

Var is simply the embedding of V into Set. Note that it is isomorphic to the

representable functor Y̌({�}).
The interpretation [[ι]] of processes is given by the functor Proc, which is defined

by extending the previous definition ProcX (denoting the set of processes with free

names in X) with the action on morphisms. Given h : X −→ Y , we define Proch � σ,

where σ : ProcX −→ ProcY is the substitution function which replaces every X-

indeterminate x in t ∈ ProcX with h(x), yielding a term of ProcY . For this reason,

sometimes in the following we will denote Proch(t) by t[h]. This useful notation can

be extended to any type, i.e., for all F ∈ V̌ and h ∈ V(X,Y) and t ∈ FX , we will

often denote Fh(t) by t[h].

Notice that Proc is not representable; indeed if this were the case, then there would

be a finite set of variables Z such that [[ι]] ∼= Y̌(Z) � V(Z,). From this we could

infer that [[ι]]X � ProcX ∼= Y̌(Z)X � V(Z,X), i.e., that the set of processes with free

variables included in X would be isomorphic to the set of finite substitutions with

domain Z and codomain X. This is clearly absurd since the cardinality of the latter

set is finite and precisely |Z | · |X|, while the cardinality of ProcX is infinite (since it

is inhabited by the following succession of processes: 0, 0|0, 0|0|0, . . .).

3.2.2 Propositions

As anticipated, we cannot interpret propositions in the standard way. Instead we

will proceed as follows:

1. a functor PredǏ : Ǐop −→ Set with suitable properties is introduced.

2. PredǏ is extended to a functor Pred : V̌op −→ Set by means of Proposi-

tion 3.1; the adjunction ensures that the properties of PredǏ we are interested

in are transferred to Pred. In particular Pred is representable.

3. Prop : V −→ Set is defined as the functor representing Pred.

The whole construction is inspired by results related to the notion of tripos (Pitts,

1999). Indeed, the properties of Pred we are interested in essentially amount to the

conditions ensuring that PredǏ is a tripos on Ǐ, so that we can interpret Higher

Order Logic. However, to keep the construction of the model as elementary as

possible, in this section we will not refer to tripos theory, but we will just introduce

the notions needed to carry out a direct verification that our construction indeed

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 341

yields a model of Υ. In section 5 we will briefly discuss how our results can be set

in the general setting of tripos theory.

First, we introduce PredǏ, which assigns to every functor F ∈ Ǐ, a Boolean

algebra of predicates. For this purpose we recall the following definition.

Definition 3.1

Given a functor F : I −→ Set, a subfunctor of F is a I-indexed family of sets

(PX)X∈I such that

for X ∈ I : PX ⊆ FX (Sub)

for h ∈ I(X,Y), if t ∈ PX then Fh(t) ∈ PY . (Func)

(Notice that by condition (Func), a subfunctor is a functor).

We will say that a subfunctor P is closed if it satisfies the following:

for all X,Y ∈ I, t ∈ FX, if t[h] ∈ PY for some h ∈ I(X,Y), then t ∈ PX
(Closure)

(As we will see in section 5, closed subfunctors of F are precisely the double negation

closed predicates in the topos logic of Ǐ.)

We will denote a subfunctor P of F by P � F . With the usual abuse of language,

we will identify subfunctors of F with the subobjects, or predicates, of F .

Now let PredǏ : Ǐop −→ Set be defined as follows:

• for F ∈ Ǐop, PredǏ(F) � {P ∈ Ǐ | P � F, P is closed};

• for α ∈ Ǐop(F,G) and P ∈ PredǏ(F), PredǏ(α)(P) is the subfunctor of G such

that (PredǏ(α)(P))X � α−1
X (PX), and (PredǏ(α)(P))f � Ff .

It is a standard result that the previous conditions indeed define a functor, and

moreover that the following holds:

Proposition 3.2

For all F ∈ Ǐ, PredǏ(F) is a boolean algebra w.r.t. the operations:

0X � ∅ (U ∨ V)X � UX ∪ VX
1X � FX (U ∧ V)X � UX ∩ VX (U)X � FX \UX

and moreover for all α ∈ Ǐop(F,G), PredǏ(α) preserves all boolean operations.

The proof of both previous statements is in Appendix B.1. In the following, we will

denote by � the order naturally arising from the operations of the algebra.

Now let Ω ∈ Ǐ be the functor defined by ΩX � PredǏ(I(X,)) and Ωf � I(f,).

(The notation is reminiscent of the fact that this is the subobject classifier in the

topos of ¬¬-sheaves over I.) Then:

Proposition 3.3

PredǏ and Ǐ(,Ω) are naturally isomorphic, so PredǏ is representable.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

342 A. Bucalo et al.

We just give the definition of the isomorphism: χǏ : PredǏ −→ Ǐ(,Ω) and κǏ :

Ǐ(,Ω) −→ PredǏ are defined by:

(χǏ
F (U))X(t) � ({f ∈ I(X,Y) | Ff(t) ∈ UY })Y ∈I

κǏ
F (m) � ({t ∈ FY | mY (t) = Y̌Ǐ(Y)})Y ∈I.

Then the proof of the proposition is a routine check that these maps form an

isomorphism (see Appendix B.2).

Now let us proceed to define the functor Pred : V̌op −→ Set by setting Pred(F) �
PredǏ(Fr) and Pred(α) � PredǏ(αr). By Propositions 3.1 and 3.3 we have the

following natural isomorphisms:

• for all F ∈ V̌, PredǏ(Fr)
∼

χǏ
Fr

�� Ǐ(Fr,Ω)
∼
ψF,Ω

�� V̌(F,Ω∗)

• for all X ∈ V, γX � κǏ
V(X,)r : (Ω∗)X = Ǐ(V(X,)r,Ω) −→ PredǏ(V(X,)r).

Let Prop be defined by

PropX � Pred(V(X,)) Propf � Pred(V(f,)) = f ◦ .

Then we obtain natural isomorphisms

χ : Pred −→ V̌(,Prop) and κ : V̌(,Prop) −→ Pred

given by

(χF (U))X(t) � (γ ◦ ψF,Ω(χǏ
Fr (U)))X(t) =

(
{g ∈ V(X,Y) | t[g] ∈ UY }

)
Y ∈V ,

κF (m) � κǏ
Fr (φF,Ω(γ−1 ◦ m)) =

(
{t ∈ FX | mX(t) � I(X,)}

)
X∈V .

Now we can define the interpretation of the type of propositions as [[o]] � Prop, i.e.

the object representing Pred.

3.2.3 Arrow types

The interpretation [[σ → σ′]] is given by the functor [[σ]] ⇒ [[σ′]] where ⇒ is in

general the usual exponential in presheaf categories: for A,B in V̌:

(A ⇒ B)X � V̌(A× V(X,), B)

for f : Y → Z and m : A× V(Y ,) −→ B : (A ⇒ B)f(m) � m ◦ (idA × (◦ f))

while evaluation evA,B : A × (A ⇒ B) −→ B and transposition �·� : V̌(A × B,C) →
V̌(B,A ⇒ C) are given as follows, for all X ∈ V, a ∈ AX , b ∈ BX:

for m : A× V(X,) −→ B : (evA,B)X(a, m) � mX(a, idX),

for f : A× B −→ C : (�f�X(b))Y : AY × V(X,Y) −→ CY

(a, h) �→ fY (a, b[h])

Therefore, elements of (A ⇒ B)X are, in general, natural transformations in V̌.

However, a particularly important case is when the exponent A is a representable

type, that is A ∼= Y̌(X) for some X ∈ V. In this case, the elements of (A ⇒ B)X

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 343

have a much simpler representation (which holds in any presheaf category SetC as

long as C has finite coproducts).

Proposition 3.4 ((Hofmann, 1999))

For all X,Y ∈ V, and B in V̌: (Y̌(X) ⇒ B)Y ∼= BX�Y .

Proof

(Y̌(X) ⇒ B)Y = Č(Y̌(X) × Y̌(Y), B) by definition of ⇒
∼= Č(Y̌(X � Y), B) since Y̌ preserves coproducts
∼= BX�Y by Yoneda Lemma �

Therefore, each natural transformation m : Var × V(Y ,) → B is represented by a

unique element m̄ ∈ BY �{z}, and vice versa. Explicitly, this m̄ can be described as

m̄ = mX�{z}(z, inX)

where inX ∈ V(X,X � {z}) is the left inclusion in the following coproduct diagram

X
inX ��

idX ����
��

��
��

��
X � {z}

[x/z]

��

1
z��

x
����

��
��

��
��

X

Notice that by naturality the following diagram commutes

X � {z}

[x/z]

��

X � {z} × V(X,X � {z})

[x/z]

��
[x/z]◦

��

mX�{z} �� BX�{z}

B[x/z]

��
X X × V(X,X)

mX �� BX

Taking advantage of this naturality, we have that

(evVar ,B)X(x, m) � mX(x, idX)

= mX(z[x/z], [x/z] ◦ inX)

= (B[x/z] ◦ mX�{z})(z, inX) = m̄[x/z]

In particular, the interpretation of υ → ι is Var ⇒ Proc and hence, since Var =

Y̌(1), by Proposition 3.4 we have

[[υ → ι]]X ∼= ProcX�{x} (3)

In other words, a term of type υ → ι with variables in X is (equivalent to) a term in

ι with variables in X plus an extra fresh variable x. This corresponds to the basic

idea of higher-order abstract syntax, where term schemata correspond to terms with

an extra (abstracted) variable.

The equivalence (3) is so fundamental for the construction of the model U, that

we can take it as the real definition of exponentials of the form υ → ι. Since Proc[x/z]
is simply the capture-avoiding substitution, the corresponding evaluation is

(evVar ,Proc)X(x, P) � P [x/z] for P ∈ ProcX�{z} (4)

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

344 A. Bucalo et al.

3.3 Interpreting the typing judgment of terms

Typing judgments of the form Γ � M : σ will be interpreted as suitable natural

transformations with domain [[Γ]] and codomain [[σ]]. As usual, the interpretation

[[Γ]] of an environment Γ = {x1 : σ1, . . . , xn : σn} is given by the functor
∏n

i=1[[σi]].

We shall give the interpretation of the typing judgment by induction on the depth

of the derivation of Γ � M : σ.

Rule VAR: [[x1 : σ1, . . . , xi : σi, . . . , xn : σn �Σ xi : σi]] � πi :
n∏
j=1

[[σj]] −→ [[σi]]

Rule CONST: for interpreting the judgments involving constants in Σ we introduce

the following natural transformations (naturality is trivial to prove):

nil : 1 −→ Proc mismatch : Var × Var × Proc −→ Proc

nilX : 1X −→ ProcX mismatchX : X ×X × ProcX −→ ProcX

∗ �−→ 0 〈x, y, P 〉 �−→ [x �= y]P

tau : Proc −→ Proc par : Proc × Proc −→ Proc

tauX : ProcX −→ ProcX parX : ProcX × ProcX −→ ProcX

P �−→ τ.P 〈P ,Q〉 �−→ P | Q

new : Var ⇒ Proc −→ Proc

newX : ProcX�{x} −→ ProcX

P �−→ (νx)P

We can now interpret judgments of the form Γ �Σ c(M1, . . . ,Mn) : σ, for c a

constant of the signature. Let Γ be an environment, x, y be variables, and P ,Q be

terms. Then:

• [[Γ �Σ 0 : ι]] = nil◦ ![[Γ]], where ![[Γ]] is the unique morphism from [[Γ]] to 1;

• [[Γ �Σ τP : ι]] = tau ◦ [[Γ �Σ P : ι]];

• [[Γ �Σ P |Q : ι]] = par ◦ 〈[[Γ �Σ P : ι]], [[Γ �Σ Q : ι]]〉;
• [[Γ �Σ [x �= y]P : ι]] = mismatch ◦ 〈[[Γ �Σ x : υ]], [[Γ �Σ y : υ]], [[Γ �Σ P : ι]]〉;
• [[Γ �Σ νλx

υ.P : ι]] = new ◦ [[Γ �Σ λx
υ.P : υ → ι]].

Rule APP: given t1 = [[Γ �Σ M : σ′ → σ]] : [[Γ]] −→ ([[σ′]] ⇒ [[σ]])

and t2 = [[Γ �Σ N : σ′]] : [[Γ]] −→ [[σ′]], we define

[[Γ �Σ MN : σ]] � ev[[σ′]],[[σ]] ◦ 〈t2, t1〉 : [[Γ]] −→ [[σ]],

Rule ABS: given t = [[Γ, x : σ �Σ M : σ′]] : [[Γ]] × [[σ]] −→ [[σ′]], we define

[[Γ �Σ λx
σ.M : σ → σ′]] � �t� ,

where �t� : [[Γ]] −→ ([[σ]] ⇒ [[σ′]]) is the exponential transpose of t.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 345

Rule ⇒: [[Γ �Σ p ⇒ q : o]] = imp ◦ 〈[[Γ �Σ p : o]], [[Γ �Σ q : o]]〉, where

impX : PropX × PropX −→ PropX
〈U,V 〉 �−→ U ∨ V .

Rule ∀: [[Γ �Σ ∀σp : o]] = forallσ ◦ [[Γ �Σ p : σ → o]], where

(forallσ)X : ([[σ]] ⇒ Prop)X −→ PropX
m �−→ ∀π(κ[[σ]]×Y̌(X)(m))

and m is a natural transformation from [[σ]] × Y̌(X) to Prop (remember that

([[σ]] ⇒ Prop)X � V̌([[σ]]× Y̌(X), P rop)), π : [[σ]]× Y̌(X) −→ Y̌(X) is the projection

and, for F ∈ Pred([[σ]] × Y̌(X)),

∀π(F) � ({f ∈ V(X,Y) | ∀g ∈ I(Y ,Z).π−1
Z (g ◦ f) ⊆ FZ})Y ∈V.

More explicitly

(forallσ)X(m) =

= ({f ∈ V(X,Y) |∀g ∈ I(Y ,Z).∀t ∈ [[σ]]Z .〈t, g ◦ u〉 ∈ κ[[σ]]×Y̌(X)(m)Z})Y ∈V

Remark. Notice that, if [[Γ �Σ M : σ]] is defined and x �∈ dom(Γ), then [[Γ, x:σ′ �Σ

M : σ]] is the following natural transformation:

([[Γ, x:σ′ �Σ M : σ]])X : [[Γ]]X × [[σ′]]X −→ [[σ]]X

〈η, ηx〉 �−→ [[Γ �Σ M : σ]]X(η)

This means that the model U admits the weakening rule.

3.4 Interpreting logical judgments

As we said before, intuitively a proposition is valid if and only if it is verified

under all possible injective substitutions of names. In our model, this means that

the interpretation of a valid proposition contains all injective substitutions. More

formally, let [[Γ �Σ p : o]]� and � be defined by

[[Γ �Σ p : o]]� : [[Γ]] −→ Prop � : 1 −→ Prop

[[Γ �Σ p : o]]
�
X : [[Γ]]X −→ PropX �X : 1X −→ PropX

η �−→ [[Γ �Σ p : o]]X(η) ∧ I(X,) ∗ �−→ I(X,)

Then we give the following

Definition 3.2 (Validity)

We say that Γ �Σ p holds in U if [[Γ �Σ p : o]]� is the constant natural transformation

(TrueΓ)X : [[Γ]]X −→ PropX

η �−→ I(X,)

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

346 A. Bucalo et al.

This is equivalent to [[Γ �Σ p : o]]� = �◦![[Γ]], i.e., the following diagram commutes:

κ[[Γ]]([[Γ �Σ p : o]])
!κ[[Γ]]([[Γ�Σp:o]]) ��

��

[[Γ�Σp:o]]�

��

1

�

��
[[Γ]]

[[Γ�Σp:o]]
�

��

![[Γ]]���������

������������

Prop

where the outer square is the pullback of � along [[Γ �Σ p : o]]�. Notice that in

this case we have κ[[Γ]]([[Γ �Σ p : o]]) = 1 ∈ Pred([[Γ]]). One should also note that

κ[[Γ]]([[Γ �Σ p : o]]) = κ[[Γ]]([[Γ �Σ p : o]]�); indeed we have the following:

κ[[Γ]]([[Γ �Σ p : o]]) � ({t ∈ [[Γ]]X | I(X,) � [[Γ �Σ p : o]]X(t)})X∈V
= ({t ∈ [[Γ]]X | I(X,) � [[Γ �Σ p : o]]X(t) ∧ I(X,)})X∈V
� κ[[Γ]]([[Γ �Σ p : o]]�)

4 U is a model of Υ

In this section we verify that the model defined in section 3 validates the axioms

and rules of the framework Υ. In order to be able to streamline the computation of

the truth value of a judgment Γ �Σ p in the model U, in section 4.1 we introduce

an appropriate notion of forcing. By means of this useful tool, in section 4.2 we

will give a characterisation of Leibniz equality; finally, in sections 4.3 and 4.4 we

will verify that U is a model of Classical Higher-Order Logic and of the Theory of

Contexts, respectively.

4.1 Forcing

Definition 4.1

Forcing judgments are statements of the shape

X �F,η U

for X ∈ V, F ∈ V̌, U ∈ Pred(F), and η ∈ FX . The intended meaning of X �F,η U

is that η ∈ UX .

When F = [[Γ]], U = κ[[Γ]]([[Γ �Σ p : o]]) and η ∈ [[Γ]]X , we will also write X �Γ,η p

instead of X �Γ,η κ[[Γ]]([[Γ �Σ p : o]]). We will write X � p to denote “for any Γ such

that Γ �Σ p : o, for all η ∈ [[Γ]]X: X �Γ,η p”.

Hence we can rephrase the condition for a logical judgment to be valid in terms

of the forcing relation, namely

Proposition 4.1

The judgment Γ �Σ p holds in U iff for all X ∈ V and for all η ∈ [[Γ]]X we have

X �Γ,η p.

Lemma 4.1

Let P ∈ Pred(Y̌(X)) such that P �� I(X,), then PY ∩ I(X,Y) = ∅ for all Y ∈ V.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 347

Proof

We proceed by an absurdity argument: let us suppose that P �� I(X,) and there

exists Y ∈ V and f ∈ I(X,Y) such that f ∈ PY , we will show that, given any

Z ∈ V and g ∈ I(X,Z), g ∈ PZ .

Indeed, by property (Closure) of predicates (see Definition 3.1), we have that

idX ∈ PX since Y̌(X)f(idX) = f ◦ idX = f ∈ PY . Then, by property Func, we have

that, for all g ∈ I(X,Z), g ∈ PZ since Y̌(X)g(idX) = g ◦ idX = g ∈ PZ . �

A number of useful propositions can now be easily stated.

Theorem 4.1

For all X, Γ, η ∈ [[Γ]]X ,

1. X �Γ,η ∀xσ.p if and only if for all Y , h ∈ I(X,Y), and for all a ∈ [[σ]]Y we

have that Y �(Γ,x:σ), 〈[[Γ]]h(η),a〉 p;

2. X �Γ,η p ⇒ q if and only if X �Γ,η p implies X �Γ,η q;

3. X �Γ,η PM iff 〈[[Γ �Σ M : σ]]X(η), idX〉 ∈ κ[[σ]]×Y̌(X)([[Γ �Σ P : σ → o]]X(η)),

iff ([[Γ �Σ P : σ → o]]X(η))X([[Γ �Σ M : σ]]X(η), idX) � I(X,);

4. it is never the case that X �Γ,η ⊥.

Proof

The proof is a rather easy consequence of the definition of forcing and of the

interpretation of logical judgments described in section 3.4. For the details, see

Appendix B.3. �

Notice that the last statement of the previous theorem amounts to say that the

model U is sound.

Corollary 4.1

1. X �Γ,η ¬p if and only if it is not the case that X �Γ,η p;

2. X �Γ,η p ∧ q if and only if X �Γ,η p and X �Γ,η q;

3. X �Γ,η p ∨ q if and only if X �Γ,η p or X �Γ,η q;

4. X �Γ,η ∃xσ.p if and only if there exist Y , h ∈ I(X,Y) and a ∈ [[σ]]Y such that

Y �(Γ,x:σ), 〈[[Γ]]h(η),a〉 p.

5. X �Γ,η ∀xσ1

1 ∀xσnn .p if and only if for all Y , f ∈ I(X,Y), η1 ∈ [[σ1]]Y , . . . ηn ∈
[[σn]]Y we have that Y �(Γ,x1:σ1 ,... ,xn:σn),〈[[Γ]]f (η),η1 ,... ,ηn〉 p.

Proof

The proof follows from Theorem 4.1 and, in the case of point 5, from a straightfor-

ward induction on n. For the details, see Appendix B.4. �

4.2 Characterisation of Leibniz equality

Definition 4.2 (Separatedness)

An object F ∈ V̌ is said to be separated if its diagonal ∆F � F × F , defined

as (∆F)X � {〈t, t〉 | t ∈ FX} and (∆F)h � Fh × Fh , is a predicate of F × F , i.e.,

∆F ∈ Pred(F × F).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

348 A. Bucalo et al.

This definition is equivalent to those usually given about sheaves on textbooks, in the

case of sheaves for the ¬¬-topology (Mac LaneS & Moerdijk, 1994, p.223, Lemma

V.2.3). As we will show below, for separated objects Leibniz equality coincides with

true equality. First we need the following lemma:

Lemma 4.2

An object A in V̌ is separated if and only if for every map i ∈ I(X,Y) the function

Ai : AX → AY is injective.

Proof

(⇒) Let A be separated; then, by definition, ∆A is a predicate of A × A. Hence, by

the condition (Closure), we have that for all X, Y ∈ I and f = 〈a, b〉 ∈ AX × AX ,

if (A × A)h(f) ∈ (∆A)Y for some h ∈ I(X,Y), then f ∈ (∆)X . Observing that

(A × A)h(f) = 〈Ah(a), Ah(b)〉, Ah(a) = Ah(b) (since (A × A)h(f) ∈ (∆A)Y) and a = b

(since f ∈ (∆)X), we have proved that Ah is injective for any h ∈ I(X,Y).

(⇐) It is trivial to verify that ∆A satisfies both condition (Sub) and (Func). For

condition (Closure), we observe that, for all X, Y ∈ I and f = 〈a, b〉 ∈ AX × AX ,

if (A × A)h(f) ∈ (∆A)Y for some h ∈ I(X,Y), then we must have Ah(a) = Ah(b).

At this point, since we know that Ah is injective, we can deduce that a = b holds,

whence f ∈ (∆A)X . �

As a consequence, we have that A is separated iff for all Y , the function A? : A∅ →
AY is injective, where ? : ∅ → Y is the empty function. In fact, for any i ∈ I(X,Y),

if i has a left inverse p then Ap is a left inverse to Ai by functoriality, so in this case

Ai is injective. Therefore, to establish separatedness it suffices to check injectivity of

A?. For example, the presheaf A given by A∅ = {0, 1} and AX = {0} otherwise, fails

to be separated since A? is not injective.

Lemma 4.3

The objects Var , Proc and Prop are separated. If G is separated, so is F ⇒ G.

Proof

If i ∈ I(X,Y) and x ∈ VarX = X then Var i(x) = i(x), hence Var i is injective.

Similarly, if p ∈ ProcX then Proci(p) = p[i], hence Proci is injective.

For Prop we appeal to the above analysis and merely check that Prop? is injective.

Indeed, Prop∅ contains exactly two elements corresponding to � and ⊥ which are

never identified.

Finally, assume u, v ∈ (F ⇒ G)X = V̌(Y̌(X) × F,G), let i : X → Y be injective

and assume (F ⇒ G)i(u) = (F ⇒ G)i(v). To show u = v assume a—not necessarily

injective—map f : X → X ′ and t ∈ FX ′ . We must show uX ′ (f, t) = vX ′ (f, t). Now,

we can find an injective map j : X ′ → Y ′ and arbitrary map g : Y → Y ′ such

that g ◦ i = j ◦ f. Since G is separated, it suffices to show Gj(u(f, t)) = Gj(v(f, t)).

But, Gj(u(f, t)) = u(j ◦ f, Fj(t)) = u(g ◦ i, Fj(t)) = (F⇒G)i(u)(g, Fj(t)) which yields the

desired conclusion by assumption and symmetry. �

Corollary 4.2

For all types σ, [[σ]] is separated.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 349

Theorem 4.2

For all σ, Γ, M,N, X and η ∈ [[Γ]]X:

X �Γ,η M =σ N ⇐⇒ [[Γ �Σ M : σ]]X(η) = [[Γ �Σ N : σ]]X(η)

Proof

Let us denote by T the interpretation [[σ]] and by Γ′ the environment Γ, P : σ → o,

for P a fresh variable. By definition of =σ and Theorem 4.1, X �Γ,η M =σ N holds

iff

for all Y , h ∈ I(X,Y), p ∈ (T ⇒ Prop)Y :

if [[Γ′ �Σ PM : o]]Y (η[h], p) � I(Y ,), then [[Γ′ �Σ PN : o]]Y (η[h], p) � I(Y ,)

iff

for all Y , h ∈ I(X,Y), p : T × V(Y ,) −→ Prop :

if ([[Γ′ �Σ P : σ→o]]Y (η[h], p))Y ([[Γ′ �Σ M : σ]]Y (η[h], p), idY) � I(Y ,),

then ([[Γ′ �Σ P : σ→o]]Y (η[h], p))Y ([[Γ′ �Σ N : σ]]Y (η[h], p), idY) � I(Y ,)

iff

for all Y , h ∈ I(X,Y), p : T × V(Y ,) −→ Prop :

if pY (mY (η[h]), idY) � I(Y ,), then pY (nY (η[h]), idY) � I(Y ,).
(5)

where m, n : [[Γ]] −→ T denote the natural transformations [[Γ �Σ M : σ]] and

[[Γ �Σ N : σ]], respectively. We have to prove that this is equivalent to

mX(η) = nX(η). (6)

(5 ⇒ 6) By Corollary 4.3, ∆T is a predicate of T × T . Let δT : T × T −→ Prop be

its characteristic map, i.e., for all X and s, t ∈ TX: (δT)X(s, t) � I(X,) iff s = t.

Let m̄ : V(X,) −→ T be the natural transformation m̄Z (h) � mZ (η[h]), and

define q � δT ◦ (idT × m̄) : T × V(X,) −→ Prop. Then, for all t ∈ TX:

qX(t, idX) � I(X,) ⇐⇒ (δT)X(t, mX(η)) � I(X,) ⇐⇒ t = mX(η)

Instantiating (5) for Y = X, h = idX and p = q, we have

if qX(mX(η), idX) � I(X) then qX(nX(η), idX) � I(X,)

which is equivalent to

if mX(η) = mX(η) then nX(η) = mX(η)

hence (6) holds.

(6 ⇒ 5) By naturality, if mX(η) = nX(η) then for all Y and h ∈ I(X,Y), we have

mY (η[h]) = nY (η[h]), hence the thesis. �

We can generalize this result to a semantic form of Leibniz equality. In the

following, given a stage X, an object A of V̌ and a1, a2 ∈ AX , we will denote by

X � a1 =A a2 the property “for all U ∈ Pred(A), if a1 ∈ UX then a2 ∈ UX .”

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

350 A. Bucalo et al.

Proposition 4.2

Let A ∈ V̌ and a1, a2 ∈ AX . The following are equivalent:

1. X � a1 =A a2

2. If X �= ∅ then a1 = a2; otherwise, A?(a1) = A?(a2) for ? : ∅ → {x}.

Proof

(1 ⇒ 2) Leibniz equality is the least reflexive predicate, so it suffices to show that

the property (2) is a reflexive predicate, but this is clear by inspection.

(2 ⇒ 1) If X �= ∅, it is trivial. Let X = ∅; then, A?(a1) = A?(a2). Let U ∈ Pred(A)

such that a1 ∈ U∅. Then A?(a1) ∈ U{x}, that is, A?(a2) ∈ U{x}. By property (Closure)

of predicates, we have a2 ∈ U∅. �

Theorem 4.3

Let F,G ∈ V̌. The following formula is valid in V̌:

∀u, v:F⇒G.(∀x:F.u(x) =G v(x)) ⇒ u =F⇒G v

Proof

Let X be a stage and u, v ∈ (F ⇒ G)X = V̌(V(X,) × F,G), such that for all

i ∈ I(X,X ′) and t ∈ FX ′ one has X ′ � uX ′ (i, t) =G vX ′ (i, t). We must show X �
u =F⇒G v. Let us first assume X �= ∅. In this case, by Proposition 4.2, we need to

show u = v, so assume h ∈ V(X,Y) and t ∈ FY . We should prove uY (h, t) = vY (h, t).

We write h = p ◦ e where p : Z → Y is surjective and e : X → Z is injective.

This can be done by putting Z � X + (Y \ Im(h)). Every surjective map has a

right inverse, thus Fp is surjective, too. So we can find t0 ∈ FZ with Fp(t0) = t. By

assumption uY (e, t0) = vY (e, t0), so the claim follows by naturality of u and v.

If X = ∅ then, again by Prop. 4.2, we need to show that (F⇒G)?(u) = (F⇒G)?(v)

where ? : ∅ → {x}. This is done in the same way. �

Unfortunately, the following extensionality principle for propositions

∀p, q:Prop.(p ⇔ q) ⇒ p =Prop q

is not validated by the model. For example, if X = {x, y} then pY � I(X,Y) and

qY � V(X,Y) are both elements of PropX that moreover, are logically equivalent.

However, they are clearly nonequal.

Nevertheless, if u, v : A −→ Prop are maps in V̌ and ∀a ∈ A.u(a) ⇔ v(a) is valid

then u = v. The assumption asserts that for all X and a ∈ AX if idX ∈ uX(a) then

idX ∈ vX(a) and vice versa. To deduce u = v assume a ∈ AX and h ∈ u(a)Y ⊆
V(X,Y). By naturality of u this implies idY ∈ u(Ah(a)), thus idY ∈ v(Ah(a)) by

assumption and h ∈ v(a) by symmetry.

4.3 U models logical axioms and rules

Theorem 4.4

The model U validates all logical axioms and rules; indeed if Γ �Σ p : o, Γ �Σ q : o

and Γ �Σ r : o, then all the following statements hold in U:

1. Γ �Σ (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r

2. Γ �Σ p ⇒ q ⇒ p

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 351

3. If Γ �Σ P : σ → o and Γ �Σ M : σ, then Γ �Σ ∀σ(P) ⇒ PM

4. If Γ, x : σ �Σ M : σ′ and Γ �Σ N : σ, then Γ �Σ (λxσ.M)N =σ′
M[N/x]

5. If Γ, x : σ �Σ M : σ′, Γ, x : σ �Σ N : σ′,

then Γ �Σ (∀xσ.M =σ′
N) ⇒ λxσ.M =σ→σ′

λxσ.N

6. If Γ �Σ M : σ → σ and x �∈ FV (M), then Γ �Σ λx
σ′
.Mx =σ′→σ M

7. Γ �Σ ¬¬p ⇒ p

8. If Γ �Σ p ⇒ q and Γ �Σ p, then Γ �Σ q

9. If Γ, x : σ �Σ p ⇒ q, then Γ �Σ p ⇒ ∀xσ.q

Proof

Follows from Theorem 4.1, Corollary 4.1 and Theorem 4.2 (see Appendix B.5). �

We conclude this section with a result about the �∈ predicate which will be useful

in the following proofs.

Theorem 4.5

For all Γ, y, M, X and η ∈ [[Γ]]X , such that Γ �Σ y : υ and Γ �Σ M : ι, we have:

X �Γ,η y �∈ M ⇐⇒ ηy �∈ FV ([[Γ �Σ M : ι]]X(η))

Proof

(⇒) By structural induction on the derivation of Γ �Σ M : ι.

(⇐) By definition of T�∈, (T�∈ p z Q) is the following λ-term:

Q = 0 ∨
(∃P ι.Q = σ.P ∧ (p z P)) ∨
(∃P ι

1 .∃P ι
2 .Q = P1 | P2 ∧ (p z P1) ∧ (p z P2)) ∨

(∃P ι.∃yυ.∃uυ.Q = [y �= u]P ∧ ¬z =υ y ∧ ¬z =υ u ∧ (p z P)) ∨
(∃P υ→ι.Q = νP ∧ (∀yυ.¬z =υ y ⇒ (p z (P y))))

Whence (by Corollary 4.1), to prove the premise, it suffices to show that one of the

disjunctions holds. This can be achieved by structural induction on the derivation

of Γ �Σ M : ι.

For the details, see Appendix B.6. �

Corollary 4.3

For all Γ, y, M, X and η ∈ [[Γ]]X , such that Γ �Σ y : υ and Γ �Σ M : υ → ι. Let

M ′ = [[Γ �Σ M : υ → ι]]X(η) ∈ ProcX�{z} we have:

X �Γ,η y �∈1 M ⇐⇒ ηy �∈ FV (M ′) \ {z}

Proof

By unfolding the definition of /∈1 and using Corollary 4.1 and Theorem 4.5. �

4.4 U models the Theory of Contexts

Lemma 4.4

The model U validates Fresh ι: if Γ �Σ P : ι, then for all X, η ∈ [[Γ]]X , the following

holds: X �Γ,η ∃xυ.x �∈ P .

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

352 A. Bucalo et al.

Proof

Applying Corollary 4.1, we deduce that X �Γ,η ∃xυ.x �∈ P holds if and only if

there exist Z , g ∈ I(X,Z), z ∈ [[υ]]Z � Z such that Z �(Γ,x:υ),〈[[Γ]]g(η),z〉 x �∈ P . By

Theorem 4.5, this is equivalent to

z �∈ FV ([[Γ, x:υ �Σ P :ι]]Z (〈[[Γ]]g(η), z〉)) = FV ([[Γ �Σ P :ι]]Z ([[Γ]]g(η))).

Hence it is sufficient to take Z � X ∪ {n} where n �∈ X (which surely exists since X

is a finite set), z � n and g � idX . �

Lemma 4.5

The model U validates Ext υ→ι: if Γ �Σ P : υ → ι, Γ �Σ Q : υ → ι and Γ �Σ x : υ,

then for all X, η ∈ [[Γ]]X , the following holds:

X �Γ,η x �∈1 P ⇒ x �∈1 Q ⇒ (P x) =ι (Q x) ⇒ P =υ→ι Q.

Proof

By Theorem 4.1, we have to prove that if X �Γ,η x �∈1 P , X �Γ,η x �∈1 Q and

X �Γ,η (P x) =ι (Q x), then X �Γ,η P =υ→ι Q. Let us denote

P ′ � [[Γ �Σ P : υ → ι]]X(η) Q′ � [[Γ �Σ Q : υ → ι]]X(η)

in (Var ⇒ Proc)X = ProcX�{z}. By hypothesis and Corollary 4.3, we have that

ηx �∈ (FV (P ′) ∪ FV (Q′)) \ {z}.
By definition of interpretation, we have

[[Γ �Σ (P x) : ι]]X(η) = (evVar ,Proc)X(ηx, [[Γ �Σ P : υ → ι]]X(η)) = P ′[ηx/z]

and similarly [[Γ �Σ (P x) : ι]]X(η) = Q′[ηx/z]. By hypothesis and Theorem 4.2,

therefore, it follows that P ′[ηx/z] = Q′[ηx/z].

We have to prove that the two processes P ′ and Q′ are equal. Indeed:

P ′ = P ′[ηx/z][z/ηx] because ηx �∈ FV (P ′) \ {z}
= Q′[ηx/z][z/ηx] by above

= Q′ because ηx �∈ FV (Q′) \ {z} �

Lemma 4.6

The model U validates β expι: if Γ �Σ P : ι and Γ �Σ x : υ, then for all X, η ∈ [[Γ]]X ,

we have that X �Γ,η ∃Qυ→ι.x �∈1 Q ∧ P =ι (Q x) holds.

Proof

By Corollary 4.1, it is sufficient to prove that there exist Z , g ∈ I(X,Z), ηQ ∈ (Var ⇒
Proc)Z such that Z �∆,µ x �∈1 Q and Z �∆,µ P =ι (Q x) hold (where ∆ � Γ, Q : υ → ι

and µ � 〈[[Γ]]g(η), ηQ〉). Hence we choose Z � X, g � idX and ηQ � [[Γ \ {x : υ} �Σ

λxυ.P : υ → ι]]X(η′) (where η′ � η�dom(Γ\{x:υ})). In order to prove the first forcing

statement, we observe that it is equivalent, by Corollary 4.3, to ηx �∈ FV (Q′) \ {x},
where ηx � [[Γ �Σ x : υ]]X(η) and Q′ � [[∆ �Σ λxυ.P : υ → ι]]X(µX) ∈ ProcX�{x}.

Hence, we can conclude since the following holds:

[[∆ �Σ λx
υ.P : υ → ι]]X(µX) = [[∆ �Σ λx

υ.P : υ → ι]]X(〈η, ηQ〉)
= [[Γ �Σ λx

υ.P : υ → ι]]X(η)

= [[Γ \ {x : υ} �Σ λx
υ.P : υ → ι]]X(η′).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 353

Referring to the proof of X �∆,µX P =ι (Q x), we observe that this statement holds

if and only if [[∆ �Σ P : ι]]X(µX) = [[∆ �Σ (Q x) : ι]]X(µX) holds. Then we have that

[[∆ �Σ P : ι]]X(µX) = [[Γ �Σ P : ι]]X(η); hence, we can conclude since

[[∆ �Σ (Q x) : ι]]X(µX) = (evVar ,Proc)X([[∆ �Σ x : υ]]X(µX), [[∆ �Σ Q : υ → ι]]X(µX))

= (evVar ,Proc)X(ηx, [[Γ \ {x : υ} �Σ λx
υ.P : υ → ι]]X(η′))

= ([[Γ \ {x : υ} �Σ λx
υ.P : υ → ι]]X(η′))X(ηx, idX)

= [[Γ �Σ P : ι]]X(η). �

As an immediate corollary of the results proved in this section, and by Theorem 4.1,

we have one of the main achievement of this paper.

Theorem 4.6

The Theory of Contexts is consistent with (classical) higher-order logic.

5 Connections with tripos theory

In the previous sections, to be self-contained also to readers without a deep

knowledge of category theory, we have illustrated the construction of the model U
in full detail. In this section we will review briefly the basic steps in the construction

of the model U from the point of view of tripos theory. The reader aware of the

many categorical notions behind this model will benefit from this more abstract

perspective which gives a more general justification to the definitions and results

presented. This can suggest further developments in using functor categories to model

other metalanguages and allows to relate this work with other recent research.

In the following we suppose the reader familiar with the notions of topos, Lawvere-

Tierney topology and sheaf (Johnstone, 1977; Mac Lane & Moerdijk, 1994).

First, let us recall some standard notions and results in topos theory. Given a

topos E, there is a functor Sub : Eop → Set which associates to every X ∈ E the set

of its subobjects, and to every arrow f : X → Y in E the function Sub(X) → Sub(Y)

defined by Sub(f)(m) = f−1(m). In general the partially ordered set Sub(X) is a

Heyting algebra and the function Sub(f) is a Heyting algebra morphism. A topos is

said Boolean if, for every X ∈ E, the Heyting algebra Sub(X) is a Boolean algebra,

in this case Sub(f) is a morphism of Boolean algebras.

Given a Lawvere-Tierney topology j on E, the subobject classifier in the topos of

j-sheaves Shj(E) is the equalizer of idΩ and j, say Ωj . In fact Ωj classifies the j-closed

monomorphisms, and the subsheaves of a sheaf are exactly its closed subobjects.

Moreover the inclusion I of Shj(E) into E has a left adjoint L which preserves

finite limits. These two facts imply that there is an isomorphism between j-closed

subobjects of X (j-Sub(X) in the following) and subsheaves of LX.

Now if false is the characteristic map of the unique arrow 0 → 1 and ¬ is the

characteristic map of false, the morphism ¬ ◦ ¬ : Ω → Ω is a Lawvere-Tierney

topology on E and Sh¬¬(E) is a Boolean topos.

Finally if E is SetC for some small category C , then the functor Ω defined by

ΩX = Sub(hX) and Ωf(F) = Sub(hf)(F) is the subobject classifier of E; so the

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

354 A. Bucalo et al.

subobject classifier Ω¬¬ in the topos of ¬¬-sheaves is given by Ω¬¬(X) = {F |
F is a subobject ¬¬-closed of hX} (and the restriction of Ω on morphisms).

Now we show how these notions and results are related to the properties of PredǏ.

First, notice that the closure condition (Closure) in the definition of PredǏ is exactly

the request that a subfunctor is closed w.r.t. the ¬¬-topology. The verification is

straightforward: by using twice the following description of ¬U, for U � A in Ǐ:

(¬U)X = {a | a ∈ AX and, for all h : X → Y ,Ah(a) �∈ UY }

one obtains

¬(¬U)X = {x | x ∈ FX and, for all f : X → Y , there exists Z ∈ Ǐ
and g ∈ Ǐ(Y ,Z) such that Ag◦f(x) ∈ UZ}.

Thus, requiring that ¬(¬U) = U is equivalent to condition (Closure). As a

consequence, PredǏ is the functor Sub in the topos of ¬¬-sheaves of Ǐ. This

immediately imply Proposition 3.2.

Now, as to Ω ∈ Ǐ, previous remarks show that it is precisely the subobject

classifier in the topos Sh¬¬(Ǐ) so Proposition 3.3 follows from fact that in any topos

E there is a natural isomorphism Sub ∼= E(,Ω). We remark that, actually, ΩX is a

two-element set.

To clarify in the present context the definition of Pred we need to introduce some

more notions and results.

The principal one is the notion of tripos, a structure which generalizes realizability

toposes. There are several slightly different definitions of tripos in the literature

(Hyland et al., 1980; Pitts, 1981; van Oosten, 1991; Jacobs, 1999); the following one,

is good for our purpose:

Definition 5.1

Let C be a category with finite products. A C-tripos is a functor P : Cop → Set such

that

i) for each A ∈ C, P(A) is a Heyting algebra

ii) for each f ∈ C(A,B)

(a) P(f) is a homomorphism of Heyting algebras

(b) P(f) has left and right adjoints ∃f and ∀f which satisfy the Beck-

Chevalley condition: if

A
f ��

g

��

B

h

��
C

k �� D

is a pullback square then ∃f ◦ P(k) = P(g) ◦ ∃h (and hence also the dual

condition for ∀ holds)

iii) P, when regarded as a set-valued functor, is representable, i.e., there is an

object Prop ∈ C such that for all A: P(A) ∼= C(A,Prop).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 355

A fundamental property of triposes is that, if C models some metalanguage then

a C-tripos models intuitionistic higher order logic over that metalanguage. This

means that there is a type for propositions, terms formers for implications and

universal quantification. We can therefore interpret the logical judgment Γ � φ

which intuitively states that the proposition φ, involving variables from Γ, holds.

(Pitts, 1981) proves that intuitionistic logic is sound w.r.t. this semantics

To show the connection between triposes and the functor Pred we will apply the

following two results which we state without proof.

Proposition 5.1 ((Pitts, 1981), Example 1.3 (i))

If E is a topos, the functor Sub : Eop → Set carries the structure of a tripos.

Proposition 5.2 ((van Oosten, 1991), Prop. 1.4)

If C,D are categories with finite products, F � G : C → D, F preserves products

and PredD is a tripos on D, then the functor PredC defined by

PredC : Cop −→ Set

X �−→ PredD(F(X))

(X
f �� Y) �−→ PredD(F(f))

is a tripos on C.

Now we can show that

Proposition 5.3

Pred is a tripos on V̌.

Proof

Consider the adjunctions L � I : Ǐ → Sh¬¬(Ǐ) and ()r � ()∗ : V̌ → Ǐ, where

L and ()r preserve products. By Proposition 5.2 and the fact that ¬¬-Sub(F) ∼=
SubSh¬¬(Ǐ)(LF), the functor PredǏ is a tripos. Another application of Proposition 5.2

immediately shows that Pred is a tripos on V̌. �

The interpretation defined in the model U has been suggested by tripos semantics,

therefore from general results it follows that all intuitionistic theorems hold in U.

Moreover, since Pred(F) is a Boolean algebra, the logic of Pred is the full higher-

order classical logic. This is a consequence of the fact that we consider only the

¬¬-subobjects. In other words, although we work in V̌, our logical propositions

ultimately live in Sh¬¬(Ǐ).

6 Recursion and induction

In the case of traditional first-order signatures, recursion and induction principles

are easily derived directly from syntactic definitions. Unfortunately, this is not so

clear when we consider second-order and higher-order signatures. The key issue

is about the arguments of the binding constructors. Let us suppose to prove the

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

356 A. Bucalo et al.

Γ �Σ f1 : σ Γ �Σ f2 : σ → σ Γ �Σ f3 : σ → σ → σ

Γ �Σ f4 : υ → υ → σ → σ Γ �Σ f5 : (υ → σ) → σ

Γ �Σ (R 0) =σ f1

(Recισ red1)

Γ �Σ f1 : σ Γ �Σ f2 : σ → σ Γ �Σ f3 : σ → σ → σ

Γ �Σ f4 : υ → υ → σ → σ Γ �Σ f5 : (υ → σ) → σ

Γ �Σ ∀P ι.(R τ.P) =σ (f2 (R P))
(Recισ red2)

Γ �Σ f1 : σ Γ �Σ f2 : σ → σ Γ �Σ f3 : σ → σ → σ

Γ �Σ f4 : υ → υ → σ → σ Γ �Σ f5 : (υ → σ) → σ

Γ �Σ ∀P ι.∀Qι.(R P |Q) =σ (f3 (R P) (R Q))
(Recισ red3)

Γ �Σ f1 : σ Γ �Σ f2 : σ → σ Γ �Σ f3 : σ → σ → σ

Γ �Σ f4 : υ → υ → σ → σ Γ �Σ f5 : (υ → σ) → σ

Γ �Σ ∀xυ.∀yυ.∀P ι.(R [x �= y]P) =σ (f4 x y (R P))
(Recισ red4)

Γ �Σ f1 : σ Γ �Σ f2 : σ → σ Γ �Σ f3 : σ → σ → σ

Γ �Σ f4 : υ → υ → σ → σ Γ �Σ f5 : (υ → σ) → σ

Γ �Σ ∀P υ→ι.(R νP) =σ (f5 λxυ.(R (P x)))
(Recισ red5)

where R is a typographic shorthand for (Recισ f1 f2 f3 f4 f5);

Fig. 6. Reduction rules for first-order recursion.

validity of a given property for all processes (as defined in section 2). Proceeding by

structural induction, it is not clear what the inductive hypothesis should be in the

case of νx.P , because P is an abstraction (of type υ → ι) and not a plain process.

This problem has been addressed in Hofmann (1999), where induction principles

for higher-order abstract syntax have been introduced and justified in suitable

presheaf categories. We aim to extend these constructions to our logical framework

Υ, and within the tripos-based model U presented in the previous sections.

More precisely, in this section we extend the logical framework Υ with recursion

and induction principles, also over second-order data types, that is, terms with

“holes”. We prove that these rules are justified by the model U. Finally, we conclude

the section with a more abstract (and shorter) treatment of these issues. The required

categorical theoretic notions are those of (initial) algebra, slice category and strong

functor; see Appendix A and Jacobs (1999).

6.1 First-order recursion

To be able to define recursive function over ι, we extend the signature Σ with a

recursor operator Recισ for any type σ:

Recισ : σ → (σ→σ) → (σ→σ→σ) → (υ→υ→σ→σ) → ((υ→σ)→σ) → ι → σ

and whose reduction rules are given in Figure 6.

To interpret the constant Recισ it is sufficient to show that Proc can be seen as the

initial algebra of the functor T : V̌ −→ V̌ defined on objects by

TF � 1 + F + (F × F) + (Var × Var × F) + (Var ⇒ F),

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 357

and on morphisms h : F −→ G by (at each stage X ∈ V):

(Th)X : (TF)X −→ (TG)X

in1(∗) �−→ in1(∗)

in2(a) �−→ in2(hX(a))

in3(〈a, b〉) �−→ in3(〈hX(a), hX(b)〉)
in4(〈x, y, a〉) �−→ in4(〈x, y, hX(a)〉)

in5(a) �−→ in5(hX�{x}(a)) where a ∈ FX�{x} .

Indeed, any type σ equipped with f1, . . . , f5 as in Figure 6 induces a semantic type

[[σ]] with a T -algebra structure on it (defined by the interpretation of f1, . . . , f5).

If Proc is the initial T -algebra, then there exists a unique homomorphism (i.e.,

a morphism of algebras) which can be used for interpreting the recursor R in

Figure 6. Parameterizing this construction over σ and f1, . . . , f5, we will obtained the

interpretation of Recισ . Let us spell out in detail this construction.

First, we define the algebra structure α : TProc −→ Proc for Proc as the “natural

term forming operation” at each stage X ∈ V:

αX(in1(∗)) � 0

αX(in2(P)) � τ.P

αX(in3(〈P1, P2〉)) � P1|P2

αX(in4(〈x, y, P 〉)) � [x �= y]P

αX(in5(P)) � (νx)P where P ∈ ProcX�{x}

Proposition 6.1

(Proc, α) is an initial T -algebra.

Proof

Let (B, β) be an arbitrary T -algebra; then there is a unique homomorphism f :

(Proc, α) −→ (B, β) of T -algebras such that f ◦ α = β ◦ Tf. Given f, in order to

prove the latter equality we must consider each component fX for X ∈ V. We define

f by cases as follows:

fX(0) � βX(in1(∗))

fX(τ.P) � βX(in2(fX(P)))

fX(P1|P2) � βX(in3(〈fX(P1), fX(P2)〉))
fX([x �= y]P) � βX(in4(〈x, y, fX(P)〉))
fX((νx)P)) � βX(in5(fX�{x}(P))) (P ∈ ProcX�{x})

Then we can easily check that, for each t ∈ (TProc)X , we have fX(αX(t)) =

βX((Tf)X(t)):

fX(αX(in1(∗))) = fX(0) � βX(in1(∗)) = βX((Tf)X(in1(∗)))

fX(αX(in2(P))) = fX(τ.P) � βX(in2(fX(P))) = βX((Tf)X(in2(P)))

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

358 A. Bucalo et al.

fX(αX(in3(〈P1, P2〉))) = fX(P1|P2) � βX(in3(〈fX(P1), fX(P2)〉))
= βX((Tf)X(in3(〈P1, P2〉)))

fX(αX(in4(〈x, y, P 〉))) = fX([x �= y]P) � βX(in4(〈x, y, fX(P)〉))
= βX((Tf)X(in4(〈x, y, P 〉)))

fX(αX(in5(P))) = fX((νx)P) (P ∈ ProcX�{x})

� βX(in5(fX�{x}(P)))

= βX((Tf)X(in5(P)))

The uniqueness of f follows by its definition. Indeed, if there is another homomorph-

ism g : (Proc, α) −→ (B, β) such that g ◦ α = β ◦ Tg, then rewriting the previous

equality and simplifying it according to the definition of α we would obtain exactly

the definition of f by cases. �

Using this result we can interpret the recursor Recσι as follows. Let A � [[σ]],

G � [[Γ]] and Γ � R : Proc → σ, where R � (Recσι f1 f2 f3 f4 f5). Let gi be the

meaning of fi, as follows:

g1 = [[Γ � f1 : σ]] : G −→ A

g2 = [[Γ � f2 : σ → σ]] : G −→ A⇒A

g3 = [[Γ � f3 : σ → σ → σ]] : G −→ A⇒A⇒A

g4 = [[Γ � f4 : υ → υ → σ → σ]] : G −→ Var⇒Var⇒A⇒A

g5 = [[Γ � f5 : (υ → σ) → σ]] : G −→ (Var⇒A)⇒A

We define a natural transformation m : T (G⇒A) −→ G⇒A, that is, for X ∈ V,

mX : 1X + (G⇒A)X + (G⇒A)X × (G⇒A)X + VarX × VarX × (G⇒A)X +

+ (Var⇒G⇒A)X −→ (G⇒A)X

by cases as follows, bearing in mind that (G⇒A)X = V̌(G× V(X,), A): for a stage

Y , η ∈ GY and h ∈ V(X,Y),

(mX(in1(∗)))Y (η, h) � g1Y (η)

(mX(in2(r)))Y (η, h) � (g2Y (η))Y (rY (η, h), idY)

(mX(in3(〈r1, r2〉)))Y (η, h) � ((g3Y (η))Y (r1Y (η, h), idY))Y (r2Y (η, h), idY)

(mX(in4(〈x, y, r〉))Y (η, h) � (((g4Y (η))Y (h(x), idY))Y (h(y), idY))Y (rY (η, h), idY))

(mX(in5(r))Y (η, h) � (g5Y (η))Y (r′, idY)

where r′ : Var × V(Y ,) −→ A

r′
Z : Z × V(Y ,Z) −→ AZ

〈z, k〉 �−→ (rZ (z, k ◦ h))Z (η[h], idZ)

Thus, (G⇒A,m) is a T -algebra; therefore, there exists a unique natural transforma-

tion m̄ : Proc −→ G⇒A such that m ◦Tm̄ = m̄ ◦ α. By using a standard argument of

cartesian closed categories, m̄ can be converted into the morphism G −→ Proc⇒A

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 359

we need. More explicitly, we interpret Γ � R : Proc → σ as follows:

[[Γ � R : Proc → σ]] : G −→ Proc⇒A

[[Γ � R : Proc → σ]]X : GX −→ (Proc⇒A)X

[[Γ � R : Proc → σ]]X(η) : Proc × V(X,) −→ A

[[Γ � R : Proc → σ]]X(η)Y : ProcY × V(X,Y) −→ AY

〈P , h〉 �−→ (m̄Y (P))Y (η[h], idY)

We can now prove the soundness of the recursion principles.

Theorem 6.1

The model U validates Recισ redi, for i = 1 . . . 5.

Proof

Long unfolding of forcing definitions, using the universal property of the initial

T -algebra Proc; see Appendix B.7. �

6.2 Second-order recursion

First-order recursion rules can be generalized to second-order processes, i.e. terms

with holes for variables. Indeed, the initial algebra over Proc can be readily “lifted”

to the types Var ⇒ Proc, Var ⇒ Var ⇒ Proc, Let us consider the functor

T ′ : V̌ −→ V̌ defined on objects by

T ′
F � 1 + F + F × F + (Var ⇒ Var) × (Var ⇒ Var) × F + (Var ⇒ F),

and on morphisms in the obvious way. Then, the following holds:

Proposition 6.2

Var ⇒ Proc has an initial T ′-algebra structure, which is isomorphic to Var ⇒ α.

Proof

Let G : V̌ −→ V̌ be the functor G(F) � Var ⇒ F . G has a right adjoint, namely

the functor R : V̌ −→ V̌ defined on objects by

R(F)X = V̌(Var ⇒ Y̌(X), F) R(F)h = ◦ (Var ⇒ Y̌(h)) (h ∈ V(X,Y))

and on natural transformations t ∈ V̌(F, F ′) by R(t) : Var ⇒ F −→ Var ⇒ F ′,

R(t)X(f) = t ◦ f for f ∈ V̌(Var ⇒ Y̌(X), F). Hence, for Theorem A.1, we need only

to show that T ′ ◦ G ∼= G ◦ T . Given any functor F in V̌, we have that

(T ′ ◦ G)(F) =T ′(Var ⇒ F) = 1 + Var ⇒ F + (Var ⇒ F) × (Var ⇒ F) +

+ (Var ⇒ Var) × (Var ⇒ Var) × (Var ⇒ F) + Var ⇒ (Var ⇒ F)

∼=Var ⇒ 1 + Var ⇒ F + Var ⇒ (F × F) +

+ Var ⇒ (Var × Var × F) + (Var ⇒ (Var ⇒ F))

∼=Var ⇒ (1 + F + F × F + Var × Var × F + Var ⇒ F)

=Var ⇒ TF = (G ◦ T)F

and similarly for the morphism part. �

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

360 A. Bucalo et al.

We can elaborate the functor T ′ a step further, by noticing that

Var ⇒ Var ∼= Var + 1.

Indeed, for all X, we have (Var ⇒ Var)X = VarX�{x} = X�{x} ∼= X+1 = (Var+1)X .

Thus we can rewrite T ′ as follows:

T ′
F � 1 + F + F × F + Var × Var × F + Var × F + Var × F + F︸ ︷︷ ︸

∼=(Var⇒Var)×(Var⇒Var)×F

+Var ⇒ F (7)

and Proposition 6.2 still holds, that is, Var ⇒ Proc is a T ′-algebra. The intuitive

meaning of the four cases arising from an abstraction λx.[y �= z]P corresponds to

the four situations when none, one or both y, z are exactly x, and hence are bound

by the abstraction.

This argument can be generalized to an arbitrary number of “holes”, so that all

types Varn ⇒ Proc have an initial algebra structure for a suitable functor. In fact, it

is easy to see that for all n:

Varn ⇒ Var ∼= Var + 1 + · · · + 1︸ ︷︷ ︸
n times

Hence we can generalize (7) at any number of holes, as follows:

T
(n)
F � 1 + F + F × F + Var × Var × F +

+ Var × F + · · · + Var × F︸ ︷︷ ︸
2n times

+F + · · · + F︸ ︷︷ ︸
n2 times

+Var ⇒ F (8)

Correspondingly, Proposition 6.2 can be generalized as follows:

Theorem 6.2

For all n, Varn ⇒ Proc has an initial T (n)-algebra structure.

From the definition of T (n) we can derive immediately that the recursor over

second-order terms with n holes (i.e., contexts with n free variables) for type σ has

the following type:

Recυ
n→ι
σ : σ → (σ → σ) → (σ → σ → σ) → (υ → υ → σ → σ) →

(υ → σ → σ) → · · · → (υ → σ → σ)︸ ︷︷ ︸
2n times

→ (σ → σ) → · · · → (σ → σ)︸ ︷︷ ︸
n2 times

→

((υ → σ) → σ) → (υn → ι) → σ

The reduction rules for second-order recursion are in Figure 7. Notice that when

n = 0, these rules reduce to those for first-order terms (Figure 6).

Theorem 6.3

For all n, the model U validates all axioms in Figure 7.

Proof

Similarly to Theorem 6.1, also this proof is an application of the forcing relation,

using the universal property of initial algebras. Obviously, this proof is longer and

more complicated since there are many subtleties to deal with as far as the mismatch

operator is involved (which leads to to the n2 + 2n+ 1 cases of Figure 7). �

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 361

H

Γ �Σ (R λ�xυ.0) =σ f1

(Recυ
n→ι
σ red1)

H

Γ �Σ ∀P υn→ι.(R λ�xυ.τ.(P �x)) =σ (f2 (R P))
(Recυ

n→ι
σ red2)

H

Γ �Σ ∀P υn→ι.∀Qυn→ι.(R λ�xυ.(P �x)|(Q �x)) =σ (f3 (R P) (R Q))
(Recυ

n→ι
σ red3)

H

Γ �Σ ∀yυ.∀zυ.∀P υn→ι.(R λ�xυ.[y �= z](P �x)) =σ (f41 y z (R P))
(Recυ

n→ι
σ red41)

H

Γ �Σ ∀yυ.∀P υn→ι.(R λ�xυ.[y �= xj](P �x)) =σ (f42j y (R P))
j = 1 . . . n (Recυ

n→ι
σ red42j)

H

Γ �Σ ∀zυ.∀P υn→ι.(R λ�xυ.[xi �= z](P �x)) =σ (f43i z (R P))
i = 1 . . . n (Recυ

n→ι
σ red43i)

H

Γ �Σ ∀P υn→ι.(R λ�xυ.[xi �= xj](P �x)) =σ (f44ij (R P))
i, j = 1 . . . n (Recυ

n→ι
σ red44ij)

H

Γ �Σ ∀P υn+1→ι.(R λ�xυ.(νλyυ(P y �x))) =σ (f5 λyυ.(R (P y)))
(Recυ

n→ι
σ red5)

where H is a typographic shorthand for the following hypotheses

Γ � f1 : σ Γ � f2 : σ → σ Γ � f3 : σ → σ → σ Γ � f41 : υ → υ → σ → σ

Γ � f42j : υ → σ → σ Γ � f43i : υ → σ → σ Γ � f44ij : σ → σ (i, j = 1 . . . n)

and R is a typographic shorthand for

(Recυ
n→ι
σ f1 f2 f3 f41 f421 . . . f42n f431 . . . f43n f4411 . . . f44nn f5)

Fig. 7. Reduction rules for second-order recursion.

Γ �Σ R : ι → o

Γ �Σ (R 0) ⇒ (∀P ι.(R P) ⇒ (R τ.P)) ⇒
(∀P ι.(R P) ⇒ ∀Qι.(R Q) ⇒ (R P |Q)) ⇒
(∀yυ.∀zυ.∀P ι.(R P) ⇒ (R [y �= z]P)) ⇒
(∀P υ→ι.(∀xυ.(R (P x))) ⇒ (R νP)) ⇒
∀P ι.(R P)

(Indι)

Fig. 8. First-order induction principle.

6.3 First-order induction

The first-order induction principle we consider is presented in Figure 8.

Since the model U does not support the “proposition-as-types, proofs-as-λ-terms”

interpretation, induction principles do not derive automatically from the recursion

principles in Section 6.1. A problem we have to deal with, is the presence of

parameters, represented by the environment Γ. Actually, induction with parameters

in V̌ can be recovered from the initial algebra property in a simple slice category

defined from V̌ (Definition A.4). In fact the signature functor T in V̌ can be

“transferred” in this category, so that it has an initial algebra corresponding to the

initial algebra in V̌ (Jacobs, 1995).

For the sake of simplicity, and without loss of generality, in the following we

consider Γ = R : ι → o, where R is the predicate over terms, appearing in the

induction principle.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

362 A. Bucalo et al.

We proceed as follows. We will work in the simple slice category V̌//G, where

G � Proc ⇒ Prop; over this category we will consider the functor T//G where

T : V̌ −→ V̌ is the signature functor defined in Section 6.1. We will prove

that (Proc, G∗(α)) is an initial T//G-algebra. Then, the soundness of the induction

principle will derive from a usual argument in the category V̌//G.

To prove the main statement, we need the following two results:

Proposition 6.3

The functor T is strong.

Proof

The strength (stA,B)X : AX × (TB)X −→ (T (A× B))X is defined as follows

(stA,B)X(a, in1(∗)) � in1(∗)

(stA,B)X(a, in2(b)) � in2(〈a, b〉)
(stA,B)X(a, in3(〈b1, b2〉)) � in3(〈a, b1, a, b2〉)
(stA,B)X(a, in4(〈x, y, b〉)) � in4(〈x, y, a, b〉)

(stA,B)X(a, in5(b)) � in5(ba)

where ba ∈ V̌(Var × V(X,), A × B) is the natural transformation such that

(ba)Y (〈y, g〉) � 〈a[g], bY (〈y, g〉)〉). The commutativity of the two diagrams of Defini-

tion A.5 is proved by cases over b (see Appendix B.8). �

Proposition 6.4

For every G ∈ V̌, (Proc, G∗(α)) is an initial T//G-algebra.

Proof

Since α ∈ V̌(TProc,Proc), G∗(α) ∈ V̌//G((T//G)Proc ,Proc), i.e., (Proc, G∗(α)) is a

T//G-algebra. It remains to show that, given any other T//G-algebra (B, β), there

is a unique morphism f from Proc to B such that the following diagram in V̌//G

commutes:

(T//G)Proc
G∗(α) ��

(T//G)f

��

Proc

f

��
(T//G)B

β
�� B

Notice that the same diagram can be read in V̌ as follows:

G× TProc
idG×α ��

〈π,Tf◦stG,Proc〉
��

G× Proc

f

��
G× TB

β
�� B

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 363

We define f as follows:

fX(〈g, 0〉) � βX(〈g, in1(∗)〉)
fX(〈g, τ.P 〉) � βX(〈g, in2(fX(〈g, P 〉))〉)

fX(〈g, P1|P2〉) � βX(〈g, in3(〈fX(〈g, P1〉), fX(〈g, P2〉)〉)〉)
fX(〈g, [x �= y]P 〉) � βX(〈g, in4(〈x, y, fX(〈g, P 〉)〉)〉)

fX(〈g, (νx)P 〉) � βX(〈g, in5(γB,X(fX�{x}(〈g[inX], P 〉))〉)

Commutativity of the previous diagram is proved by cases on P (Appendix B.9).

The uniqueness of f follows by its definition. Given any other homomorphism

g : (Proc, G∗(α)) −→ (B, β) such that g • G∗(α) = β • (T//G)g , rewriting the previous

equality and simplifying it according to the definitions of G∗(α) and stG,Proc we obtain

exactly the definition by cases of f. �

Now we have the necessary tools for proving our goal:

Theorem 6.4

The model U validates Indι, i.e., the following holds:

∅ �Σ ∀Rι→o.((R 0) ⇒ (∀P ι.(R P) ⇒ (R τ.P)) ⇒
(∀P ι.(R P) ⇒ ∀Qι.(R Q) ⇒ (R P |Q)) ⇒
(∀yυ.∀zυ.∀P ι.(R P) ⇒ (R [y �= z]P)) ⇒
(∀P υ→ι.(∀xυ.(R (P x))) ⇒ (R νP)) ⇒
∀P ι.(R P))

Proof

By Proposition 4.1, we have to prove that for all X ∈ V the following holds:

X �∅,∗ ∀Rι→o.((R 0) ⇒ (∀P ι.(R P) ⇒ (R σ.P)) ⇒
(∀P ι.(R P) ⇒ ∀Qι.(R Q) ⇒ (R P |Q)) ⇒
(∀yυ.∀zυ.∀P ι.(R P) ⇒ (R [y �= z]P)) ⇒
(∀P υ→ι.(∀xυ.(R (P x))) ⇒ (R νP)) ⇒
∀P ι.(R P))

By Theorem 4.1, this is equivalent to prove that, under the following assumptions

Y �R:ι→o,ηR (R 0),

Y �R:ι→o,ηR (∀P ι.(R P) ⇒ (R τ.P)),

Y �R:ι→o,ηR (∀P ι.(R P) ⇒ ∀Qι.(R Q) ⇒ (R P |Q)),

Y �R:ι→o,ηR (∀yυ.∀zυ.∀P ι.(R P) ⇒ (R [y �= z]P)),

Y �R:ι→o,ηR (∀P υ→ι.(∀xυ.(R (P x))) ⇒ (R νP)),

we have that for all Z ∈ V, for all f ∈ I(Y ,Z) and for all ηP ∈ ProcZ , the

judgment Z �(R:ι→o,P :ι),〈(Proc⇒Prop)f (ηR),ηP 〉 (R P) holds. This fact amounts to say that

the following equation must hold:

p � [[R : ι → o, P : ι �Σ (R P) : o]]� = �◦![[(R:ι→o,P :ι)]]. (9)

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

364 A. Bucalo et al.

Consider the following pullback in V̌//G:

U

h

��

G∗(!U) �� 1

G∗(�)

��
Proc p

�� Prop

where G � [[R : ι → o]]. Then, from the assumptions above, we have that the

following diagram in V̌//G commutes (see Appendix B.10):

TU

T//G(h)

��

G∗(!TU)

��
β

�� U
G∗(!U)

��

h

��

1

G∗(�)

��
TProc

G∗(α)
�� Proc p

�� Prop

Let β : TU → U be the unique map defined by the universal property of the

pullback. Then, (U, β) is a T//G-algebra; therefore, by initiality of Proc (existential

part) there is a map h′ ∈ V̌//G(Proc, U). Moreover, again by initiality of Proc

(unicity part) we have h • h′ = G∗(idProc). Hence we have the following:

p = p • G∗(idProc) = p • h • h′ = G∗(�) • G∗(!U) • h′

Translating the equation in terms of the composition in the category V̌, we get

p = G∗(�) ◦ 〈π, G∗(!U) ◦ 〈π, h′〉〉 = �◦!U ◦ h′ = �◦!G×Proc

i.e., the thesis (9). �

6.4 Second-order induction

As in the case of recursion, also the induction principle can be generalized to

second-order processes. The second-order induction principle is given in Figure 9.

Notice that in the case of n = 0, this rule degenerates in that for first-order terms

introduced above.

The proofs of the validity of second-order induction principles follow the same

pattern of the first-order case, exploiting the initiality of the corresponding second-

order initial algebra (see section 6.2) and the following result which extends Lem-

ma 7.8 of Jacobs (1995) to the exponentiation of functors in the category V̌:

Lemma 6.1

If T : V̌ −→ V̌ is strong, then the functor Var ⇒ T (whose action on objects is

A �→ Var ⇒ TA) is strong as well.

Proof

Let st be the strength of T ; we define (up-to suitable isomorphisms) the strength st′

for Var ⇒ T as (st′A,B)X � (stA,B)X�{x} ◦ (Ain × id), where X
� � in �� X � {x} is the

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 365

Γ �Σ R : (υn → ι) → o

Γ �Σ (R λ�xυ.0) ⇒ (∀P υn→ι.(R P) ⇒ (R λ�xυ.(τ.(P �x)))) ⇒
(∀P υn→ι.(R P) ⇒ ∀Qυn→ι.(R Q) ⇒ (R λ�xυ.(P �x)|(Q �x))) ⇒
(∀P υn→ι.∀yυ.∀zυ.(R P) ⇒ (R λ�xυ.[y �= z](P �x))) ⇒
(∀P υn→ι.∀zυ.(R P) ⇒

∧n
i=1(R λ�xυ.[xi �= z](P �x))) ⇒

(∀P υn→ι.∀yυ.(R P) ⇒
∧n
j=1(R λ�xυ.[y �= xj](P �x))) ⇒

(∀P υn→ι.(R P) ⇒
∧n
i,j=1(R λ�xυ.[xi �= xj](P �x))) ⇒

(∀P υn+1→ι.(∀yυ.(R λ�xυ.(P �x y))) ⇒ (R λ�xυ.ν(P �x))) ⇒
∀P υn→ι.(R P)

(Indυ
n→ι)

Fig. 9. Second-order induction principle.

obvious injection. More explicitly, for A,B ∈ V̌ and X ∈ Var:

(st′A,B)X : AX × (Var ⇒ TB)X −→ (Var ⇒ TA× B)X

(st′A,B)X : AX × (TB)X�{x} −→ (T (A× B))X�{x}

〈a, b〉 �−→ (stA,B)X�{x}(a[in], b)

It is easy to check that st′ is a strength for the functor Var ⇒ T , that is, the following

diagrams commute:

AX × (TB)X�{x}
AinX ×id

��

π′

��������������������������������������� AX�{x} × (TB)X�{x}
(stA,B)X�{x} ��

π′

������������������
(T (A× B))X�{x}

(Tπ′)X�{x}

��
(TB)X�{x}

AX×(BX×(TC)X�{x})
Ain×(Bin×id)��

∼

��

AX�{x}×(B×(TC))X�{x}
id×stB,C��

∼

��

AX�{x}×((T (B×C))X�{x})

stA,B×C

��
(T (A×(B×C)))X�{x}

∼
��

(AX×BX)×(TC)X�{x}
(A×B)in×id�� (A×B)X�{x}×(TC)X�{x}

stA×B,C �� (T ((A×B)×C))X�{x}

In the latter diagram, the left square is the naturality of the associativity isomorphism

of product, and the right part is the property of the strength st. �

6.5 An abstract view on initial algebras and induction

We end this section with a more abstract hence shorter account of the results in

section 6.3. First, recall Theorem A.1: initial T -algebras can be lifted along functors

having a right adjoint. Our aim is to extend this result to induction principles in an

arbitrary tripos.

Definition 6.1

Let Pred be a tripos on some category C and let T : C → C be an endofunctor. An

action of T on predicates consists of a Heyting algebra morphism T : Pred(A) →
Pred(TA) for each object A compatible with substitution, i.e., if f : A → B and

P ∈ Pred(B) then T (Predf(P)) = PredTf(TP).

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

366 A. Bucalo et al.

An initial T -algebra (A, α) for a functor T with an action on predicates has

induction if for each P ∈ Pred(A) one has TP � P [α] implies P = �.

Consider, for example the case where C = Set,Pred(A) = ℘(A) and TX = 1 + X

and TP = {inl(�)} ∪ inr(P). The initial algebra is the set of natural numbers and

induction coincides with the usual one.

To define an action of T on predicates is tantamount to lifting the functor T

to the category which has as objects pairs (A, P) with P ∈ Pred(A) and where a

morphism from (A, P) to (B,Q) is a morphism f : A → B such that P � Q[f].

The latter category is the total category of the fibration associated with Pred. The

fact that initial algebra α : TA → A has induction then amounts to (A,�) being an

initial algebra in the total category.

Thus, applying Theorem A.1 to the total category allows us to transport induction

principles in the same way as recursion principles.

7 Related work

7.1 Semantics based on functor categories

The application of functor categories in the semantics of programming languages

goes back to the early 1980s, when “variable” sets (i.e., objects of Č) were recognized

as a useful tool to model variability of memory allocation in Algol-like languages

(Reynolds, 1981; Oles, 1985). An important step towards the generalization of this

approach has been the monad for allocation over the category Č (Moggi, 1989). More

recently, presheaf models have been extensively used for interpreting concurrency

and mobility (Stark, 1996; Fiore et al., 1996; Cattani et al., 1997).

Recently, the use of functor categories as a semantics for HOAS has been

advocated (Fiore et al., 1999; Hofmann, 1999), the latter being the basis for the

present paper. At the same time, an alternative approach based on Frænkel-

Mostowski set theory has been presented (Gabbay & Pitts, 1999). Here we briefly

illustrate the connections between these models.

In Hofmann (1999), functor categories are used for formally justifying several

logical principles which have been previously proposed for reasoning about HOAS.

In particular, metalanguage types are interpreted as suitable objects of SetC
op

, where

the index category C depends on the nature of the metalanguage. A key feature of

this approach (which we have exploited in Proposition 3.4) is that the interpretation

of types which appear in negative position in the types of syntactic constructors

must be representable. This allows to apply the following property:

for X ∈ C and F ∈ SetC
op

: (Y(X) ⇒ F)Y ∼= FX+Y .

For instance, in the case of untyped λ-calculus, whose syntax is defined by

Inductive tm : Set := isvar : var → tm | app : var × var → tm

| lam : (var → tm) → tm.

the second-order type var → tm is interpreted as the functor Var ⇒ Tm. Since

Var ∼= Y({x}), we have that (Var ⇒ Tm)X ∼= TmX�{x}. In other words, functions

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 367

over variables correspond exactly to terms with an extra variable, which can be seen

as the “hole” of the syntactic context. Thus, the interpretation of tm is the initial

algebra of the functor T (A) = Var + A× A+ Var ⇒ A.

On the other hand, one cannot use the plain topos SetC
op

for interpreting

predicates, because the induction principles over second-order types contradict the

Axiom of Unique Choice. The solution originally conceived in Hofmann (1999), and

which have been fully developed in this work, is to resort to some tripos over the

category of types.

Covariant presheaves are adopted in Fiore et al. (1999), where a general meth-

odology is developed in order to associate to every binding signature a category of

models which gives a notion of initial algebra semantics. The models are presheaves

which are both algebras for the signature functor and monoids with respect to

substitution. The choice of F (that is, the skeleton of the category of finite sets and

functions) as the index category is motivated by the operations which are allowed

on environments: name swapping, contraction and weakening. Indeed, the closure

by composition of these operations generates exactly all the functions between finite

cardinals. A key feature of the category SetF is that it has a type constructor

δ : SetF → SetF (δA)X = AX+1 (δA)h = Ah+id1

which is used for interpreting second-order types like var → tm of the previous

example. Thus, the interpretation of tm is the initial algebra of the functor T (A) =

Var + A × A + δA. Clearly, δ corresponds to the functor Var ⇒ in Hofmann’s

approach, via the isomorphism previously described.

However, since F̌ alone is proposed as a framework for higher-order abstract

syntax, this work is fine for the purely algebraic aspect, i.e., terms and equations;

as we have seen, in order to reason about HOAS, F̌ alone is inadequate since for

example equality of names cannot be expressed. The value of Fiore et al. (1999) is

to have placed inductive types like Proc in V̌ in the context of universal algebra.

A different perspective is taken in Gabbay & Pitts (1999, 2002), where a logic

for specifying and reasoning about formal systems with name binders is introduced

using as a semantic basis the Frænkel-Mostowski permutation model of set theory

with atoms. (We will discuss briefly this logic in section 7.2 below.) This model has

a specific set of “atoms” �, and each set X is endowed with a primitive “atom-

swapping” operation () · : � × � ×X → X. All usual constructions of set theory

(product, coproduct, function space, . . .) must respect this swapping operation, that

is an atom appearing in an object can be safely replaced with another (fresh)

atom without altering the behaviour of the object. (In particular, functions must be

equivariant, that is they must commute with atom permutations.) Therefore, given

an object x (of some FM-set X) and an atom a, the abstraction a.x can be defined

as the equivalence class of pairs (b, y) such that (c a) · x = (c b) · y for any c fresh

for x and y. The dual operation of instantiation x@b is then the choice of a specific

representative of the class, namely the one with the particular b in place of the

abstracted atom. These notions of abstraction and instantiations are well-defined in

virtue of the equivariance restriction of FM-sets.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

368 A. Bucalo et al.

By gathering all the abstractions a.x for a ∈ � and x ∈ X, we get the a new

set denoted by [�]X and called the set of abstractions of elements of X. This

new construction, specific of FM-set theory, is the key for interpreting binding

operators in signatures: if X is the interpretation of some syntactic class, [�]X is

the interpretation of contexts of type X. In our running example of λ-calculus, the

interpretation of tm is the FM-set defined as the least fixed point of the (FM-set

valued) function Fα(X) = � + X × X + [�]X. In other words, the quotient with

respect to α-equivalence is applied only to the interpretation of binding constructors,

instead of being applied to the whole initial algebra (like in the case of a pure first-

order syntax approach). As a consequence, in this approach the usual arguments

about least fixed points in set theory can be applied for deriving induction and

recursion principles over the higher-order abstract syntax.

To highlight the close connection between this latter approach and the previous

ones, notice that the universe of sets used in (Gabbay & Pitts, 1999) is the category

of the perm(�)-sets with finite support and equivariant functions. As the authors

of that work point out, this category is equivalent to the Schanuel topos, that

is, the category of sheaves over Iop for the ¬¬-topology § III.9, which, as we

have noticed in section 5, is the topos we have used for the interpretation of

logical judgments. Both Sh¬¬(Ǐ) and the Schanuel topos embed in Ǐ, which is

related to V̌ by the adjunction of Proposition 3.1. The reason we could not use

Sh¬¬(Ǐ) to interpret terms and functions and resorted to V̌ instead was that

datatypes with second-order constructors (such as ν : (υ → ι) → ι) would not be

inductive.

A final remark is about the peculiar behaviour of the interpretation of abstraction

and instantiation in (Gabbay & Pitts, 1999). In our approach both can be rendered

naturally using the features of the metalanguage: the first as λ-abstraction, the

latter as application. On the other hand, notice that instantiation x@a in FM-set

theory is only partially defined, i.e., when a is not in the support of x, i.e., the free

variables of x. Actually, the abstraction set of FM has a clear corresponding in

our categorial setting. Recall that in our model, the type constructor “υ → ” is

interpreted exactly as the exponentiation Var ⇒ : V̌ −→ V̌ (Section 3.2). The

corresponding operation in Ǐ via the adjunction (i.e., the restriction) is not the

usual exponentiation of Ǐ, but only a certain arrow Var 	 : Ǐ −→ Ǐ which is

the right adjunct of a suitable tensor product. This arrow corresponds exactly to

the exponent in the Schanuel topos, and ultimately it corresponds to [�] of FM.

Using this exponentiation has the advantage that we can interpret both terms and

proposition in the very same Schanuel topos, where (as in any topos) the Axiom of

Unique Choice holds and thus it can be employed consistently.

Another difference between the present work and Gabbay & Pitts (2002) is that the

metalanguage we adopt is ordinary higher-order logic; this means that the Theory

of Contexts can be consistently used in our preferred logic and implementation (as

long as it does not enforce the Axiom of Unique Choice), such as the Calculus

of Constructions (implemented in Coq). No extensions to the syntax other than

constants and axioms, and no modification of the system are required; in particular,

we do not need a new kind of quantifier.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 369

7.2 Logics for nominal calculi

The Theory of Contexts and Isabelle/HOL. The Theory of Contexts can be used in

many different logical frameworks in order to reason about higher-order abstract

syntax. A HOAS-based encoding of the syntax of π-calculus processes in Isa-

belle/HOL is given in Röckl et al. (2001). For types of the form υn → ι, inductively

defined well-formedness predicates delineate members that correspond to terms with

free names in the object syntax. An instantiation of the axioms of the Theory of

Contexts, suitably adapted for their case study, can then be proved by induction on

the definition of these well-formedness predicates.

In particular, this allows for the axioms to be proved within the theory, i.e., no

non-standard interpretation of the logic is required to establish soundness. On the

other hand, for each term in question one first has to assert well-formedness which

in view of the rules defining well-formedness is tantamount to giving the term in de

Bruijn notation.

The Nominal Logic. A first order logic for reasoning about languages with binders

has been proposed in Gabbay & Pitts (1999) and later extended and called Nominal

Logic in Pitts (2003). This logic is based on the Frænkel-Mostowski permutation

model of set theory, which we have already discussed in section 7.1 above. Nominal

Logic features a specific sort ν of “atoms” representing variables names, and for each

type τ a primitive atom-swapping operation swapτ : ν → ν → τ → τ. The axioms of

the logic compel terms, functions and propositions to be equivariant, that is “stable”

under atom permutations. This means that an atom a appearing in a term t can be

safely replaced by any other (fresh) atom, without affecting the behaviour (meaning)

of t. The equivariance constraint applies also to propositions; namely, a proposition

which holds for some fresh atom, will hold for any fresh atom. This observation

leads to the introduction of a special quantifier И for expressing freshness of names:

the intuitive meaning of Иa.p is “p holds for a some/any fresh name”. И resembles

both ∀ and ∃, it satisfies the rules:

Γ, a#�b � p
Γ � Иa.p

Γ � Иa.p Γ, p, a#�b � q
Γ � q

where �b is the “support” (i.e., the set of “free names”) of p, and # is an atomic

predicate stating frehsness of atoms with respect to terms.

Essentially, the main difference with our approach is that in the Theory of

Contexts, terms with fresh names are modelled as functions υ → ι, whereas

in Nominal Logic they are modelled as equivalence classes of name-term pairs.

Predicates as Иa.p and a#�b can be translated in the Theory of Contexts as follows:

Иa.p � ∀aυ.a �∈υ→o (λaυ.p) ⇒ p a#�b � a �∈o p

Rules, corresponding to the ones above, can then be easily derived using the Theory

of Contexts. Correspondingly, suitable adaptations of our Theory of Contexts are

validated in the FM.

In a nutshell one can say that our approach works in the standard setting of

higher-order logic and type theory, whereas for FM new syntactic constructs are

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

370 A. Bucalo et al.

needed. On the other hand, FM has the advantage that axioms about π-calculus

can be derived from more primitive concepts so that it would more easily carry over

to different settings.

Meta-metalogics. In the approaches we discussed so far, the logical level belongs to

the same metalanguage which is used for the representation of the syntax. A different

perspective is to add explicitly an extra logical level for reasoning over metalogics.

One of these meta-metalogic is FOλ∆N (McDowell & Miller, 2002), a higher-order

intuitionistic logic extended with definitions and higher order quantification over

simply typed λ-terms. Induction on types is recovered from induction on natural

numbers via appropriate notions of measure.

A similar approach, but with different aims, is behind M2 (Pfenning & Schürmann,

1999), which is a constructive first-order logic based on the Edinburgh LF and

implemented in Twelf. At the meta-metalevel, M2 offers higher-order induction and

recursion for reasoning over (possibly open) objects of a LF encoding.

8 Conclusions

In this work we have proved the consistency of the Theory of Contexts, working

out in full detail the constructions of a categorical model based on a tripos on

functor categories. The technical machinery we have presented should be suitable

for reasoning about models with a similar structure. In our opinion, this construction

could be adopted for validating other theories of names and binders.

The first important application of the consistency of the Theory of Contexts is

that it can be safely embedded in existing logical frameworks (as far as their logics

do not entail the Axiom of Unique Choice). For instance, this theory has been used

fruitfully for developing the (meta)theory of several object languages in the proof

assistant Coq (INRIA, 2003); see Honsell et al. (2001b) and Miculan (2001) for the

case of π-calculus and λ-calculus, respectively.

At least two possible developments are stemming from this work. An open

question concerns completeness of the Theory of Contexts. It is not clear which

class of properties can be derived from our axioms; a suitable characterization is

needed. Another direction is to extend the model in order to handle more expressive

metalanguages. For instance, one could take into account a theory of dependent and

impredicative types. The expressive power of such a metalanguage would allow the

representation and the manipulation of proof objects, via the usual “propositions-

as-types” paradigm. An example of object theories which could be dealt with in

this case are Natural Deduction-style proof systems; then, the well-known Inversion

Lemma could be proved by induction over proof objects, using (a suitable extension

of) the Theory of Contexts.

Acknowledgments

We thank an anonymous referee for useful remarks and hints on the preliminary

version. The first author is grateful to Pino Rosolini for useful conversations about

tripos theory.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

Consistency of the theory of contexts 371

References

Ambler, S., Crole, R. and Momigliano, A. (eds). (2001) Mechanized reasoning about languages

with variable binding. Electronic Notes in Theoretical Computer Science, vol. 58.1. Elsevier.

Barr, M. and Wells, C. F. (1999) Category theory for computing science. Les Publications CMR.

Bucalo, A., Hofmann, M., Honsell, F., Miculan, M. and Scagnetto, I. (2005) Appendices of

“Consistency of the Theory of Contexts”. Available online at the Journal of Functional

Programming web site.

Cattani, G. L., Stark, I. and Winskel, G. (1997) Presheaf models for the π-calculus. Proc.

CTCS.

Church, A. (1940) A formulation of the simple theory of types. Journal of Symbolic Logic, 5,

56–68.

Crole, R. L. (2003) Basic category theory for models of syntax. Pages 133–177 of: Backhouse,

R. C. and Gibbons, J. (eds), Generic Programming. Lecture Notes in Computer Science, vol.

2793. Springer.

Despeyroux, J., Felty, A. and Hirschowitz, A. (1995) Higher-order syntax in Coq. Proc. of

tlca’95. Lecture Notes in Computer Science, vol. 905. Springer-Verlag.

Fiore, M. and Turi, D. (2001) Semantics of name and value passing. Pages 93–104 of:

Mairson, H. (ed), Proc. 16th LICS. Boston, USA: IEEE.

Fiore, M., Moggi, E. and Sangiorgi, D. (1996) A fully-abstract model for the π-calculus.

Proc. 11th LICS. IEEE.

Fiore, M. P., Plotkin, G. D. and Turi, D. (1999) Abstract syntax and variable binding. In:

Longo, G. (ed.), Proceedings, 14th Annual IEEE Symposium on Logic in Computer Science.

IEEE.

Gabbay, M. J. and Pitts, A. M. (1999) A new approach to abstract syntax involving binders. In:

Longo, G. (ed.), Proceedings, 14th Annual IEEE Symposium on Logic in Computer Science.

IEEE.

Gabbay, M. J. and Pitts, A. M. (2002) A new approach to abstract syntax with variable

binding. Formal Aspects of Computing, 13, 341–363.

Harper, R., Honsell, F. and Plotkin, G. (1993) A framework for defining logics. Journal of the

ACM, 40(1), 143–184.

Hofmann, M. (1999) Semantical analysis of higher-order abstract syntax. In: Longo, G. (ed.),

Proceedings, 14th Annual IEEE Symposium on Logic in Computer Science. IEEE.

Honsell, F., Miculan, M. and Scagnetto, I. (2001a) An axiomatic approach to metareasoning

on systems in higher-order abstract syntax. Pages 963–978 of: Proc. ICALP’01. Lecture

Notes in Computer Science, vol. 2076. Springer-Verlag.

Honsell, F., Miculan, M. and Scagnetto, I. (2001b) π-calculus in (co)inductive type theory.

Theoretical Computer Science, 253(2), 239–285.

Hyland, J. M. E., Johnstone, P. T. and Pitts, A. M. (1980) Tripos theory. Math. Proc. Cambridge

Philos. Soc., 88, 205–232.

INRIA (2003) The Coq proof assistant. http://coq.inria.fr/doc/main.html .

Jacobs, B. (1995) Parameters and parametrization in specification using distributive categories.

Fund. Informaticae, 24(3).

Jacobs, B. (1999) Categorical logic and type theory. Studies in Logic and the Foundations of

Mathematics, vol. 141. Elsevier.

Johnstone, P. (1977) Topos theory. London Mathematical Society Monographs, no. 10.

London: Academic Press.

Longo, G (ed.) (1999) Proceedings, 14th Annual IEEE Symposium on Logic in Computer

Science. IEEE.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

372 A. Bucalo et al.

Mac Lane, S. (1971) Categories for the Working Mathematician. Springer-Verlag.

Mac Lane, S. and Moerdijk, I. (1994) Sheaves in geometry and logic: a first introduction to

topos theory. Universitext. Springer-Verlag.

McDowell, R. and Miller, D. (2002) Reasoning with higher-order abstract syntax in a logical

framework. ACM Trans. Computational Logic, 3(1), 80–136.

Miculan, M. (1997) Encoding logical theories of programs. PhD thesis, Dipartimento di

Informatica, Università di Pisa, Italy.

Miculan, M. (2001) Developing (meta)theory of lambda-calculus in the theory of contexts.

In: Ambler, S., Crole, R. & Momigliano, A. (eds.), Mechanized reasoning about languages

with variable binding. Electronic Notes in Theoretical Computer Science, vol. 58.1. Elsevier.

Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes. Inform. and

Comput. 100(1), 1–77.

Moggi, E. (1989) An abstract view of programming languages. Tech. rept. ECS-LFCS-90-113.

LFCS, University of Edinburgh.

Moggi, E. (1993) Notions of computation and monads. Inform. and Comput., 1.

Oles, F. J. (1985) Type categories, functor categories and block structure. In: Nivat, M. and

Reynolds, J. C. (eds.), Algebraic Semantics. Cambridge University Press.

Pfenning, F. and Elliott, C. (1988) Higher-order abstract syntax. Pages 199–208 of: Proc. of

ACM SIGPLAN ’88 Symposium on Language Design and Implementation.

Pfenning, F. and Schürmann, C. (1999) System description: Twelf — A meta-logical framework

for deductive systems. Pages 202–206 of: Ganzinger, H. (ed.), Proceedings of the 16th Inter-

national Conference on Automated Deduction (CADE-16). LNAI, vol. 1632. Trento, Italy:

Springer-Verlag.

Pitts, A. M. (1981) The theory of triposes. PhD thesis, Cambridge Univ.

Pitts, A. M. (1999) Tripos theory in retrospect. In: Birkedal, L. and Rosolini, G. (eds.), Tutorial

workshop on realizability semantics, FLoC’99, Trento, Italy. Electronic Notes in Theoretical

Computer Science, vol. 23. Elsevier.

Pitts, A. M. (2003) Nominal logic, a first order theory of names and binding. Information and

Computation, 186, 165–193.

Reynolds, J. C. (1981) The essence of Algol. Pages 345–372 of: de Bakker and van Vliet

(eds.), Algorithmic Languages. Proc. ACM Annual Conference. North-Holland.

Röckl, C., Hirschkoff, D. and Berghofer, S. (2001) Higher-order abstract syntax with induction

in Isabelle/HOL: Formalising the π-calculus and mechanizing the theory of contexts.

Pages 359–373 of: Honsell, F. and Miculan, M. (eds.), Proc. fossacs 2001. LNCS, vol. 2030.

Springer-Verlag.

Scagnetto, I. (2002) Reasoning about names in higher-order abstract syntax. PhD thesis,

Dipartimento di Matematica e Informatica, Università di Udine, Italy.

Scagnetto, I. and Miculan, M. (2002) Ambient calculus and its logic in the calculus of

inductive constructions. In: Pfenning, F. (ed.), Proc. Third International Workshop on Logical

Frameworks and Meta-languages (LFM’02). Electronic Notes in Theoretical Computer

Science, vol. 70.2. Elsevier.

Stark, I. (1994) Names and higher-order functions. PhD thesis, University of Cambridge.

Available as Technical Report 363, University of Cambridge Computer Laboratory.

Stark, I. (1996) A fully abstract domain model for the π-calculus. Pages 36–42 of: Proc.

LICS’96. IEEE.

van Oosten, J. (1991) Exercises in realizability. PhD thesis, Department of Mathematics and

Computer Science, University of Amsterdam.

https://doi.org/10.1017/S0956796806005892 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005892

