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The structure of a bisimple inverse semigroup with an identity has been related by Clifford
[2] to that of its right unit subsemigroup. In this paper we give an explicit structure theorem for
bisimple inverse semigroups in which the idempotents form a simple descending chain

eo>e1>e2 ....
We call such a semigroup a bisimple co-semigroup. The structure of a semigroup of this kind
is shown to be determined entirely by its group of units and an endomorphism of its group of
units.

These semigroups occur as subsemigroups of 0-simple semigroups with non-primitive
idempotents [3, Theorem 2.54] and, since Rees [5] has obtained a structure theorem for 0-
simple semigroups with primitive idempotents (that is, for completely 0-simple semigroups),
the study of bisimple cu-semigroups seems a natural next step.

The results of Sections 2 and 3 of this paper can be obtained by combining the results
of Clifford [2] with those of Rees [6], while the isomorphism theorem of the last section
can be deduced from Warne's homomorphism theorem for bisimple inverse semigroups
with an identity [7, Theorem 1.1]. However, we have favoured a more direct approach
throughout.

Warne has also informed us that he had an equivalent form of Theorems 2.2 and 3.5
in terms of ordered quadruples at the time of submitting his paper [7].

1. Definitions and preliminaries. We shall use the terminology and notation of Clifford and
Preston [3].

Two elements of a semigroup 5 are said to be i?- [^-] equivalent if and only if they generate
the same principal left [right] ideal of S. We write Jf = ^>n^andS=SCo^ = ^oSC.
Then <£, 3t, 3^ and 2l are equivalence relations on S such that J f £ i ? £ S> and 2? £ 2& £ 9.
We call a semigroup bisimple if it contains only one ^-class.

If we denote by La the o£?-class of a semigroup S containing the element a then we can
define a partial ordering on the .SP-classes by writing, for any two elements a, b of S, La ^ Lb

\La < Lft] if and only if the principal left ideal generated by a is contained [strictly contained]
in that generated by b. We can similarly denote by Ra the ^-class of S containing the element
a and define a partial ordering of the ^-classes.

A regular semigroup is a semigroup S such that a e aSa for all elements a of S. An inverse
semigroup is a semigroup S such that for every element a of S there exists a unique element x
of S, called the inverse of a, such that axa = a and xax — x. Then the following three con-
ditions on a semigroup S are equivalent [3, Theorem 1.17]:

(1) S is regular and any two idempotents of S commute;

(2) every j£?- [^-]class of 5 contains a unique idempotent;

(3) S is an inverse semigroup.
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We denote the unique inverse of the element a of an inverse semigroup S by a~1. Then aa~l

and a~ la are idempotents such that (a~ia, a) e j£? and (aa'1, a) e 3&. If e is an idempotent,
then e"1 = e. Also, for any elements a, b in 5, we have [3, Lemma 1.18]

( a " 1 ) " ' = a and (ab)'1 = fr-'a"1.

Thus, if we write a~" for (a"1)", then (a")"1 = (a"1)" = a~".

2. Bisimple co-semigroups. For any semigroup S we shall denote by £ s the set of idem-
potents of S. We define a partial ordering g on Es by the rule that e ^ / i f and only if
ef=e=fe. If 5 is an inverse semigroup, then Es is a commutative subsemigroup of S and any
two elements of Es have a greatest lower bound under the partial ordering. Let N denote the
set of all non-negative integers. Then we say that a semigroup S is an co-semigroup if and only
if there exists a one-to-one mapping <f> of Es onto N such that, for any elements e , / o f
£s , ec6 ^f<j) if and only i f /^ e. Thus, if S is an co-semigroup, then we can write

Es={em:me N},

where em ^ en if and only if m^. n. In particular, Es is totally ordered.

LEMMA 2.1. Let S be a regular co-semigroup. Then S is an inverse co-semigroup with an
identity. In particular, a bisimple co-semigroup is a bisimple inverse co-semigroup.

Proof. Let S be a regular co-semigroup and let e and / be any two idempotents of S.
Then either e ^ / o r / ^ e; that is, either ef—fe = e or ef=fe = / . In both cases ef=fe.
Hence the idempotents of S commute and so S is an inverse semigroup. Let Es = {em: m s N},
where em ̂  en if and only if m ^ n. Let a be any element of S. Then aa~' = em for some
idempotent em of 5. Hence eoa = eQ(ema) = (eoem)a = ema = a. Similarly ae0 = a. Thus e0

is an identity. Now a bisimple semigroup containing an idempotent is a regular semigroup
[3, Theorem 2.11 (i)] and so a bisimple co-semigroup is necessarily a bisimple regular co-
semigroup, that is, a bisimple inverse co-semigroup.

Example. We shall denote by B the bicyclic semigroup, which we can define to be JVx N
under the following multiplication. For any elements (m, n), (p, q) of iVx N,

(m, n)(p, q) = {m+p-r, n+q-r),

where r = min («, p). Then B is a bisimple inverse semigroup [3, p. 45] and can readily be
shown to be an co-semigroup. The following theorem shows how we can generate bisimple
co-semigroups from any group and any endomorphism of that group.
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THEOREM 2.2. Let G be a group and a. an endomorphism of G. Let

S = S(G, a) = {[(/M, n); g] e fix G: (m, «) e B andg e G}.

Define multiplication on S as follows:

[("»!, nO; fifi][(w2) n2); g2] = [(m,, /hXmj, n2); 01ani2~r02a'"-r],

r = min (/ij, w2) and we take a0 to be the identity automorphism of G. Then S is a
bisimple (o-semigroup.

Proof. We first verify that the multiplication is associative. Let [(/«,, nf); g,] (i = 1, 2, 3)
be any three elements of S. Then, with rY = min (nlt m2) and r2 = min (/^ +n2 — ru m3), we
have

3) n3); g3]

Similarly, if we write r3 = min (n2, m3) and r4 = min (nl5 m2+m3 — r3), then we have that

+ m3-r3-r4 ^H +m3 -r3 -rt a i i+" 3 -r 3 -r<- |

Now, a straightforward verification, such as that used when establishing the associativity of
the multiplication in B, will establish that rx + r2 = r3 + r4. Hence the multiplication in
S(G, a) is associative, Henceforth, for the sake of convenience, we shall adopt the more
compact notation (m; g; n) for the element [(w, n); g~\ of S. For any element (m; g; «)
of 5, we have

(w; 0; n)(n; g'1; m)(m; g; «) = (m; 5 ; n).

Hence S is a regular semigroup. The element (m; 3 ; n) will be an idempotent if and only if

(m; g; n) = (m; g; n)(m; g; n) = (2m-r; gam~rga."~r; 2 n - r ) ,

where r = min(m, n). This is so if and only if m = r = n and g =g<x°ga.° =g2; that is, if and
only if m = n and g = 1, the identity of G. Thus Es = {(w; 1; m) : /«e iV}. It is easily
verified that (m; 1; m)^(n; 1; «) if and only if m ^ n. Hence 5 is a regular co-semigroup
and so an inverse co-semigroup. The inverse of the element (m; g; n) is just the element
(n; gT1; m) and the unit group of S is {(0; g; 0):g eG}. From the multiplication it is
readily verified that, for any elements (m^, g^\ «j) and (m2; g2; n2) of 5,

; 9il n^)M(m2, g2, n2) if and only if Wj = m2;
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also

(»ii; 0 i ; «i)J2'(w2; g2; n2) if and only if nv = «2.

Hence, if (jn; g; n) and (p; /i; 9) are any elements of S, then

(ro; g; ri)M{m\ g; q) and (ro; g; q)&(p; h; q);

that is, (ro; g; n)Sd{p\ h; q). This completes the proof.

Note. If a is the zero endomorphism of G, that is, if a is such that get. = 1 for all elements
g of G, then S(G, a) is an extension of G of a type first discussed by Bruck [1]. Moreover,
if in the above theorem we relax the conditions on G and allow G to be a [regular, inverse]
semigroup then the construction in the theorem yields a [regular, inverse] semigroup.

3. The structure theorem. Let S be a bisimple co-semigroup with Es = {em; meN},
where em ^ en if and only if n ^ ro. Then, from Lemma 2.1, we know that e0 is the identity of
S. Let 7?j [L(] denote the 3$- [.£?-] class of S containing the idempotent et; that is, Rt = J?C|

[Lf = LC|]. Since a bisimple co-semigroup is an inverse semigroup, it follows that every
0t- [JS?-] class contains a unique idempotent. Hence the set of ^ - [.S?-] classes of S is just
{Rt: i e N} \\L{: / e TV}], where, since etS •=> ejS [5e; => Se,] if and only if j > i, we have
R, > Rj [Lj > Lj~\ if and only if j > i. Let H{i — Rt n Lj. Then H{j is non-empty, for all i, j
in N, since 5 is bisimple. In particular, HOi = RonLj is non-empty for all 1 e N. Now i?0 is
the right unit subsemigroup of S and so we can apply the following lemma ([2], Lemma 2.1)
to Ro.

LEMMA 3.1. Let P be the right unit subsemigroup of a bisimple semigroup S with an identity.
Then two elements of P are 3?-equivalent in P if and only if they are ££- equivalent in S.

Hence the ^"-equivalence classes of Ro are just the sets of the form RonLt (i e N).
Let us denote the ^?-class Ro n L, of Ro by L(i). Then clearly L(i) > L(j) if and only if j > i.
Moreover e0 is contained in L(0). We have (as the left-right dual of [6], Lemma 3.2)

LEMMA 3.2. Let Tbe a right cancellative semigroup with an identity and let {L(m): m e N}
be the set of SC-classes ofT, where L(m) > L(n) if and only ifn > m. Let a be any element of
L{\). Then a" is contained in L(n).

Now Ro satisfies all the conditions of Lemma 3.2 and so, for any element a of L(l) =
RQnLi, we have that a" is contained in RonLn. Moreover, in S, (a", a"a~") e!% for all n in
TV. Also e0 and a" lie in Ro, an J?-class of S. Thus e0 = a"a~", since each ^-class of S contains
a unique idempotent. Similarly, since a" and en lie in Ln and (a~"a", a") e S£, it follows that
(a~"an, en) e SC and therefore that en = a~"a". Thus we have

LEMMA 3.3. For any element a in L(l), ana~n = e0 and a~na" = en.

LEMMA 3.4. Let a be any element ofL(l). Then every element of S can be written uniquely
in the form a~mga", where m and n are elements ofN and g is an element of Hoo.
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Proof. Let s be any element of S and suppose that 5 e Hmn. Then s e RmnLn and so
. « " ' = em and s~1s = en. Also, for g = amsa~", we have from Lemma 3.3 that

gg'1 = fl"sa""fl"s'1fl"" = a^e^ 'a" 1 " = fl'^'a"1" = amema~m = ama"m = e0;

similarly g~lg = e0. Hence # e / / 0 0 . Moreover, a~mgan = a~mamscrncC = emje,, = J.
Now suppose that, for x = a~mgan and ^ = a~'has, where w, «, r, s are elements of N and

5, A are elements of Hoo, we have x — y. Then JCX"1 = yy~l, where xx"1 = a~mg(fa~ng~i(f
= a~mge^g~xam = a~meoa

m = era and, similarly, j ^ " 1 = eP. Thus em = er and so w = r. Simi-
larly « = s. Now a~m3a" = a~m/!a" implies that g = eogfeo = ama~mgcfa~n = ama~mhd>a~" =
eoheo = /i.

This completes the proof of the lemma.

We now select an element a from L(l) and keep this element fixed throughout the follow-
ing discussion. Let G = Hoo = RonLo = L(0). Then G is the unit group of Sand also of Ro.
Hence [6, p. 108] the equation

ag = (ga)a {g e G)

defines an endomorphism a of G. Taking inverses we find that, for all elements g of G,

that is, ha'1 = a~x{ha) for all elements ft of G.
We now define a mapping 0 of S into S(G, a). For any element s of S we write

s<t> = (a-mgan)<t> = (m; g; n),

where j is contained in Hmn and 3 = amsa~". From Lemma 3.4 it follows that </> is well-defined
and is a bijection. To show that 4> is a homomorphism, let x = a~mgcf and j = a~phcfl be any
two elements of S.

Assume first that n ̂  p. Then

xy = a~mga"-p . ava~p . ha9 = a~mga"-peohaq

= a-mg(an-"h)aq = a

Similarly, if n ^ p, then

Thus

j ( m + p - n ; (0a"-")/j

= (m; 3; n)(p; ft; q)

Thus S is isomorphic with S(G, a).
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Hence we have established the following theorem.
THEOREM 3.5. Let S be a bisimple a>-semigroup with group of units G. Then there exists

an endomorphism aofG such that S is isomorphic with S(G, a), where S(G, a) is defined as in the
statement of Theorem 2.2.

4. The isomorphism theorem.

THEOREM 4.1. Let St = S(Gi, a) and S2 = S(G2, P), where a. and $ are endomorphisms of
the groups Gx and G2 respectively. Then there exists an isomorphism <f> ofSt onto S2 if and only
if there exists an isomorphism 9 of Gt onto G2 such that aO = 0/M2, where, for some element z
ofG2, Xz is the inner automorphism ofG2 defined by gXz = zgz~l.

Proof. Let 0 be an isomorphism of 5 t onto S2. Then <f> must induce a one-to-one order-
preserving mapping of ESl onto E$2. Thus (w; 1; m)4> = {m; 1; m), for all m in N, where we
have denoted the identities of both Gt and G2 by 1. For any element a = {m; g; n) of Su let
a<$> = (m; g; n)(j> = (p; h; q) = b, say. Now, a'1^ = (a*/*)"1 and so

' 1(aa-l)ct> = a(pa~ V = a^a^y1 = bb

Thus (m; 1; m)(j) -{p; 1; p). Hence, by the above, m = p. Similarly n = q. Thus, for any
element (m; g; n) of Su we have (m; g; ri)4> = (m; h; n), for some element h of Gx.

We define a mapping 6 of Gt into G2 by (0; g; 0)(f> = (0; gG; 0). Since </> is an iso-
morphism and must clearly map the unit group of St onto the unit group of S2, it follows that
6 is a bijection. It is straightforward to verify that 9 is also a homomorphism. Now suppose
that (0; 1; 1)0 = (0; z; 1), for some element z of G2. Then, for all g in Gu

(0; gee; l)<£ = ((0; 9*', 0)(0; 1; 1))0 = (0; go.; 0)0(0; 1;

; 0)(0; z; 1) = (0; (3a0)z; 1).

Also
(0; go.; \)<j> = ((0; 1; l)(0; g; 0))<£ = (0; 1; 1)0(0; g; 0)0

= (0; z; l)(0; g0; 0) = (0; z(g9P); 1).

Hence, for all elements g of G, we have (ga0)z = z(g9fi); that is, gfaO = z(g9/})z~i =gOfikz.
Thus a0 =

Conversely, suppose that there exists an isomorphism 9 of Gl onto G2 such that a.9 =
for some element z of G2. Then ap9 = 0(/?A2)

p, for all /> in Â . We define a mapping 0 of S t

into S2 as follows: for any element (m; g; n) of Si we write

(m; 5 ; n)0 = ( l ; z " 1 ; 0)m(0; 9 0 ; 0)(0; z; 1)".

Now, in 52 , the element (0; z; 1) is contained in i ? o n L , =L( l )andso i f wewritea = (0; z; 1)
and apply Lemma 3.4 to S2 then we see that 0 is necessarily a bijection.
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Now let (m; g; n) and (p; /i; <?) be any two elements of St. Then, for n^p, we have

(m; gf; n)(j>(p; h; q)(j> = (l; z " 1 ; 0)m(0; #0; 0)(0; z; 1)"(1; z" 1 ; 0)"(0; hO; 0)(0; z; 1)«

= (1; z" 1 ; 0)m(0; </0; 0)(0; z; l)»-'(0; /i0; 0)(0; z; 1)«

and

(0; z; l)n-"(0; hO; 0) = (0; z; l ) - ' " 1 ^ z(/i0j8); 1)

= (0; z; ly - ' - 'CO; z{hdfi)z-'z; 1)

= (0; z; l y - ' - H O ; /,0/?A2; 0)(0; z; 1)

= (0; heipLT-"; 0)(0; z; I)""'.
Thus

(m; g; n)^[p\ h; «)0 = (1; z" 1 ; 0)m(0; ff0; 0)(0; hOWJ1-'; 0)(0; z; l)n-"(0; z;

= (1; z" 1 ; 0)m(0; (flffl)(W(j5AJ"-'); 0)(0; z; l ) n + ' - p .

On the other hand, for H ^ / ? , we have

((m; 5; n)(p; ft; q))(j> = (m; g(hocn-p); n + q-p)4>

= (1; z" 1 ; 0)m(0; gOW^d); 0)(0; z; l)"+«-p

= (1; z" 1 ; 0)m(0 geh0(J1Xzy-<'; 0)(0; z; l ) - + <- '

A similar argument holds for n^p. Thus <£ is an isomorphism. This completes the proof.

Note. Congruences on a bisimple co-semigroup are considered in [4], and a generalisation
of Theorem 4.1 is stated.

Let G be any group. Then we shall denote by BxG the direct product of B and G; that
is, BxG = {((m, n), g): (w, n) e B and g eG} under componentwise multiplication. However,
to conform with our present notation, we shall write BxG = {(w; g; ri):m,neN and g e G } .
Then, for any elements (m; 5; n) and (p; It; q) of Bx G, we have

(w; g; «)(/?; A; 9) = {m +p-r; gh; n+q-r),

where r = min («, p). Thus BxG = S(G, i) where 1 denotes the identity automorphism of G.

COROLLARY 4.2. S = .S(G, a) « isomorphic with BxG if and only if a is an inner auto-
morphism ofG.

Proof. Let 5 be isomorphic with BxG = S(G, 1). Then, by Theorem 4.1, there exists an
automorphism 6 of G and an element z of G such that

oc0 = 0dz = 0A2.
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Thus, for all elements g of G, g<x9 = gOXz = z(g6)z~l. Hence

g<x = ( z f l - 1 ) ^ " ^ - 1 ) = W~ ^ ( ^ " T 1 =9ke->

for all elements of g of G. Thus a = XzB-i, an inner automorphism of G.

Conversely, if a = Xz then, with 0 = i, we have a0 = l2i = Xz = 0dz, and so, by Theorem
4.1, S1 is isomorphic with S{G, i) = BxG.

This paper is part of a Ph.D. thesis submitted in 1965 to the University of Glasgow. I
would particularly like to thank Dr W. D. Munn for his invaluable advice and encouragement
and also the Department of Scientific and Industrial Research for financial support.
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