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Abstract

We consider the influence on a group G of the condition that every infinite set of cyclic sub-
groups of G contains a pair that permute and prove (Theorem 1) that finitely generated soluble
groups with this condition are centre-by-finite, and (Theorem 2) that torsion free groups satis-
fying the condition are abelian.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 F 16.

1. Introduction

In response to a question of Paul Erdos, B. H. Neumann proved in [9] that
a group is centre-by-finite if and only if the subsets consisting of mutually
non-commuting elements are finite, and so these non-commuting sets are
boundedly finite if they are finite. Extensions of problems of this type are to
be found in [7] and [2].

We investigate here the following rather similar class of groups. Recall
that a group is Hamiltonian if all of its subgroups are normal and it i§ qua§i-
Hamiltonian if every pair of subgroups permute (as sets). By obvious analogy,
we say that a group G is pseudo-Hamiltonian, or a PH-group, if the following
conditions holds.

PH: Every infinite set of subgroups of G contains a pair that permute.
We shall also be interested in the following related condition.
PH*: Every infinite set of cyclic subgroups contains a pair that permute.
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At first sight, this is a rather weaker condition than that mentioned above,
and yet the group classes arising are not too different.

THEOREM 1. Every finitely generated soluble PH"-group is centre-by-finite.

THEOREM 2. All torsion-free PH*-groups are abelian.

Of course, all centre-by-finite groups satisfy PH, though the converse is
false. For example, Napolitani [5] and Iwasawa [8] have constructed quasi-
Hamiltonian groups as follows:

where q is a prime and n a positive integer. Clearly, the direct product of
any number of groups of this type of coprime orders is quasi-Hamiltonian
and thus satisfies PH; and suitable constellations of the n, q give rise
to PH-groups that are not nilpotent and not centre-by-finite. Indeed, some
infinite analogues of the Iwasawa-Napolitani groups are not even FC-groups
(see [5] and [8]).

A number of problems about PH-groups do not seem amenable to our
methods. For instance, it should be the case that periodic PH-groups are
locally finite, but the best we can say in this direction is the obvious fact that
PH-groups of prime exponent are centre-by-finite, so that Tarski-Ol'shanskii
monsters play no part in this subject. This is because the permutable product
of two groups of the same prime order is commutative, so that the results of
[9] apply. On the other hand, there are infinite groups of exponent p2 with
just (p - 1) elements of order p; for example, a suitable factor-group of
Adian's group [1, page 269] is of this type, and is certainly not a PH-group.

We thank the referee for some useful comments.

2. Proofs

We break down the proof of Theorem 1 into several steps.

2.1. Let G be a finitely generated soluble group such that for every cyclic
subgroup H and every element x of G, there exists a positive integer i such
that

HHX> =HXH.
Then G is nilpotent-by-finite.

PROOF. For arbitrary x , y in G, there must exist i > 0 such that

(y){y)x' = (y)x'(y).
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Thus, by [3], the product K = {y){y)x has a torsion-free abelian subgroup

of finite index. Thus [ym , (ym)x ] = 1 . for some m > 1 , so

[x ,y ,y ] = 1

for some m > 1 and some / > 0.
To complete the proof of 2.1, we need the following vital result.

2.2. Let G be a finitely generated soluble group such that for all x, y in
G there exist integers n, i > 1, such that [x', y", yn] = 1. Then G is
nilpotent-by-finite.

PROOF. By induction on the solubility length of G, we may assume that G
is abelian-by-nilpotent-by-finite, and thus, ignoring the finite factor at the top,
that G is abelian-by-nilpotent. Thus G is eremitic [6]; this means that there
is an integer e > 1 depending only on G such that [u, ve] = 1 whenever
[u, vm] = 1 for elements u, v of G and an integer m > 1. Let A be an
abelian normal subgroup of G such that G/A is nilpotent. For a e A and
y € G, we have [(ya)1, y" , yn] — 1 for some i, n > 1, so, after a small

calculation, we have [b, y" , yn] = 1, where b = al+y+y +'"+y' . But {a, y)
is metabelian, so [b, ye, y"] — 1 and [b, ye, ye] = 1 . Write A additively;
then a{l+y-\ 1- / ~ ' ) ( 1 -yef = 0, so that multiplying by 1 - y gives
a{\ -y'){\ -ye)2 = 0, and so by eremiticity, a(l - / V = 0.

It will be enough if we show that Ge is nilpotent, since it is of finite index.
All the elements of the form ye act nilpotently on AnGe , so {AnGe , ye) is
nilpotent. But this subgroup is subnormal in Ge , so Ge is locally nilpotent
and thus nilpotent since it is finitely generated.

Note that 2.2 remains true if the hypothesis is changed to [x', y" , ... , y"]
= 1, where the repeated commutator has length depending on x and y only.
We thus have a generalisation of the well-known fact that a finitely generated
soluble Engel group is nilpotent.

Our final preliminary is

2.3. Every torsion-free nilpotent PH*-group is abelian.

PROOF. We may assume that G is 2-generator, say G — {x, y). Let Z be
the centre of G. Then G/Z is torsion-free and so by an obvious induction,
it is abelian and hence G is of class 2. Setting Hi — {xy1}, i e Z , we have
HnHm = HmHn for some n, m > 0, n ^ m so HnHm is a metabelian
group by Ito's Theorem and by [3] has an abelian subgroup of finite index.
But this group is also torsion-free nilpotent of class 2 and an easy argument
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shows that it is abelian. Hence xy" and xym commute, and once again,
the fact that G is torsion-free nilpotent of class 2 gives that x and y must
commute.

We are now in a position to prove Theorem 1. Let G be a finitely generated
soluble PH*-group. By 2.1, G is nilpotent-by-finite, so it has a torsion-free
nilpotent subgroup A of finite index; by 2.3, A is abelian. We proceed by
induction on \G/A\, all being well when G = A.

If (A, x) < G for all x e G, then (A,x) is an FC-group for all x in
G,so G is an FC-group. Finitely generated FC-groups are centre-by-finite
and thus we may assume that (A, x) = G for some x . Let n be the order of
JC modulo A. If n is not a prime power, then n-rs with (r, s) — 1. Since
(A,xr) and (A, xs) are proper subgroups of G, the centralizers CG{xr) and
CG(xs) are of finite index in G, as above, and CG{x) > CG(xr) n CG(xs).

We know now that n = pm for some prime p. By induction, (.4, xp) is
centre-by-finite. Thus [A, x11] is finite; since A is torsion-free and normal,
this means that [A, xp] — 1. Thus the group B := (A, xp) is abelian, and
of course xp is in the centre of G.

We can assume that x has infinitely many conjugates in G, else the centre
Z(G) has finite index, since it contains A n CG(x). Thus, there must exist

an a such that (xa ) ^ (xa ) if / / j . Property PH* now means that
y := (x)(xb) = (xb)(x) for some b = a'. Modulo the central subgroup
(xp), Y has order p or p2, so [x, b]p e (xp>; since [x, bf — [x, bp\,
we have the contradiction that (x ) — (x). Thus x has only finitely many
conjugates after all, and G is centre-by-finite. This completes the proof of
Theorem 1.

PROOF OF THEOREM 2. We are required to show that a torsion-free PH*-
group G is abelian. For this purpose it is sufficient to assume that G =
(g{, ..., gk) is finitely generated. Suppose that a, b are elements of G
such that (a) (b) = (b)(a). Since this product is metabelian, it follows
from Theorem 1 and the fact that G is torsion free that {a, b) is abelian.
Now for any pair x, y of elements of G, there exists i > 0 such that
(y)(yx') = {yx'}{y). Thus (y,yx) is abelian. Similarly, (x,xyJ) is abelian
for some j > 0 . Hence (x', yJ) is nilpotent and hence abelian by Theorem
1. Since [x',y,y]=l, we have 1 = [x*, yj] = [x', y]j, so [xl, y] = 1.
In particular, by considering the pairs (x, gj), for j = 1, . . . , k, we get

[x', G] = 1 for some t > 0 . This shows that G/Z(G) is periodic.

Obtain, if possible, a sequence (ax, a2,...) of elements of G as follows.

Pick any a , e G \ Z(G) and for i > 2 , pick a,, from G\Uj~[ C G (a 7 ) . If

U"=i CG^ai> ~ & f°r s o m e " e ^ > t h e n Q;K) is °f nnite m d e x in G f°r
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some / < n . Set A = (af). Then A is in the FC-centre of G and [A, G]

is finite. But G is torsion-free, whence A < Z(G), contradicting our choice

of at. We conclude that in this case G is abelian.

The other alternative is the existence of an infinite sequence (ax, a2, ...)

as constructed above. By hypothesis, {aMat) = (a(){a ) for some 0 < i < j .

In this case (at, a,) is abelian, as shown earlier in the proof. But then

Oj 6 CG(a,) , a contradiction. This completes the proof of Theorem 2.
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