
5
Observables in gauge theories

Modern theories of fundamental interactions are gauge theories. The
principle of local gauge invariance was introduced by H. Weyl for the
electromagnetic interaction in analogy with general covariance in Ein-
stein’s theory of gravitation. An extension to non-Abelian gauge groups
was given by Yang and Mills [YM54].
A crucial role in gauge theories is played by the phase factor which is

associated with parallel transport in an external gauge field. The phase
factors are observable in quantum theory, in contrast with the classical
theory. For the electromagnetic field, this is known as the Aharonov–
Bohm effect.
In this chapter we initially consider the matrix notation for the non-

Abelian gauge fields and introduce proper non-Abelian phase factors.
Then we discuss the relation between observables in classical and quantum
theories.

5.1 Gauge invariance

The principle of local gauge invariance deals with the gauge transforma-
tion (g.t.) of a matter field ψ, which is given by

ψ(x)
g.t.−→ ψ′(x) = Ω(x)ψ(x) . (5.1)

Here Ω(x) ∈ G with G being a semisimple Lie group which is called the
gauge group (G = SU(3) for QCD). Equation (5.1) demonstrates that ψ
belongs to the fundamental representation of G.
We restrict ourselves to a unitary gauge group when

Ω−1(x) = Ω†(x) , (5.2)
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86 5 Observables in gauge theories

while an extension to other Lie groups is obvious. Then we have

ψ†(x)
g.t.−→ ψ′ †(x) = ψ†(x)Ω†(x) . (5.3)

In analogy with QCD, the gauge group G = SU(N) is usually associ-
ated with color, while the proper index of ψ is called the color index.
The gauge transformation (5.1) of the matter field ψ can be compen-

sated by a transformation of the non-Abelian gauge fieldAµ which belongs
to the adjoint representation of G:

Aµ(x)
g.t.−→ A′

µ(x) = Ω(x)Aµ(x) Ω†(x) + iΩ(x) ∂µΩ†(x) . (5.4)

We have introduced in Eq. (5.4) the Hermitian matrix Aµ(x) with the
elements

[Aµ(x)]
ij = g

∑
a

Aa
µ(x) [t

a]ij . (5.5)

Here [ta]ij are the generators of G (a = 1, . . . , N2 − 1 for SU(N)) which
are normalized such that∗

tr tatb = δab, (5.6)

where tr is the trace over the matrix indices i and j, while g is the gauge
coupling constant.
Equation (5.5) can be inverted to give

Aa
µ(x) =

1
g
trAµ(x) ta. (5.7)

Substituting
Ω(x) = eiα(x), (5.8)

we obtain for an infinitesimal α:

δAµ(x)
g.t.
= ∇adjµ α(x) . (5.9)

Here

∇adjµ α ≡ ∂µα− i [Aµ, α] (5.10)

is the covariant derivative in the adjoint representation of G, while

∇funµ ψ ≡ ∂µψ − iAµψ (5.11)

∗ Quite often another normalization of the generators with an extra factor of 1/2,
tr t̃at̃b = 1

2
δab, is used for historical reasons, in particular, t̃a = σa/2 for the

SU(2) group, where σa are the Pauli matrices. This results in the redefinition of the
coupling constant, g̃2 = 2g2.
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5.1 Gauge invariance 87

is that in the fundamental representation. It is evident that

∇adjµ B(x) = [∇funµ , B(x)] , (5.12)

where B(x) is a matrix-valued function of x.
The QCD action is given in the matrix notation as

S
[
A, ψ, ψ̄

]
=
∫
d4x
[
ψ̄γµ (∂µ − iAµ)ψ +mψ̄ψ +

1
4g2

trF2µν
]
,

(5.13)

where

Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ] (5.14)

is the (Hermitian) matrix of the non-Abelian field strength.
The action (5.13) is manifestly invariant under the local gauge trans-

formation (5.1) and (5.4) since

Fµν(x)
g.t.−→ Ω(x)Fµν(x)Ω†(x) (5.15)

or

δFµν(x)
g.t.
= −i [Fµν(x), α(x)] (5.16)

for the infinitesimal gauge transformation.
For the Abelian group G = U(1), the above formulas recover those of

the previous part for QED where we have already used the calligraphic
notation in Problem 3.6 on p. 61.
Problem 5.1 Rewrite classical equations of motion in the matrix notation.
Solution The non-Abelian Maxwell equation and the Bianchi identity are given,
respectively, as

∇adj
µ Fµν = 0 (5.17)

and

∇adj
µ F̃µν = 0 , (5.18)

where the dual field strength is defined by Eq. (3.49). Rewriting Eq. (5.14) as

Fµν = i [∇fun
µ ,∇fun

ν ] (5.19)

and using Eq. (5.12), we represent the Bianchi identity as

εµνλρ[∇fun
µ , [∇fun

ν ,∇fun
λ ]] = 0 (5.20)

which is obviously satisfied owing to the Jacobi identity.
We have thus proven the well-known fact that the Bianchi identity is satisfied

explicitly in the second-order formalism, where Fµν is expressed via Aµ by virtue
of Eq. (5.14). In contrast,Aµ and Fµν are considered to be independent variables
in the first-order formalism, where both equations (5.17) and (5.18) are essential.
The concept of the first- and second-order formalisms comes from the theory of
gravity.
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88 5 Observables in gauge theories

5.2 Phase factors (definition)

In order to compare the phases of wave functions at distinct points, one
needs a non-Abelian extension of the parallel transporter that was con-
sidered in Sect. 1.7. The proper extension of the Abelian formula (1.158)
is written as

U [Γyx] = P ei
∫
Γyx

dzµAµ(z). (5.21)

Although the matrices Aµ(z) do not commute, the path-ordered expo-
nential on the RHS of Eq. (5.21) is defined unambiguously by the general
method of Sect. 1.3. This is obvious after rewriting the phase factor in
an equivalent form

P ei
∫
Γyx

dzµAµ(z) = P ei
∫ 1
0 dσ ż

µ(σ)Aµ(z(σ)). (5.22)

Therefore, the path-ordered exponential in Eq. (5.21) can be under-
stood as∗

U [Γyx] =
τ∏

t=0

[1 + i dt żµ(t)Aµ(z(t))] . (5.23)

We have already used this notation for the product on the RHS in Prob-
lem 1.9 on p. 22. Using Eq. (1.157), Eq. (5.23) can also be written as

U [Γyx] =
∏

z∈Γyx

[1 + i dzµAµ(z)] . (5.24)

If the contour Γyx is discretized as is shown in Fig. 1.3, then the non-
Abelian phase factor is approximated by

U [Γyx] = lim
M→∞

M∏
i=1

[
1 + i (zi − zi−1)µAµ

(
zi + zi−1

2

)]
, (5.25)

which obviously reproduces (5.24) in the limit ε→ 0.
Note that the non-Abelian phase factor (5.21) is, by construction, an

element of the gauge group G itself, while Aµ belongs to the Lie algebra
of G.

∗ Sometimes the phase factor is defined using a similar formula but with the inverse
order of multipliers. Our definition using Eq. (5.23) is exactly equivalent to Dyson’s
definition of the P -product (see the footnote on p. 3) which can be seen by choosing
the contour Γyx to coincide with the temporal axis.
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5.2 Phase factors (definition) 89

Problem 5.2 Write down an explicit expansion of the non-Abelian phase factor
(5.21) in Aµ.

Solution Let us use the notation
y∫
x

dzµ · · · ≡
∫
Γyx

dzµ · · · (5.26)

for the integral along the contour Γyx. Then we have

P ei
y
x
dzµAµ(z)

=
∞∑
k=0

in
y∫
x

dzµ1
1

y∫
z1

dzµ2
2 · · ·

y∫
zk−1

dzµk

k Aµk
(zk) · · · Aµ2(z2)Aµ1(z1) .

(5.27)

The ordered integral in this formula can be rewritten in a more symmetric
form as

τ∫
0

dt1

τ∫
t1

dt2 . . .

τ∫
tk−1

dtk żµ1(t1)żµ2(t2) · · · żµk(tk)

× Aµk
(z(tk)) · · · Aµ2(z(t2))Aµ1 (z(t1))

=

τ∫
0

dt1

τ∫
0

dt2 · · ·
τ∫

0

dtk θ(tk, tk−1, . . . , t2, t1) żµ1(t1)żµ2(t2) · · · żµk(tk)

× Aµk
(z(tk)) · · · Aµ2(z(t2))Aµ1 (z(t1)) , (5.28)

where

θ(tk, tk−1, tk−2, · · · , t2, t1) = θ(tk − tk−1) θ(tk−1 − tk−2) · · · θ(t2 − t1) (5.29)

orders the points along the contour. We shall also denote this theta in a
parametrization-independent form as

θ(k, k − 1, k − 2, . . . , 2, 1) ≡ θ(tk, tk−1, tk−2, . . . , t2, t1) . (5.30)

It satisfies the obvious identity

θ(k, k − 1, k − 2, . . . , 2, 1) + θ(k − 1, k, k − 2, . . . , 2, 1)
+ (other permutations of k, . . . , 1)

= 1 . (5.31)

For the Abelian case, when Aµi(zi) commute, Eq. (5.31) results in

y∫
x

dzµ1
1

y∫
z1

dzµ2
2 · · ·

y∫
zk−1

dzµk

k Aµk
(zk) · · · Aµ2(z2)Aµ1(z1) =

1
k!

 y∫
x

dzµAµ(z)

k
(5.32)

so that the Abelian exponential of the contour integral is reproduced.
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90 5 Observables in gauge theories

Problem 5.3 Disentangle the non-Abelian phase factor using a path integral
over Grassmann variables on a contour.

Solution Let us define the average

〈
F [ψ, ψ̄]

〉
ψ

=

∫
Dψ̄(t)Dψ(t) e−

τ
0 dt ψ̄(t)ψ̇(t)−ψ̄(0)ψ(0) F [ψ, ψ̄]∫

Dψ̄(t)Dψ(t) e−
τ
0 dt ψ̄(t)ψ̇(t)−ψ̄(0)ψ(0)

. (5.33)

The path integral in this formula looks like those of Chapter 2 with ψ̄i(t) and
ψj(t) being Grassmann variables which depend on the one-dimensional variable
t ∈ [0, τ ] that parametrizes a contour, and i and j are the color indices.
The simplest average, which describes propagation of the color indices along

the contour, is〈
ψi(t2)ψ̄j(t1)

〉
ψ
= δij θ(t2 − t1) , 0 ≤ t1, t2 ≤ τ . (5.34)

This can be easily checked, say, by deriving the Schwinger–Dyson equation

∂

∂t2

〈
ψi(t2)ψ̄j(t1)

〉
ψ
= δij δ

(1)(t2 − t1) , 0 < t1, t2 < τ (5.35)

as was done in Chapter 3. We now see that we need the Grassmann variables
because the operator in the action in Eq. (5.33) is ∂/∂t.
A special comment is needed concerning the term ψ̄(0)ψ(0) in the exponents

in Eq. (5.33), the appearance of which in the disentangling procedure is clarified
in [HJS77]. The need for this term can be seen from the discretized version of
the exponent:

τ∫
0

dt ψ̄(t)ψ̇(t) + ψ̄(0)ψ(0) →
M∑
n=1

ψ̄(nε) [ψ(nε)− ψ(nε− ε)] + ψ̄(0)ψ(0) .

(5.36)

For this discretization we immediately obtain

〈
ψi(nε)ψ̄j(mε)

〉
ψ
=

{
δij for n ≥ m,

0 for n < m .
(5.37)

The term ψ̄(0)ψ(0) is needed to provide nonvanishing integrals over ψ̄(0) and
ψ(0). It can also be seen from the discretized version that the path integral in
the denominator on the RHS of Eq. (5.33) is equal to unity.
The fermionic path-integral representation for the non-Abelian phase factor

(see, for example, [GN80]) is given as[
P ei

τ
0 dt żµ(t)Aµ(z(t))

]
ij

=
〈
ei

τ
0 dt żµ(t)ψ̄(t)Aµ(z(t))ψ(t)ψi(τ)ψ̄j(0)

〉
ψ
.

(5.38)

There is no path-ordering sign on the RHS since the matrix indices of Aµ are
contacted by ψ and ψ̄.
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5.2 Phase factors (definition) 91

In order to prove Eq. (5.38), one expands the exponential in Aµ and calculates
the average using Eq. (5.34) and the rules of Wick’s pairing, which yields

1
k!

〈
ψi(τ)

 τ∫
0

dt żµ(t) ψ̄(t)Aµ(z(t))ψ(t)

k ψ̄j(0)〉
ψ

=

τ∫
0

dt1

τ∫
0

dt2 · · ·
τ∫

0

dtk θ(τ, tk, . . . , t2, t1, 0) żµ1(t1)żµ2(t2) · · · żµk(tk)

× [Aµk
(z(tk)) · · · Aµ2(z(t2))Aµ1 (z(t1))]ij , (5.39)

where θ(τ, tk, . . . , t2, t1, 0) is given by Eq. (5.29). It is crucial in the derivation of
this formula that only connected terms contribute to the average (5.33). Equa-
tion (5.39) reproduces Eq. (5.27) from the previous Problem, which completes
the proof of Eq. (5.38). Moreover, we can say that the path integral (5.33) is
nothing but a nice representation of the thetas (5.29).

Problem 5.4 Invert (−∇2+m2) when ∇µ is in the fundamental representation.

Solution The calculation is quite analogous to that of the Problem 1.13 on
p. 29. We first use the path-integral representation of the inverse operator:

G(x, y;A)

≡
〈
y

∣∣∣∣ 1
−∇fun

µ ∇fun
µ +m2

∣∣∣∣ x〉

=
1
2

∞∫
0

dτ e−
1
2 τm

2
∫

zµ(0)=xµ

Dzµ (t) e−
1
2

τ
0 dt ż2µ(t)

〈
y
∣∣∣P e−

z(τ)
x

dzµ∇fun
µ

∣∣∣x〉 .
(5.40)

The integral over z(τ) – the final point of the trajectory – of the matrix element
on the RHS equals∫

ddz(τ)
〈
y
∣∣∣P e−

z(τ)
x

dzµ∇fun
µ

∣∣∣x〉 = P ei
y
x
dzµAµ(z). (5.41)

Therefore, the result can be written as

G(x, y;A) =
∑
Γyx

′
P ei Γyx

dzµAµ(z), (5.42)

where
∑′ is defined by Eq. (1.156).

Problem 5.5 Invert (−∇2 +m2) when ∇µ is in the adjoint representation.

Solution Let us introduce

∇ab
µ = ∂µδ

ab − gfabcAc
µ (5.43)

and the Green function Gab(x, y;A) which obeys(
−∇ac

µ ∇cb
µ +m2δab

)
Gbd(x, y;A) = δad δ(d)(x− y) . (5.44)
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92 5 Observables in gauge theories

Then we obtain

Gab(x, y;A) =
∑
Γyx

′
tr tb U [Γyx] ta U †[Γyx] , (5.45)

where U [Γyx] is given by Eq. (5.21).

Since matrices are rearranged in inverse order under Hermitian conju-
gation, one has∗

U †[Γyx] = U [Γxy] . (5.46)

In particular, the phase factors obey the backtracking condition

U [Γyx]U [Γxy] = 1 . (5.47)

We have chosen Aµ in the discretized phase factor (5.25) at the center
on the ith interval in order to satisfy Eq. (5.47) at finite ε.

Problem 5.6 Establish the relation between non-Abelian phase factors and the
group of paths.

Solution The group of paths (or loops) is defined as follows. The elements of
the group are the paths Γyx. The product of two elements Γzx and Γyz is the
path Γyx, which is a composition of Γzx and Γyz. In other words, one first passes
along the path Γzx and then the path Γyz. The product is denoted as

Γyz Γzx = Γyx . (5.48)

The multiplication of paths is obviously associative but noncommutative. The
inverse element is defined as

Γ−1
yx = Γxy , (5.49)

i.e. the path with opposite orientation.
It follows from definition (5.24) that

U [Γyz]U [Γzx] = U [Γyz Γzx] . (5.50)

The backtracking condition (5.47) is then given by

U [Γyx Γxy] = 1 . (5.51)

In other words, the paths of opposite orientation cancel each other in the phase
factors.

∗ The notation Γyx means that the contour is oriented from x to y, while Γxy denotes
the opposite orientation from y to x. In the path-ordered product (5.24), these two
contours result in opposite orders of multiplication for the matrices.
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5.3 Phase factors (properties)

Under the gauge transformation (5.4) the non-Abelian phase factor (5.21)
transforms as

U [Γyx]
g.t.−→ Ω(y)U [Γyx] Ω†(x) . (5.52)

This formula stems from the fact that

[1 + i dzµAµ(z)]
g.t.−→
[
1 + i dzµA′

µ(z)
]

= Ω(z + dz) [1 + i dzµAµ(z)] Ω†(z) (5.53)

under the gauge transformation, which can be proven by substituting
Eq. (5.4), so that Ω†(z) and Ω(z) cancel in the definition (5.24) at the
intermediate point z.
One of the consequences of Eq. (5.52) is that ψ(x), transported by the

matrix U [Γyx] to the point y, transforms under the gauge transformation
as ψ(y):

U [Γyx] ψ(x)
g.t.∼ “ψ(y)”, (5.54)

and, analogously,

ψ̄(y) U [Γyx]
g.t.∼ “ψ̄(x)”. (5.55)

Therefore, U [Γyx] is, indeed, a parallel transporter.
It follows from these formulas that ψ̄(y)U [Γyx]ψ(x) is gauge invariant:

ψ̄(y)U [Γyx]ψ(x)
g.t.−→ ψ̄(y)U [Γyx]ψ(x) . (5.56)

Another consequence of Eq. (5.52) is that the trace of the phase factor
for a closed contour Γ is gauge invariant:

trP ei
∮
Γ
dzµAµ(z) g.t.−→ trP ei

∮
Γ
dzµAµ(z). (5.57)

These properties of the non-Abelian phase factor are quite similar to
those of the Abelian one which was considered in Sect. 1.7.

Problem 5.7 Calculate ∂U [Γyx]/∂xµ and ∂U [Γyx]/∂yµ.

Solution It is convenient to start from Eq. (5.25). Then only (z1−x) in the last
element of the product should be differentiated with respect to x or (y − zM−1)
in the first element of the product should be differentiated with respect to y. As
ε→ 0, we obtain

∂

∂xµ
P ei

y
x
dzµAµ(z) = −iP ei

y
x
dzµAµ(z)Aµ(x) ,

∂

∂yµ
P ei

y
x
dzµAµ(z) = iAµ(y)P ei

y
x
dzµAµ(z).

 (5.58)
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✲
✻

✛

❄

x

y

dzµ

dzν

z

Fig. 5.1. The rectangular loop δCzz , which is added to the contour Γyx at the
intermediate point z in the (µ, ν)-plane.

These formulas are exactly the same as if one were to just differentiate the lower
and upper limit in the path-ordered integral, bearing in mind the ordering of
matrices.
One can rewrite Eq. (5.58) via the covariant derivatives as

∇fun
µ (y)U [Γyx] = 0 ,

U [Γyx]
←
∇ fun
µ (x) = 0 .

 (5.59)

It is the property of the parallel transporter which is annihilated by the covariant
derivative.

Problem 5.8 Prove that the sufficient and necessary condition for the phase
factor to be independent on a local variation of the path is the vanishing of Fµν .

Solution Let us add to Γyx at the point z ∈ Γyx an infinitesimal loop δCzz
that lies in the (µ, ν)-plane and encloses the area δσµν(z). Then the variation of
the phase factor is

δU [Γyx] ≡ U [Γyz δCzz Γzx]− U [Γyx] = iU [Γyz]Fµν(z)U [Γzx] δσµν(z) .
(5.60)

We can rewrite Eq. (5.60) as

δU [Γyx] = iP U [Γyx]Fµν(z) δσµν(z) (5.61)

since the P -product will automatically put Fµν(z) at the point z on the contour
Γyx.
A convenient way to prove Eq. (5.60) is to choose δCzz to be a rectangle which

is constructed from the vectors dzµ and dzν , as depicted in Fig. 5.1. Using the
representation (5.41), we see that the phase factor acquires the extra factor

[1 + dzν∇ν ] [1 + dzµ∇µ] [1− dzν∇ν ] [1− dzµ∇µ] = 1− dzµdzν [∇µ,∇ν ]
(5.62)

at the proper order in the path-ordered product. Then Eq. (5.19) results in
Eq. (5.61). Alternatively, one can prove Eq. (5.61) using the discretized for-
mula (5.25).
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5.4 Aharonov–Bohm effect 95

Problem 5.9 Derive a non-Abelian version of the Stokes theorem.

Solution The ordered contour integral can be represented as the double-ordered
surface integral [Are80, Bra80]

P ei Cxx
dzµAµ(z) = P σ P τ ei S

dσµν “Fµν(x)”, (5.63)

where τ and σ parametrize the surface S (spanned by C but arbitrary otherwise),
the element of which is given by

dσµν = dτ dσ
(
∂zµ
∂τ

∂zν
∂σ

− ∂zµ
∂σ

∂zν
∂τ

)
. (5.64)

“Fµν(x)” in Eq. (5.63) means that Fµν(z(τ, σ)) is parallel-transported to the
initial point x.

Remark on an analogy with differential geometry

The formulas of the type of Eq. (5.60) are well-known in differential ge-
ometry where parallel transport around a small closed contour determines
the curvature. Therefore, Fµν in Yang–Mills theory is the proper curva-
ture in an internal color space while Aµ is the connection.

A historical remark

An analog of the phase factors was first introduced by Weyl [Wey19] in his
attempt to describe the gravitational and the electromagnetic interaction
of an electron on an equal footing. What he did is associated in modern
language with the scale rather than the gauge transformation, i.e. the
vector-potential was not multiplied by i as in Eq. (1.158). This explains
the term “gauge invariance” – gauging literally means fixing a scale. The
factor of i was inserted by London [Lon27] after the creation of quan-
tum mechanics and the recognition of the fact that the electromagnetic
interaction corresponds to the freedom of choice of the phase of a wave
function and not to a scale transformation. However, the terminology has
remained.

5.4 Aharonov–Bohm effect

The simplest example of a gauge field is the electromagnetic field, for
which transverse components describe photons. Otherwise, the longitu-
dinal components of the vector-potential, which are changeable under the
gauge transformation, are related to gauging the phase of a wave function,
i.e. permit one to compare its values at different space-time points when
an electron is placed in an external electromagnetic field.
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Fig. 5.2. Principal scheme of the experiment that demonstrates the Aharonov–
Bohm effect. Electrons do not pass inside the solenoid where the magnetic field is
concentrated. Nevertheless, a phase difference arises between the electron beams
passing through the two slits. The interference picture changes with the value
of the electric current.

As is well-known in quantum mechanics, the wave-function phase itself
is unobservable. Only the phase differences are observable, for example
via interference phenomena. For the electron in an electromagnetic field,
the current (gauged) value of the phase of the wave function ψ at the point
y is related, as is discussed in Sect. 1.7, to its value at some reference point
x by the parallel transport which is given by Eq. (1.163). Therefore, the
phase difference depends on the value of the phase factor for a given path
Γyx along which the parallel transport is performed.
It is essential that the phase factors are observable in quantum theory,

in contrast to classical theory. This is seen in the Aharonov–Bohm effect.
The corresponding experiment is depicted schematically in Fig. 5.2.
It allows one to measure the phase difference between electrons passing

through the two slits and, therefore, going across opposite sides of the
solenoid. The fine point is that the magnetic field is nonvanishing only
inside the solenoid where electrons do not penetrate. Hence the electrons
pass throughout the region of space where the magnetic field strength
vanishes! Nevertheless, the vector potential Aµ itself does not vanish
which results in observable consequences.
The probability amplitude for an electron to propagate from a source

at the point x to the point y in the interference plane is given by the
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Minkowski-space analog of Eq. (1.155):

Ψ(x, y) =
∑
Γ+

yx

′
e
ie
∫
Γ+

yx
dzµAµ(z)

+
∑
Γ−

yx

′
e
ie
∫
Γ−

yx
dzµAµ(z)

, (5.65)

where the contour Γ+yx passes through the upper slit, while the contour
Γ−yx passes through the lower one.
The intensity of the interference pattern is given by |Ψ(x, y)|2 which

contains, in particular, the term proportional to (the real part of)

e
ie
∫
Γ+

yx
dzµAµ(z)

e
−ie
∫
Γ−

yx
dzµAµ(z)

= eie
∮
Γ dz

µAµ(z), (5.66)

where the closed contour Γ is composed from Γ+yx and Γ
−
xy. This is nothing

but the phase factor associated with a parallel transport along the closed
contour Γ.
For the given process this phase factor does not depend on the shape

of Γ+yx and Γ
−
yx. Applying the Stokes theorem, one obtains

eie
∮
Γ
dzµAµ = eie

∫
dσµνFµν = eieHS, (5.67)

where HS is the magnetic flux through the solenoid. Therefore, the in-
terference picture changes when H changes.∗

Remark on quantum vs. classical observables

A moral from the Aharonov–Bohm experiment is that the phase factors
are observable in quantum theory while in classical theory only the electric
and magnetic field strengths are observable. The vector potential plays,
in classical theory, only an auxiliary role in determining the field strength.
For the non-Abelian gauge group G = SU(N), a quark can alter its

color under the parallel transport so the non-Abelian phase factor (5.21)
is a unitary N ×N matrix. A non-Abelian analog of the quantity, which
is measurable in the Aharonov–Bohm experiment, is the trace of the ma-
trix of the parallel transport along a closed path. It is gauge invariant
according to Eq. (5.57).
It looks promising to reformulate gauge theories entirely in terms of

these observable quantities. How this can be achieved will be explained
in Part 3.

∗ A detailed computation of the interference picture for the Aharonov–Bohm experi-
ment is contained, for example, in the review by Kobe [Kob79].
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