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Currents and Varifolds

The classical reference for the overall theory of the currents in the Euclidean
spaces is [203]. Currents and varifolds are very well presented also in [282],
[297] and [397], and more informally in [351]. De Lellis’s survey [161] en-
lightens the background and recent developments for this and the next two
chapters.

13.1 Currents in Euclidean Spaces

Federer and Fleming begin their ground-breaking paper [205] with the follow-
ing quotation:

‘Long has been the search for a satisfactory analytic and topological formulation of the
concept “k dimensional domain of integration in euclidean n-space.” Such a notion must
partake of the smoothness of differentiable manifolds and of the combinatorial structure
of polyhedral chains with integer coefficients. In order to be useful for the calculus of
variations, the class of all domains must have certain compactness properties. All these
requirements are met by the integral currents studied in this paper.’

So the currents they introduced are generalized surfaces which, as they ex-
pected, have turned out to be extremely useful for the calculus of variations,
and in many other topics too. De Giorgi’s theory of sets of finite perimeter al-
ready gave such a setting for codimension one surfaces. Currents can be of any
dimension and they have many other advantages over sets of finite perimeter,
but also some disadvantages.

Analytic theory of currents was developed by De Rham in the 1950s. They
are just distributions over differential forms. Federer and Fleming introduced
geometric aspects. The idea of how they are related to smooth surfaces is sim-
ple. If M is a smooth m-dimensional submanifold of Rn, then one can integrate
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116 Currents and Varifolds

differential m-forms ω over it and define the linear functional [M]:

[M](ω) =
∫

M
ω.

By the Stokes theorem,
∫

∂M
ω =

∫

M
dω, where dω is the exterior derivative of

ω. Thus if we define the boundary ∂T of a general current T by

∂T (ω) = T (dω),

then ∂[M] = [∂M].
The integral

∫

M
ω can be written as

∫

M
〈ω(x), ξ(x)〉 dHmx, where ξ(x) is an

m-vector associated with the tangent plane of M at x; differential m-forms can
be defined as functions with values in the dual of the m-vectors. This means
that ξ(x) is of the form v1 ∧ · · · ∧ vm, where {v1, . . . , vm} is an orthonormal basis
of the tangent m-plane of M at x.

Let Dm(Rn) be the space of differential m-forms on Rn with compact sup-
port. They can be written as ω =

∑

α ωαdxα, where α runs through the se-
quences a(1) < · · · < α(m), α(i) ∈ {1, . . . , n}, the ωα are smooth functions and
dxα = dxα(1) ∧ · · · ∧ dxα(m).

By definition, an m-current T,T ∈ Dm(Rn) is a continuous linear functional
on Dm(Rn). The support spt T of a current T is the smallest closed set such
that T (ω) = 0 for every ω ∈ Dm(Rn) for which sptω ⊂ Rn \ spt T . The mass,
generalizing area, is

M(T ) = sup
{

|T (ω)| : ‖ω‖∞ ≤ 1, ω ∈ Dm(Rn)
}

.

Differential forms can be pulled back, so currents can be pushed forward by
maps (with proper conditions) f ; f#T (ω) = T ( f #ω). We have the easy weak
compactness theorem: if sup j M(T j) < ∞, j = 1, 2, . . . , then there is a subse-
quence (T ji ) and a current T such that T ji (ω)→ T (ω) for all ω ∈ Dm(Rn).

A consequence of the Riesz representation theorem is that if M(T ) < ∞,

then there is a Radon measure μT and an m-vector-valued Borel function
−→
T ,

the tangent vector field of T , such that

T (ω) =
∫ 〈

ω(x),
−→
T (x)

〉

dμT x for ω ∈ Dm(Rn). (13.1)

If B ⊂ Rn is a Borel set, then for T as above we define the restriction of T to
B,T B, by integrating only over B, that is, μ

T B
= μT B. Similarly one

defines T f for functions f .
The currents with N(T ) := M(T )+M(∂T ) < ∞ are called normal. Although

our main interest is in m-currents with m < n, the n-currents in Rn too are
interesting. In particular, the normal n-currents in Rn can be identified with
BV-functions:
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13.1 Currents in Euclidean Spaces 117

Theorem 13.1 Let T ∈ Dn(Rn) be normal. Then there is g ∈ BV(Rn) such
that

T ( f dx1 ∧ · · · ∧ dxn) =
∫

f g dLn for f ∈ C∞c (Rn).

The proof can be done approximating T by usual convolutions, cf. [297,
7.1.9]. The converse also is true.

Based on this connection, Federer presented almost the whole theory of BV-
functions in [203, Theorem 4.5.9] and its 31 statements.

Let Pα be the projection Pα(x1, . . . , xn) = (xα(1), . . . , xα(m)). Then one checks
for T ∈ Dm(Rn) and ω =

∑

α ωαdxα ∈ Dm(Rn) that

T (ω) =
∑

α

Pα#

(

T ωα
)

(dy1 ∧ · · · ∧ dym),

where dy1, . . . , dym are the coordinate 1-forms on Rm. With some extra work
this yields

Lemma 13.2 If T ∈ Dm(Rn),N(T ) < ∞ and B is a Borel set satisfying
Lm(Pα(B)) = 0 for all α, then T B = 0. In particular this holds if Hm(B) <
∞ and B is purely m-unrectifiable.

The second statement follows from the Besicovitch–Federer projection The-
orem 4.17, since that allows us to choose the appropriate coordinate axis.

Of the rich theory of currents I now only discuss rectifiable currents.

Definition 13.3 An m-current T in Rn with finite mass is called m-rectifiable
if there are an m-rectifiableHm measurable set E ⊂ Rn and anHm measurable
positive function θ on E with

∫

E
θ dHm < ∞ such that the values of

−→
T are

simple m-vectors associated with the approximate tangent planes of E and we
have

T (ω) =
∫

E

〈

ω(x),
−→
T (x)

〉

θ(x) dHmx for ω ∈ Dm(Rn). (13.2)

If in addition the values of θ are integers, T is called integer multiplicity m-
rectifiable current. We say that T is an integral current if both T and ∂T are
integer multiplicity rectifiable currents.

We denote the set of m-rectifiable currents in Rn by Rm(Rn), the set of integer
multiplicity m-rectifiable currents in Rn by Rm(Rn), and the set of integral m-
currents in Rn by Im(Rn).

Again the condition on
−→
T means that forHm almost all x ∈ E, the m-vector

−→
T (x) is of the form v1 ∧ · · · ∧ vm, where {v1, . . . , vm} is an orthonormal basis of

the approximate tangent m-plane of E at x. Then
−→
T (x) is uniquely determined

up to sign. Choosing the sign means orienting E and T .
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118 Currents and Varifolds

The terminology and notation differ across books and papers.
Here are some of the main tools to study rectifiable currents:
The deformation theorem: if T is an integral current, then T = P+Q+ ∂S ,

where P is a polyhedral chain, and Q and S are integral currents with small
masses. The proof consists of carefully projecting T into the skeletons of a cu-
bical decomposition of Rn. It gives a useful approximation of integral currents
by polyhedral chains as well as the isoperimetric theorem: if T ∈ Im−1(Rn) and
∂T = 0, then there is S ∈ Im(Rn) such that ∂S = T and M(S ) � M(T )m/(m−1).

Slicing is a very useful operation on currents. Let T ∈ Dm(Rn) with N(T ) <
∞ and f : Rn → Rk, k ≤ n be a Lipschitz map. Then the slice of T at t ∈ Rk,
〈T, f , t〉, is an (n − k)-current with support in spt T ∩ f −1{t} such that T is
obtained as an integral of the 〈T, f , t〉. For simplicity we only consider slicing
with real-valued Lipschitz maps f : Rn → R. Then we can define

〈T, f , t〉 = (∂T ) {x : f (x) > t} − ∂(T {x : f (x) > t}).

For almost all t ∈ R,

spt〈T, f , t〉 ⊂ spt T ∩ f −1{t}, ∂〈T, f , t〉 = −〈∂T, f , t〉, N(〈T, f , t〉) < ∞ and

〈T, f , t〉 ∈ Rm−1(Rn) if T ∈ Rm(Rn).

The first line is rather easy to prove, and the second can be proven with the
help of Theorem 4.3, see [397, Section 28].

Here is a general, not very hard, rectifiability theorem, see [397, Theorem
32.1]. Recall similar results in 12.14 and 12.17.

Theorem 13.4 If T ∈ Dm(Rn) is normal and Θ∗m(μT , x) > 0 for μT almost
all x ∈ Rn, then T ∈ Rm(Rn).

We will say a few words about the proof. We should establish (13.2) starting
with (13.1). By Theorem 1.3 Θ∗m(μT , x) < ∞ forHm almost all x ∈ Rn, and so
also for μT almost all x ∈ Rn by Lemma 13.2. The set

E =
{

x : Θ∗m(μT , x) > 0
}

has σ-finiteHm measure, and μT andHm E are mutually absolutely contin-
uous. Hence μT = θHm E for some θ. By Lemma 13.2, μT (B) = 0 for every

purely m-rectifiable set B ⊂ E, whence E is m-rectifiable. That
−→
T is associ-

ated with the approximate tangent planes of E requires more work. It can be
established by a blow-up method, see [397, Theorem 32.1].

We shall discuss mass minimizing rectifiable currents in Chapter 15. For
their existence we need the compactness theorem:

https://doi.org/10.1017/9781009288057.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009288057.014


13.1 Currents in Euclidean Spaces 119

Theorem 13.5 If T j ∈ Im(Rn), j = 1, 2, . . . , with sup j N(T j) < ∞, then there
is a subsequence (T ji ) and a current T ∈ Im(Rn) such that T ji (ω) → T (ω) for
all ω ∈ Dm(Rn).

The main point here is that the limit current is rectifiable. By the lower
semicontinuity of the mass, N(T ) < ∞. To apply Theorem 13.4, we need to
know that the upper density of μT is positive, which roughly means that T
should not be scattered around a set of non-σ-finite Hm measure. Another
thing that needs checking is that the weight function of T is integer valued.
The proof of the theorem is by induction on m, so we also ought to know to
which (m− 1)-dimensional currents we should apply the induction hypothesis.
All this is dealt with in the following slicing criterion for rectifiability:

Lemma 13.6 If T ∈ Dm(Rn) is normal, ∂T = 0 and we have ∂(T B(a, r)) ∈
Rm−1(Rn) for every a ∈ Rn and for almost all r ∈ (0,∞), then T ∈ Rm(Rn).

To prove this, first the isoperimetric theorem with some covering arguments
is used to prove that Θ∗m(μT , x) > 0 for μT almost all x ∈ Rn. Then by The-
orem 13.4 we know that T ∈ Rm(Rn). That the weight function of T is integer
valued follows, for example, by a rather simple blow-up argument. Now we
have reduced the problem one dimension lower and the compactness theorem
follows by an induction argument. As an easy consequence it has the interest-
ing boundary rectifiability theorem:

Theorem 13.7 If T ∈ Rm(Rn) with M(∂T ) < ∞, then ∂T ∈ Rm−1(Rn).

The above was essentially a very rough sketch of the original proof of Fed-
erer and Fleming in [205] (and also in [203]). Later other proofs were given
which avoided the use of the Besicovitch–Federer projection Theorem 4.17, first
by Solomon [404] using multivalued functions, then by White [436] by more
classical analysis, and later by Ambrosio and Kirchheim in [17] in the metric
space setting relying on BV-functions, as we shall see in the next section.

Above the coefficients of rectifiable currents have been real numbers or inte-
gers. Other coefficient groups also have been studied. In particular for integers
modulo p, where p ≥ 2 is an integer, the same rectifiability and compact-
ness theorems are valid. White characterized in [439] the normed coefficient
groups for which they hold. For this, he proved a rectifiability criterion with
zero-dimensional slices. A similar criterion in the metric space setting was
proved independently by Ambrosio and Kirchheim, which we shall discuss in
the next section.

The currents modulo p exhibit many interesting new phenomena. They are
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120 Currents and Varifolds

extensively discussed in [161]. Simple illustrative examples are presented in
[351, Section 11.1].

Instead of using mass to represent the area one can use size: for a rectifiable
current T as in (13.2), Size(T ) = Hm({x ∈ E : θ(x) � 0}). In some cases this is
better than mass, but the existence of minimizers is harder to prove, see [139].

13.2 Currents in Metric Spaces

Based on an idea of De Giorgi, Ambrosio and Kirchheim [17] developed the
theory of currents in complete metric spaces. It might seem that currents, as
linear forms on differential forms, would need a differential structure. But a
differential form ω can be written as a linear combination of f0d f1 ∧ · · · ∧ d fm
with smooth functions fi. For the geometric theory of currents we could also
consider Lipschitz functions, and this would make sense in metric spaces.

Let X be a complete metric space and let Dm(X) be the set of all (m + 1)-
tuples (g, π1, . . . , πm) of real-valued Lipschitz functions on X with g bounded.
Then Ambrosio and Kirchheim defined an m-dimensional current on X to be
any multilinear, positively homogeneous and continuous (in a suitable weak
sense) functional T on Dm(X) such that T (g, π1, . . . , πm) = 0 whenever some
πi is constant in a neighbourhood of {g � 0}. In this simple setting, they were
able to develop and generalize the Euclidean theory to a surprising extent. In
particular they proved compactness and boundary rectifiability theorems, re-
sults that seemed to rely heavily on Euclidean tools such as the deformation
theorem. Thus this work gives much new insight also to the classical theory.
We skip the rest of the definitions, but let us see how boundary is defined. First
the exterior derivative of ω = (g, π1, . . . , πm) is dω = (1, g, π1, . . . , πm) and
then, as before, ∂T (ω) = T (dω).

The theory of rectifiable currents in metric spaces is based on the theory of
rectifiable sets in [16], recall Chapter 7. The proofs of the compactness and
boundary rectifiability theorems are again by induction, and one of the main
tools is slicing. But now the rectifiability criterion for m-dimensional currents
is given in terms of the slices with Lipschitz maps f : X→Rm, which are zero-
dimensional currents, that is, measures, and when rectifiable, sums of point
masses. Another basic tool is provided by a theory of metric space-valued
BV-functions which Ambrosio developed in [13] and which was mentioned in
Section 12.3. A key fact is that y �→ 〈T, f , y〉, y ∈ Rm, is a BV-function. In the
Euclidean setting this was proved by Jerrard in [261]. Since the BV-functions
are Lipschitz on large subsets, one can, essentially, conclude that if T is a
normal current, then the set of those x ∈ spt T which are atoms of 〈T, f , f (x)〉
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13.3 Varifolds 121

is rectifiable. Using this one then characterizes rectifiable m-currents T by the
property that for every Lipschitz map f : X → R

m for Lm almost all y ∈
R

m the slice 〈T, f , y〉 is a rectifiable 0-current. The compactness and boundary
rectifiability theorems then follow by induction arguments employing slicing
with real-valued functions.

As mentioned before this gives new proofs also in the Euclidean setting.
Lang developed in [285] another approach which applies to local currents,

not necessarily having finite mass. In [17], it is essential that the currents have
finite mass.

Currents in Heisenberg groups is a fairly complicated issue, even from the
point of view of definitions, since they are based on a difficult (at least to me)
concept of Rumin’s complex. Their theory is much less developed than the
Euclidean and metric theories, see [430].

13.3 Varifolds

Varifolds, like currents, are generalized surfaces, better in some aspects and
worse in some. In particular, there is no concept of boundary and no need for
orientation. In a way they are more general than currents; any current T with
finite mass induces a varifold via the formula (13.1). They were introduced by
Almgren in the 1960s in unpublished notes and his little book [8], and the basic
results were presented by Allard in [7]. They are discussed in [297] and [397].

For any A ⊂ Rn we set Gm(A) = A ×G(n,m).

Definition 13.8 Any Radon measure on Gm(Rn) is called an m-varifold. To
eachHm measurable and m-rectifiable set E and non-negativeHm measurable
function θ on E with

∫

E
θ dHm < ∞, we associate the rectifiable m-varifold

v(E, θ) defined by

v(E, θ)(B) =
∫

{x∈E : (x,apTan(E,x))∈B}
θ(x) dHmx, B ⊂ Gm(Rn) a Borel set.

When θ = 1 we write v(E) = v(E, θ).

To any m-varifold v we associate the Radon measure μv on Rn by μv(A) =
v(Gm(A)). The mass of v is M(v) = μv(Rn). The image f#v of v under a smooth
map f : Rn → Rn is defined by

f#v(A) =
∫

F−1(A)
JV f (x) dv(x,V), A ⊂ Gm(Rn) a Borel set,

where F(x,V) = ( f (x),D f (x)(V)) and JV f is a Jacobian of f along V . Then
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122 Currents and Varifolds

for a rectifiable m-varifold v(E, θ), M(v(E, θ)) =
∫

E
θ dHm and the image of

v(E, θ) under a diffeomorphism f : Rn → Rn is the rectifiable m-varifold given
by f#v(E, θ) = v( f (E), θ ◦ f −1).

There is no natural boundary operator, but in order to study Plateau-type
problems we can use the classical approach from the calculus of variations.
Let ht : Rn → Rn, t ≥ 0 be a one-parameter family of diffeomorphisms with h0

the identity and with each ht the identity outside a fixed compact set K. Then
a computation shows that

d
dt

M
(

ht#(v Gm(K))
)

|t=0
=

∫

divV X(x) dv(x,V),

where X(x) = d
dt ht(x)|t=0 and divV X(x) is the divergence along V . Motivated

by this we define

Definition 13.9 The first variation δv of a varifold v is defined by

δv(X) =
∫

divV X(x) dv(V, x)

for any smooth vector-field X : Rn → Rn with compact support. If δv(X) = 0
for all such X with support in an open set U, then v is called stationary in U.

The first variation is a very interesting operator on vector fields for many
reasons, not only that it defines stationary varifolds. If v = v(M) is a rectifiable
varifold over a smooth manifold M, then δv can be expressed with the mean
curvature of M, which leads to a concept of generalized mean curvature.

Allard [7] proved the following rectifiability theorem:

Theorem 13.10 Suppose that the m-varifold v satisfies |δv(X)| � ‖X‖∞ for
all smooth X : Rn → Rn with compact support, that is, (the total variation of)
δv is a Radon measure. If Θ∗m(μv, x) > 0 for μv almost all x ∈ Rn, then v is
rectifiable.

The two main tools to prove this are the monotonicity formula and tangent
cones. Both of these have analogues for currents and they are important in
many ways.

The monotonicity formula for stationary varifolds, and analogously for mass
minimizing currents, is the following: if v is a stationary m-varifold in U, then
for x ∈ U and 0 < r < s with B(x, s) ⊂ U,

s−mμv(B(x, s))− r−mμv(B(x, r)) =
∫

y∈B(x,s)\B(x,r)
|y− x|−m−2|PV⊥ (y− x)|2 dv(y,V).

This is proved using test vector fields of the type y �→ ϕ(|y − x|)(y − x) in
the definition of the first variation. In particular, the finite density Θm(μv, x)
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exists. Assuming its positivity, as in Theorem 13.10, we could conclude by
Preiss’s theorem 4.11 the rectifiability of μv. This was not available for Allard,
but it would anyway be unnecessarily heavy machinery; the monotonicity for-
mula gives much more than the mere existence of the density. A variant of the
monotonicity formula also holds when δv is Radon measure, not necessarily
stationary, and gives the existence of density.

Tangent cones are important in particular for studying singularities of mass
minimizing currents and stationary varifolds. Let, for example, v be a station-
ary m-varifold and, as in the case of tangent measures, Tx,r(y) = (y − x)/r. We
say that a varifold C is a tangent cone of v at x if T0,r#C = C for r > 0, that is,
C is a cone with vertex at 0, and there is a sequence ri > 0, limi→∞ ri = 0 such
that limi→∞ Tx,ri#v = C. The monotonicity of the density ratios together with
an easy compactness theorem imply that such limits exist, and further, still
based on the monotonicity formula, they are cones. But can there be more than
one tangent cone at a point? The uniqueness of tangent cones is a central open
problem and known only in some cases. White proved it for two-dimensional
currents in [435], this paper also gives references to other cases. In [437], he
constructed a counterexample for harmonic maps, see also [161, 346].

We now briefly explain how the monotonicity formula and tangent cones can
be used to prove Theorem 13.10 when v is stationary. The same ideas work in
the general case. As for rectifiable sets and measures, it suffices to show that
for μv almost all x the varifold v has a unique tangent cone which is an m-
plane. Let C be some tangent cone at a typical point x. Then C is stationary
and 0 ∈ spt μC . As for tangent measures, μC is an m-uniform measure:

μC(B(y, r)) = α(m)Θm(μv, x)rm for y ∈ spt μC , r > 0. (13.3)

From this we see by the monotonicity formula that PV⊥ (y − x) = 0 for C al-
most all (y,V). This implies that when (0,V) ∈ spt C, then spt μC ⊂ V = VC ,
and further, by stationarity and a constancy theorem, that C = Θm(μv, x)v(VC).
So we have left to show that VC is unique, but this is now fairly easy: a general
differentiation theorem implies that for any continuous function ϕ on G(n,m)
and v almost all (x,V) the limit limr→0

∫

Gm(B(x,r))
ϕ(V) dv(x,V)/μv(B(x, r)) ex-

ists. But using the definition of the tangent varifold one quickly checks that
this equals ϕ(VC); go to zero through the sequence defining C. This implies
that VC is unique.

Allard’s main result was a regularity theorem for stationary varifolds, and
more generally for varifolds with Lp conditions for the generalized mean cur-
vature, see [397] and [297].

De Philippis, De Rosa and Ghiraldin extended Allard’s rectifiability theorem
in [173], replacing mass by more general integrands. Their proof was different.
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Instead of the monotonicity formula, they used tangent measures and results of
Preiss from [382]. They showed that generically tangent measures are transla-
tion invariant in at least m directions while the positivity of the lower density,
which they assumed, ensures that there exists at least one tangent measure that
is invariant along at most m directions. This leads to unique flat tangent mea-
sures. Still another proof, based on PDE operators, and a more general result
is provided by [29], see Section 15.5.

In [20], Ambrosio and Soner introduced generalized varifolds and applied
them to gradient flows; G(n,m) considered as a class of matrices is replaced by
a larger subclass of symmetric matrices. They proved a rectifiability theorem,
but relied on Allard’s theorem. Brakke [80] developed mean curvature flow
with varifolds. We shall come to it in Section 15.3.

Moser proved a general result in [353] related to the above as well as to
harmonic maps and Yang–Mills connections discussed in Chapter 15.
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