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Abstract. We introduce the concept of an E-valued function algebra, a type
of Banach algebra that consists of continuous E-valued functions on some compact
Hausdorff space, where E is a Banach algebra. We present some basic results about
such algebras, having to do with the Shilov boundary and the set of peak points of
some commutative E-valued function algebras. We give some specific examples.
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1. Introduction and preliminaries. We consider only algebras over the field of
complex numbers, �. A Banach algebra is an algebra equipped with a submultiplicative
norm with respect to which it is complete. See [4, 15] for background on Banach
algebras.

1.1. E-valued function algebras. Let X be a non-empty compact Hausdorff space,
E be a unital Banach algebra and C(X, E) be the space of all continuous maps from
X into E. We define the uniform norm on C(X, E) by

‖f ‖X := supx∈X‖f (x)‖, ∀f ∈ C(X, E).

For f, g ∈ C(X, E) and λ ∈ �, the pointwise operations λf , f + g and fg in C(X, E)
are defined as usual. It is easy to see that C(X, E), equipped with the norm ‖ · ‖X , is
a Banach algebra. If E = �, we get the ordinary uniform function algebra C(X) :=
C(X, �) of all continuous complex-valued functions on X . See any of [2, 4, 6, 13] for
background on uniform algebras.

DEFINITION 1.1. By an E-valued function algebra on X we mean a subalgebra
A ⊆ C(X, E), equipped with some norm that makes it complete, such that (1) A has
as an element the constant function x �→ 1E , (2) A separates points on X , i.e. given
distinct points a, b ∈ X , there exists f ∈ A such that f (a) 	= f (b) and (3) the evaluation
map

ex :
{

A → E
f �→ f (x)

is continuous, for each x ∈ X .
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We remark that, as it stands, condition (3) is the very weak assumption that
the inclusion map A ↪→ EX is continuous, where EX is the given cartesian product
topology, but it follows from the Closed Graph Theorem that if A is an E-valued
function algebra on X , then the inclusion map A ↪→ C(X, E) is continuous, so there
exists some constant M > 0 such that

‖f ‖X ≤ M‖f ‖A, ∀f ∈ A.

Normally, we shall use the same notation a for the element a ∈ E and the constant
function x �→ a on X . The map a �→ (x �→ a) imbeds E isomorphically as a subalgebra
of each E-valued function algebra A, and we normally identify E with its image. Note
that A is commutative if and only if E is commutative.

The classical concept of a function algebra (cf. [6, 4]) corresponds, in our
terminology, to a �-valued function algebra. Note, however, that some authors (e.g.
[2]) have used the term function algebra to refer only to closed subalgebras of C(X).
We do not assume that an E-valued function algebra on X is closed in the uniform
norm.

An important class of examples is afforded by taking a compact set X ⊂ �n and
a commutative unital Banach algebra E, and defining the algebra P(X, E) to be the
uniform closure of E[z]|X in C(X, E), where E[z] = E[z1, . . . , zn] is the algebra of all
polynomials in the coordinate functions z1, ..., zn with coefficients in E. We can also
form the algebra R(X, E), defined to be the uniform closure on X of the algebra of
functions of the form p(z)/q(z), where p(z) ∈ E[z], q(z) ∈ E[z] and q(x) ∈ E−1 whenever
x ∈ X .

Johnson [9] considered the rather similar concept of the convolution algebra
L1(G, A) of A-valued Bochner-integrable functions from a locally compact abelian
group G into a commutative Banach algebra A. The abstract Fourier transform maps
such an L1(G, A) isomorphically to an A-valued algebra of continuous functions on
the dual group Ĝ.

There is also work [1] on operator-valued Fourier–Stieltjes algebras, and operator-
valued maps occur in applications such as homotopy theory, but in this paper we are
going to concentrate on algebras of functions into commutative algebras E. Specifically,
we shall study boundaries. We proceed to define the terms.

1.2. Characters. For a commutative unital Banach algebra A, let M(A) denote
the set of all characters (non-zero complex-valued multiplicative linear functionals) on
A. It is well known that M(A) is non-empty and that its elements are automatically
continuous, with norm 1. Endowed with the weak-star topology, M(A) becomes a
compact Hausdorff space. The Gelfand transform of f ∈ A is the complex-valued
function f̂ defined by f̂ (ϕ) = ϕ(f ) on M(A). Let Â = {f̂ : f ∈ A}. The algebra Â consists
of �-valued continuous functions on M(A). Hence, it is a �-valued function algebra
on M(A) when endowed with the quotient norm. However, we shall use the notation
‖f̂ ‖ to denote the uniform norm of f̂ on M(A), and with respect to this norm Â may
or may not be complete.

The kernel of the map

ˆ :
{

A → Â
f �→ f̂
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is the Jacobson radical of A. The characters on C(X) are exactly the evaluations
ex : f �→ f (x), with x ∈ X , and X is homeomorphic to M(C(X)) with its relative weak-
star topology as a subset of the dual A∗.

When A is a �-valued function algebra on X , the map x �→ ex|A imbeds X
homeomorphically as a compact subset of M(A). When this map is surjective, one
calls A a natural �-valued function algebra on X [4].

The basic example C(X, E) itself was studied by Hausner [7], who showed that
its maximal ideal space is homeomorphic to M(E) × X . More precisely, he showed [7,
Lemma 2] the following.

LEMMA 1.1 [7]. For each commutative Banach algebra E with identity and each
compact Hausdorff space X, the map (φ, x) �→ φ ◦ ex is a homeomorphism from M(E) ×
X onto M(C(X, E).

1.3. Shilov boundary and peak points.

DEFINITION 1.2. A closed boundary for a commutative Banach algebra A is a
closed subset F ⊆ M(A) such that for each a ∈ A,

sup
ϕ∈M(A)

|â(ϕ)| = sup
ϕ∈F

|â(ϕ)|.

The Shilov boundary of A is the intersection

�(A) =
⋂

{F : F is a closed boundary for A}.

It can be shown ([15, Theorem 15.2] or [13]) that �(A) is the unique minimal closed
boundary for A.

DEFINITION 1.3. Let A be a unital commutative Banach algebra. A closed subset
S ⊆ M(A) is called a peak set if there exists an element a ∈ A such that â(ϕ) = 1 for
ϕ ∈ S and |â(ψ)| < 1 for ψ ∈ M(A) \ S. A point ϕ ∈ M(A) is a peak point for A if {ϕ}
is a peak set. We write S0(A) for the set of peak points for A.

Obviously, S0(A) ⊆ �(A). If M(A) is metrisable, then (cf. [4, Cor. 4.3.7]) �(A) is
the closure of S0(A).

1.4. Main result. Our results are about commutative algebras.
In Section 2 we introduce the concept of an admissible quadruple (X, E, B, B̃),

which formalises the idea of an E-valued function algebra B̃ that is organically
connected to a �-valued function algebra B on the same space X . To such a quadruple
we associate an injective map π : M(E) × X → M(B̃), and we say that the quadruple
is natural when π is bijective. We prove the following result about the relation between
the three Shilov boundaries that are in play.

THEOREM 1.2. Let (X, E, B, B̃) be a natural admissible quadruple. Then the
associated map π maps �(E) × �(B) homeomorphically onto �(B̃)

We give some specific examples, and other results.
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2. Admissible Quadruples.

DEFINITION 2.1. By an admissible quadruple we mean a quadruple (X, E, B, B̃),
where

(1) X is a compact Hausdorff space,
(2) E is a commutative Banach algebra with unit,
(3) B ⊆ C(X) is a natural �-valued function algebra on X ,
(4) B̃ ⊆ C(X, E) is an E-valued function algebra on X ,
(5) B · E ⊆ B̃ and
(6) {λ ◦ f, f ∈ B̃, λ ∈ M(E)} ⊆ B.

We remark that if we assume that the linear span of B · E is dense in B̃, then (6) is
automatically true.

Condition (6) is undemanding if the Jacobson radical J(E) of E is large. In fact,
we are mainly interested in semi-simple algebras. The meat of Theorem 1.2 is really
about the quotient E/J(E).

Given an admissible quadruple (X, E, B, B̃), we define the associated map

π :
{

M(E) × X → M(B̃)
(ψ, x) �→ ψ ◦ ex

.

LEMMA 2.1. Let (X, E, B, B̃) be an admissible quadruple. Then the associated map
π is a continuous injection.

Proof. π is injective from M(E) × X into M(B̃), since Ê separates points on
M(E) and B̂ separates points on X . To see that π is continuous, observe that it is
the composition of the (weak-star continuous) restriction map C(X, E)∗ → (B̃)∗ with
Hausner’s homeomorphism M(E) × X → M(C(X, E)). �

COROLLARY 2.2. Let (X, E, B, B̃) be an admissible quadruple. Then the following are
equivalent:

(1) The associated map π is surjective.
(2) The associated map π is bijective.
(3) The associated map π is a homeomorphism of M(E) × X onto M(B̃).

DEFINITION 2.2. We say that an admissible quadruple (X, E, B, B̃) is natural if the
associated map π is bijective.

For instance, if B is a natural �-valued function algebra on X , then (X, �, B, B)
is a natural admissible quadruple, so this terminology is a reasonable extension of the
usual use of ‘natural’. Further, if (X, E, B, B̃) is an admissible quadruple and E is semi-
simple, then Ê (with the induced norm given by ‖ĥ‖ = ‖h‖E) is a natural �-valued
function algebra on M(E), so B̃ is isometrically isomorphic to a �-valued function
algebra on M(E) × X , and it is a natural �-valued function algebra if and only if the
quadruple is natural.

Tomiyama [14] showed that if A and B are commutative Banach algebras with
identity, and some completion of C of A ⊗ B is also a Banach algebra, then the
natural map M(A) × M(B) → M(C) is a homeomorphism. Thus, if (X, E, B, B̃) is
an admissible quadruple, and the linear span of B · E is dense in B̃, we may apply
Tomiyama’s theorem with A = E and B = B and deduce that the quadruple is natural.
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In view of the corollary, when given a natural admissible quadruple (X, E, B, B̃),
we often identify M(E) × X with M(B̃).

Proof of Theorem 1.2. First, we show that the image of π is a boundary for B̃: Let
f ∈ B̃. Fix a character φ ∈ M(B̃). Then φ is of the form ψ ◦ ex for some x ∈ X and some
ψ ∈ M(E), and then f̂ (φ) = (ψ ◦ f )(x). Now ψ ◦ f ∈ B, so there exists a point y ∈ �(B)
such that |(ψ ◦ f )(x)| ≤ |(ψ ◦ f )(y)|. Next, (ψ ◦ f )(y) = f̂ (y)(ψ), and f (y) ∈ E, so there
exists a point χ ∈ �(E) such that |f̂ (y)(ψ)| ≤ |f̂ (y)(χ )|. Thus,

|f̂ (φ)| ≤ |f̂ (π (χ, y))|.
This shows that for each f ∈ B̃, f̂ attains its maximum modulus on the image of π

so that image is a boundary, and

�(B̃) ⊆ π (�(E) × �(B)).

To see the opposite inclusion, fix x ∈ �(B) and ψ ∈ �(E). Let U be any neighbourhood
of x in X and V be any neighbourhood of ψ in M(E). There exists f ∈ B such that
‖f̂ ‖ = 1 and |f (y)| < 1 for all y ∈ X\U . In addition, there exists v ∈ E such that ‖v̂‖ = 1
and |φ(v)| < 1 for all φ ∈ M(E) \ V . Now define g : X → E by g = vf . We have g ∈ B̃
and

‖ĝ‖ = supφ∈M(E) supy∈X |v̂f (φ ◦ ey)|
= supφ∈M(E) supy∈X |f (y)φ(v)|
= supφ∈M(E) |φ(v)| · supy∈X |f (y)|
= ‖v̂‖.‖f̂ ‖ = 1.

On the other hand, every ϕ′ ∈ π (M(E) × X \ (U × V )) is of the form ϕ
′ = φ ◦ ey with

y ∈ X \ U or φ ∈ M(E) \ V (or both). Therefore,

|ĝ(ϕ
′
)| = |ϕ ′

(vf )| = |φ(v)f (y)| < 1.

Since U and V were arbitrary neighbourhoods, it follows from [15, Theorem 15.3] that
ψ ◦ ex ∈ �(B̃). Therefore, π (�(B) × �(E)) ⊆ �(B̃) and so the proof is complete. �

2.1. Examples. (i) Let X be a compact Hausdorff space and E be a unital
commutative Banach algebra. Then (X, E, C(X), C(X, E)) is an admissible quadruple.
It is natural by Lemma 1.1, and this case of Theorem 1.2 is Hausner’s theorem [7] that
the Shilov boundary of C(X, E) is equal to the cartesian product X × �(E).

(ii) Let (X, d) be a compact metric space and E be a commutative unital Banach
algebra. For a constant 0 < α ≤ 1 and a function f : X → E, the Lipschitz constant
of f is defined as

pα(f ) := sup
x,y∈X
x 	=y

‖f (x) − f (y)‖
d(x, y)α

,

and the E-valued big Lipschitz algebra or simply E-valued Lipschitz algebra (of order
α) is defined by

Lipα(X, E) = {f : X → E : pα(f ) < ∞} .
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Similarly, for 0 < α < 1, the E-valued little Lipschitz algebra (of order α) is defined by

lipα(X, E) =
{

f ∈ Lipα(X, E) :
‖f (x) − f (y)‖

d(x, y)α
→ 0 as d(x, y) → 0

}
.

For each f ∈ Lipα(X, E) we define a norm by

‖f ‖α = ‖f ‖X + pα(f ).

It was shown in [3] that (Lipα(X, E), ‖ · ‖α) is a Banach algebra having
lipα(X, E) as a closed subalgebra. It is relatively straightforward to check that
(X, E, Lipα(X, �), Lipα(X, E)) is an admissible quadruple for each α ∈ (0, 1], and that
(X, E, lipα(X, �), lipα(X, E)) is an admissible quadruple for each α ∈ (0, 1). (The result
that the maximal ideal space of Lipα(X) is X is originally due to Sherbert [4, 12].)

The scalar-valued Lipschitz algebras are normal because if F and K are disjoint

non-empty closed subsets of X , then the function f : x �→ d(x, F)
d(x, F) + d(x, K)

belongs

to Lip1(X). It follows [4, p. 413] that they have partitions of unity subordinate to
any open covering. Applying partitions of unity and a method similar to Hausner’s
in [7, Lemma 1], one can see that each of these E-valued Lipschitz algebras (and
little Lipschitz algebras) is dense in C(X, E). Then, given a character φ on Lipα(X, E)
and a function f ∈ C(X, E), we may choose a sequence (fn) ∈ Lipα(X, E) such that
‖f − fn‖X → 0. Since

‖ĥ‖M(Lipα (X,E)) ≤ ‖h‖X

for each h ∈ Lipα(X, E), the sequence (φ(fn)) is Cauchy, so we may define φ̃(f ) =
limn φ(fn). Clearly, φ̃(f ) does not depend on the choice of (fn), and φ̃ is a well-defined
character on C(X, E), extending φ. Thus, by Lemma 1.1, φ = ψ ◦ ex for some ψ ∈
M(E) and some x ∈ X . A similar argument works for lipα(X, E). Thus, Theorem 1.2
applies, and the Shilov boundary of Lipα(X, E)(or lipα(X, E)) is equal to the cartesian
product X × �(E) in the product topology.

(iii) Let X be a compact set in �n and E be a unital commutative Banach algebra,
and consider the algebra P(X, E). The algebra P(X) = P(X, �) has character space
naturally identified with X̂ , the polynomially convex hull of X [2, 6, 11, 13], and P(X, E)
may be regarded as an E-valued function algebra on X̂ . Using this, it is easy to see that
(X̂, E, P(X), P(X, E)) is an admissible quadruple: In fact, each f ∈ P(X, E) is the limit
in norm of a sequence {gn} with each gn of the form

∑mn
j=1 ajpj, where mn ∈ n, aj ∈ E

and pj ∈ P(X) depend on n. Then by a method similar to [10, Proposition 1.5.6] one
sees that P(X, E) = P(X)⊗̌E. Thus, since P(X) = P(X̂) [6, Chapter II, Theorem 1.4],
we have

P(X, E) = P(X)⊗̌E = P(X̂)⊗̌E = P(X̂, E).

We note that in the particular case when X is a compact plane set, X̂ is obtained by
‘filling in the holes’ in X , and �(P(X)) is the topological boundary of X̂ in �. In higher
dimensions, the Shilov boundary �(P(X)) is some closed subset of bdy(X).

By a method similar to [7, Lemma 2], one sees that every character φ on P(X, E)
is of the form φ = ψ ◦ ex for some x ∈ X̂ and some ψ ∈ M(E). Therefore the theorem
applies, and the Shilov boundary of P(X, E) is equal to the cartesian product �(E) ×
�(P(X)).
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(iv) Let X ⊂ � be compact, E be a commutative unital Banach algebra and E∗ be
the dual space of E. The algebra of E-valued analytical functions is defined as follows:

A(X, E) = {f ∈ C(X, E) : � ◦ f ∈ A(X),� ∈ E∗},

where A(X) is the algebra of all continuous functions on X into � which are
holomorphic on the interior of X . It is clear that A(X, E) is a closed subalgebra
of (C(X, E), ‖ · ‖X ). Arens showed [6] that M(A(X)) is naturally identified with X ,
and so one sees at once that (X, E, A(X), A(X, E)) is an admissible quadruple. By a
method similar to the one given in [5, Theorem 2], we can deduce that when E is a
unital Banach algebra then every character φ on A(X, E) is of the form φ = ψ ◦ ex for
some x ∈ X and some ψ ∈ M(E). So the Shilov boundary of A(X, E) is equal to the
cartesian product �(A(X)) × �(E) in the product topology by Theorem 1.2.

(v) Theorem 1.2 also applies to the algebra R(X, E) for any commutative unital
Banach algebra E. The characters on R(X) are the evaluations at the points of the
rationally convex hull X̌ of X , which is the set of points a ∈ �n such that each
polynomial p(z) ∈ �[z] that vanishes at a also vanishes at some point of X . In dimension
n = 1, X̌ = X , but in higher dimensions it may be a larger set. So R(X) is a natural
�-valued function algebra on X̌ .

We claim that every character φ on R(X, E) is of the form φ = ψ ◦ ex, for some
ψ ∈ M(E) and some x ∈ X̌ .

To see this, let φ ∈ M(R(X, E)). The restriction of φ to P(X, E) is a character, so
there exists x0 ∈ X̂ and ψ ∈ M(E) such that φ = ψ ◦ ex0 on P(X, E). Given g = p/q
where p, q ∈ E[z] and q(x) ∈ E−1 for each x ∈ X , we get p = gq, φ(p) = φ(g)φ(q), and
hence (since φ(q) = ψ(q(x0)) 	= 0)

φ(g) = ψ(p(x0))
ψ(q(x0))

= ψ(g(x0)).

Thus, by continuity, φ = ψ ◦ ex0 on all R(X, E). Since R(X)1 ⊆ R(X, E), it follows that
x0 ∈ X̌ (cf. [6, Theorem 5, p. 86]. Thus, the claim holds.

Hence, if X is rationally convex, then (X, E, R(X), R(X, E)) is a natural admissible
quadruple.

There seems no reason to suppose that R(X, E) = R(X̌, E) for general X , except
when E is a uniform algebra. In general, one readily sees that there is a contractive
algebra homomorphism

R(X, E) → C(X̌, C(M(E))),

and that if E is a uniform algebra then this gives an isometric isomorphism from
R(X, E) onto R(X̌, E). We do not, however, know an example in which the restriction
map R(X̌, E) → R(X, E) is not onto.

(vi) The bidisk algebra [2] may (in view of Hartogs’ theorem) be regarded as
B̃ = A(X, A(X)), where X is the closed unit disk in �. The quadruple (X, A(X),A(X),B̃)
is admissible, the theorem applies, and reduces to the classical fact that the Shilov
boundary of B̃ is the torus. More generally, one gets the (known) result that the Shilov
boundary of A(X, A(Y )) is bdyX × bdyY whenever X ⊂ � and Y ⊂ � are compact.

(vii) Let 0 < α < 1. The subalgebra of lipα(X, E), which is the closure of E[z]|X
in Lipα(X, E) norm, where X ⊂ �n, is denoted by Lipα

P(X, E). It is easy to see that
Lipα

P(X, E) is dense in P(X, E). Now by [8, p. 15], M(Lipα
P(X, �)) = X̂ . Thus, if X is
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polynomially convex, then the quadruple (X, E, Lipα
P(X, �), Lipα

P(X, E)) is admissible
and natural.

(viii) Also, for 0 < α < 1, the subalgebra of lipα(X, E), which is the closure of the
algebra of functions of the form p(z)/q(z) in Lipα(X, E), where X ⊂ �n, p(z) ∈ E[z],
q(z) ∈ E[z], and q(x) ∈ E−1 whenever x ∈ X , is denoted by Lipα

R(X, E). It is easy to see
that Lipα

R(X, E) is dense in R(X, E). Now by [8, p. 15], M(Lipα
R(X, �)) = X̌ . Thus, if X

is rationally convex, then the quadruple (X, E, Lipα
R(X, �), Lipα

R(X, E)) is admissible
and natural.

2.2. Peak points. By similar arguments, one obtains the following.

THEOREM 2.3. Let (X, E, B, B̃) be a natural admissible quadruple. Then the set of
peak points of B̃ is equal to the cartesian product S0(B) × S0(E) in the product topology,
that is,

S0(B̃) = S0(B) × S0(E).
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