Summer Meeting hosted by the Irish Section, 16-19 July 2012, Translational nutrition: integrating research, practice and policy

Birth outcomes relative to dietary vitamin D & calcium intake in obese pregnant women

M. S. Charnley¹, J. C. Abayomi¹ and A. Weeks²

¹Faculty of Education, Community and Leisure, Liverpool John Moores University, IM Marsh Campus, Barkhill Road, Liverpool L17 6BD and ²Liverpool Women's Hospital, Crown Street, Liverpool L8 7SS, UK

For individuals with limited exposure to ultra-violet B, a recommended nutrient intake (RNI) of $10\,\mu\text{g}/\text{day}$ of vitamin D is recommended; this includes all pregnant and lactating women⁽¹⁾. Despite this, research suggests a subset of pregnant women are at risk of vitamin D insufficiency due to obesity, darker skin pigmentation and estimated delivery date in spring or summer⁽²⁾. There is no increase in requirements for calcium during pregnancy however a positive maternal calcium balance is dependent on adequate circulating levels of $25(\text{OH})D_3^{(3)}$. Maternal outcomes such as gestational diabetes, pre-eclampsia and increased risk of caesarean section are all associated with low vitamin D status⁽⁴⁾. The aim of this study was to investigate whether dietary intakes of vitamin D and calcium were associated with adverse maternal and birth outcomes. Participants were asked to complete three-day food diaries during each trimester of pregnancy. Data regarding food portion size was verified using a food atlas⁽⁵⁾ and the diaries were then analysed using Microdiet⁽⁶⁾.

Table 1. Mean Vitamin D and calcium intake over 3 trimesters

	Total energy		Vitamin D					Calcium	
	Mean Kcals/d	SD	Mean μg/d	SD	RNI % 10 μg/d	Mean mg/d	SD	RNI % 700mg/d	LRNI % 400mg/d
Visit 1 16–20wks $(n = 93)$	1849	590.7	2.6	2.5	26	875	334.4	125	219
Visit 2 28wks $(n = 99)$	1984	525.6	2.4	2	24	949	356.8	136	237
Visit 3 36wks $(n = 73)$	2066	587.2	2.74	2.5	27	994	423.6	144	252

Data were collected for 140 women with a BMI \geq 35 kg/m² (n = 139), a mean booking-in weight of 110kg (sp 15.5) and mean birth weight of 3.57 kg (sp 0.67). Most women achieved total energy requirements at all 3 visits however there was a wide distribution around the mean with an average minimum intake of 706 kcals for all 3 visits and a maximum intake of 3906 kcals. There was a positive dietary intake for calcium with 73.6% of women achieving RNI and 95.7% achieving LRNI. Dietary intake of vitamin D was low with only 2.2% of women achieving RNI at all 3 visits. Spearman's correlation suggests an association with vitamin D and birth weight (rho = 0.224, p = 0.036) at visit 1. This suggests that vitamin D status in early pregnancy may influence birth weight and that pre-natal supplements may be necessary. Results indicate that further investigation into the quality of maternal diet and pregnancy outcomes is required.

- 1. COMA (1991) Dietary Reference Values for Food, Energy & Nutrients for the UK. HMSO: London.
- 2. Dror DK & Allen LH (2010) Vitamin D inadequacy in pregnancy: biology, outcomes, and interventions Nutrition Review 68(8): 465-477.
- 3. Philip W & James T (2008) 22nd Marabou Symposium: the changing faces of vitamin D Nutrition Reviews 66, S213–S217.
- 4. Hollis BW & Wagner CL (2006) Nutritional vitamin D status during pregnancy: reasons for concern CMAJ 174(9): 1287-1290.
- 5. Nelson M, Atkinson M & Meyer J (2002) A photographic atlas of food portion sizes FSA.