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1. Introduction
Let B be a complex Banach algebra with an identity 1 and an involution

x-»x*. Kadison (1) has shown that, if B is a 2?*-algebra, [the set of extreme
points of its unit ball coincides with the set (£ of elements x of B for which

(l-x*x)B(l-xx*) = (0). (1)

This elegant result is very useful for 5*-algebra theory; see (1) and (3).
In this paper we examine the set (£ for algebras B which are not necessarily
B*-algebras. It is shown that the spectral radius of each x e (5 is at least one.
In Section 4 we consider the set (£ for the special case where B is the algebra
of all bounded linear operators on the infinite-dimensional Hilbert space H.
Here ® is the set of semi-unitary elements T(TT* = 1 or T*T = 1). For such
T we show that there exists a complex number b, \ b | = 1, such that b—T
is not a semi-Fredholm operator on H. (For this notion see Section 4 or (2)).
This then says that b lies in the essential spectrum of T when we use the rather
restrictive definition of essential spectrum due to Kato (2, p. 243).

2. Algebraic considerations
We begin with some pure ring theory. Let A be a ring with identity 1 and

an involution x->x*. Let (E(/4) denote the set x e A for which

(l-x*x)A(l-xx*) = (0).

For x e (E(J4) we have 1 = xx* ° x*x = x*x ° xx* where we use the familiar
notation (4) that u° v = u+v—uv.

Proposition 1. Let x e &(A). Then x" e <&(A)for n = 1, 2, ....

Proof. Let x e (£(A). The following computations use ideas of Miles
(3, p. 631).

First we show that
(1 -(x*yx")A(l -xx*) = (0) (2)

for n = 1, 2, .... By hypothesis, this is valid for n — 1 and we suppose it is true
for the integer n. Note that

1 - (x*)n+V+1 = 1 - (x*)V + (x*)n(l - x*x)xT. (3)
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Set w = (\-{x*)"^1x"*l)y(\-xx*). Using (3), we write w = a+b where

a = (l-(x*)nx")y(l-xx*) = 0,

b = (x*)"(l-x*x)xny(l-xx*) = 0

since x e (E(/4). Likewise the relation

leads to the conclusion that

(1 -x*x)A(\ -*"(*•)") = (0) (5)
for« = 1,2, ....

Now we show that x" e (£(A) by induction. Suppose this holds for exponents
k = 1, . . . ,M. Set

w = ( l - ( x * ) n + V
Using (3) and (4), we rewrite w as the sum of four terms each of which must
be zero by (2) and (5) and the induction hypothesis. This establishes the
desired result. In particular, x e G(/4) is never a nilpotent element of A.

For further results we assume that the involution is proper (x*x = 0
implies x = 0). One then readily verifies that the four statements (a) x*x is
an idempotent, (b) xx* is an idempotent, (c) x = xx*x, (d) x* = x*xx* are
equivalent. We then call x a partial isometry. Arguments of Miles (3, p. 630)
show that any x e £(^4) is a partial isometry. These results can fail if the in-
volution is not proper. For an example let A be the ring of all numbers of
the form a+bi, i2 = —1, under the usual operations, where a and b lie in
the ring of integers modulo 16. For* = a+bt,setx* = a — bi. Then* = 2 + /
lies in ($z(A) but xx* is not an idempotent.

Proposition 2. Suppose that the involution in A is proper. If x" e d(A)
for some integer n and x is a partial isometry, then x e (E(/4).

Proof. Suppose that x" e (&(A) and x is a partial isometry. For each
ye A v/e can, using (1) with x" instead of x, obtain an expression for y as

y = (x*yxny+yxn(x*)n-(x*)axnyxn(x*y. (6)

We use (6) in (1 — x*x)y(l — xx*) and the facts x = xx*x, x* = x*xx* to see
that (l-x*x)y(l-xx*) = 0.

We use the following language customary in the theory of von Neumann
algebras. A projection is a self-adjoint idempotent. A projection p is called
abelian if pAp is an abelian ring andjis called minimal if pA is a minimal right
ideal.

Proposition 3. Suppose that the involution in A is proper. Let xe A be a
partial isometry. Then x*x is an abelian (minimal) projection if and only ifxx*
is an abelian {minimal) projection.

Proof. Let p = x*x, q = xx*. Suppose that pAp is commutative and
let y, ze A. Then

px*yxpx*zxp = px*zxpx*yxp. (7)
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But px* = x*xx* = x* and xpx* = q. Multiplying (7) on the left by x and
on the right by x* shows that qyqzq = qzqyq or q is an abelian projection.

Suppose that p is a minimal projection. By algebraic theory, either
xpA = (0) or xpA is a minimal right ideal. But xpx* = q •£ 0. Then

(0) ^ qAc xpA.

Proposition 4. Suppose that the involution in A is proper. Let x e &(A).
Suppose that x*x is an abelian (minimal) projection. Then A is a commutative
ring (division ring).

Proof. Let p = x*x, q = xx*. Suppose that p is an abelian projection.
Then

pqpxp = pxpqp. (8)
But xp = x = qx. Moreover, since x e (£(A), we have, as noted earlier,
p°q=q°p=l. In particular, pq = qp. Then

pqpxp = qpxp = qpx = pqx = px.

On the other hand, pxpqp — pxpq = pxq. Then (8) yields px(\-q) = 0. We
combine this with (1 — p)x(l — q) = 0 to obtain x(l—q) = 0. This gives
p(\—q) = x*x(l— q) = 0. Since p+q—pq — 1 we get q = 1. But, by Pro-
position 3, q is an abelian projection. Hence A is abelian.

Suppose now that p is a minimal projection. First we show that pq = 0 is
impossible. For suppose otherwise. Then p+q = 1 and x(p+q) = x.
Consequently, xq = 0 = x2(x*)2. Since the involution is proper, x1 = 0.
This contradicts Proposition 1. This implies that pq is a non-zero projection.
Since pqA = pA, we may invoke a lemma of Rickart (4, p. 261) to see that
p = pq. Via Proposition 3 we also get q = qp. Then p = q = 1. Since 1
is a minimal projection, A is a division ring.

3. The set (£ for a Banach algebra B
For x e B, a Banach algebra, we use the notation of (4), v(x) = lim || x" ||1/n

where v(x) is also the spectral radius of x. We assume that B has an identity 1
and an involution x-*x* but do not suppose that the involution is proper.

Theorem 1. For each x 6 (£ we have v(x) ^ 1. If B is a B*-algebra, then
v(x) = 1 for x e (£.

Proof. Let x e (£. Proposition 1 gives x" e (£, n = 1, 2, 3, .... This implies
that

(\-(xn)*xn)(\-xn(xn)*) = 0.
Hence,for« = 1,2,3, ..., 1 belongs to the spectrum of (x")*x" or x"(x")*, leading
to the conclusion that

» II ^ IK**)" II II x" ||, ( « = 1, 2 , 3 , . . . ) .
Therefore 1 ^ V(JC*)V(X) = v(x)2.
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If B is a 5*-algebra, Proposition 1 and the cited result of Kadison (1)
make || x" || = 1, for x e <£, n = 1, 2, 3, .... Hence v(x) = 1.

We show, by example, that one can have a Banach algebra B where V(JC)
is as large as desired for a suitable x e (£. Let n be a positive integer, and let Y
be the subset of the real line, Y = [0, 1] u {2, 3} with the usual topology. Let
C( Y) be the Banach algebra of all complex continuous functions on Y with
the sup norm. We define an involution x-*x* on Yby the rule that x*(t) = x(t)
if t e[0, 1], x*(2) = x(3) and x#(3) = x(2). One sees that the function
x(t) = l,te [0, 1], x(2) = w, x(3) = n'1 lies in G and v(x) = n.

Corollary 1. Let K be a proper two-sided closed *'-ideal of B. Then

dist ((£,#) ^ 1.

Proof. Let n be the natural homomorphism of B onto B/K and let x e (£.
Clearly T:(X) e (£(5/^) and, by Theorem 1, dist (x, K) = || n(x)\\ ^ V(TI(X)) £ 1.

Corollary 2. £e? 2?i be a B*-algebra with an identity and T be an algebraic
*-homomorphism of B% onto a dense subset of B. Then v(T(x)) = 1 and
\\T(x)\\ ^ \\x \\ for each xe^B,).

Proof. In this situation, T(x) 6 G(5). Then, by Theorem 1,

v(x) ^ v(r(») ^ 1 = v(x) = || x ||.

Since we also have || T(x) || ^ v(Z'(x)), the desired relations follow.

4. The set (£ for operator algebras
First we consider the algebra B(X) of all bounded linear operators on a

complex Banach space X and the closed two-sided ideal K(X) of compact
operators. Let R(T) denote the range of Te B(X). We define nul (T) as the
dimension of T~\0) and def (T) as the dimension of X/R(T) (these are called
oo if they are not finite). As usual (2) T is called semi-Fredholm if R(T) is closed
and either nul (T)< oo or def (T) < oo. If R(T) is closed and both nul (T)< oo,
def(r)<oo, 71 is said to be a Fredholm operator. For a Fredholm operator
we take as its index, ind (T) = nul (T)-def (T).

Let o- denote the natural homomorphism of B{X) onto B(X)/K(X). Follow-
ing (2), p. 242, we let A = A(T) denote the semi-Fredholm region for Te B(X).
This is the set of complex numbers a for which a—T is a semi-Fredholm
operator. Also AF denotes the subset consisting of all a for which a—T is a
Fredholm operator. Then AF can also be described as the a for which a(a—T)
has a two-sided inverse in B(X)/K(X); see (5), p. 617. We are also concerned
with the essential spectrum Ze = Ee(T) in the sense of (2), p. 243, which is the
complement of A(T). That AFv_jSe does not in general exhaust the complex
plane adds interest to Theorem 2. We use the notation

,- = r(T) = lim \\(o(T)T W1'".

Theorem 2. Let T e B(X) where X is infinite-dimensional. Then each
complex number a, \ a \ = r, lies in AFuEe. At least one such a lies in Ee.
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Proof. Let | a \ = r and suppose that a $ AF. First we show that a—T
cannot have a closed range together with mil (a—T)<oo. For suppose other-
wise. As a $ AF, def (a—T) = oo. Let xu ..., xn be a (finite) basis for the
null space of a-T. There exist yu ..., yn in X, linearly independent modulo
R(a—T). Choose x* e X*,j = 1, ..., n, such that xj(xk) = 5-Jk,j, k = 1, ..., n
and set

K(x)= t xj{x)yj.
; = i - • • - • . - • '

Then F(^) = >>,,./ = 1, ..., « and VeK(x).
We claim that a—T—V is one-to-one. For suppose V(z) = (a—T)(z).

Then (a—T)(z) is a linear combination of yu ...,yn so that (a—T)(z) = 6 = V(z).
Then z can be written as z = blx1 + ... + bnxn and K(z) = b1y1 + ...+bnyn = 0.
Thus each bj = 0 and z = 0.

It is clear that R(a-T-V)cR(a-T)@R(V). To see the reverse set in-
equality, suppose that u = (a-T)(x) and « = V(y). Let

n n .

i = 1 i = 1 - - - '

Then an easy computation shows that

(a-T-V)(z-w) = u + v.
Hence ^ ( a - T - F ) is closed, R{a-T-V) ¥= X. By (5), p. 618, there exists
E > 0 such that, for | X—a |<£, X—T—V is a one-to-one bicontinuous linear
mapping of X onto a proper closed subspace of X. This is the case for a
special choice of a complex number b, | 6 | > | a | , | 6 - a | < e . Since \b\>r,
b—T is invertible in B(X)/K(X) and b—T— V is a Fredholm operator. In view
of (5), Lemma 2.4, i n d ( 6 - r - F ) = 0. But mil (2> - T - F ) = 0 so that
def (b—T— V) = 0. But then R(b-T- V) = w, which is a contradiction.

We show next that a-T cannot be semi-Fredholm with nul(a-T) = oo
and def (a—T)< oo. For suppose otherwise. Then a- T* is a semi-Fredholm
operator on the Banach space X*, nul (a-r*)<oo, def (a-T*) = oo, whereas
X—T* is a Fredholm operator if | X \>\ a |. The above reasoning will again
lead to a contradiction.

Finally not all complex numbers a, \ a | = r can be in AF. For suppose
otherwise. First consider the case r = 0. Then the spectrum of a(T) in

B(X)IK(X)

would be void. For the case r>0, we use the fact that AF is open. Note that
X e AF if | X | >r. Then there exists s<r such that X e AF if | A | >s. But then
a(X-T)is invertible in B(X)/K(X)for all | X \>s. This makes r<s, which is a
contradiction.

Corollary 3. Let H be an infinite-dimensional Hilbert space and T be a semi-
unitary element of B(H). Then there exists a complex number b, \ b \ = 1, which
lies in l.e(T).

E.M.S.—Q
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Proof. Consider again the natural homomorphism a of B(H) onto

B(H)/K(H).

Then a(T) is a semi-unitary element of the quotient algebra and r(T) = 1 in
the notation of Theorem 2. By that result, the desired conclusion follows.
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