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1. Introduction

Let B be a complex Banach algebra with an identity 1 and an involution
x—x*. Kadison (1) has shown that, if B is a B*-algebra, the set of extreme
points of its unit ball coincides with the set € of elements x of B for which

(1—x*x)B(1 —xx*) = (0). )

This elegant result is very useful for B*-algebra theory; see (1) and (3).
In this paper we examine the set € for algebras B which are not necessarily
B*-algebras. It is shown that the spectral radius of each x € € is at least one.
In Section 4 we consider the set € for the special case where B is the algebra
of all bounded linear operators on the infinite-dimensional Hilbert space H.
Here € is the set of semi-unitary elements T(TT* =1 or T*T'=1). For such
T we show that there exists a complex number b, | | = 1, such that b—T
is not a semi-Fredholm operator on H. (For this notion see Section 4 or (2)).
This then says that b lies in the essential spectrum of T when we use the rather
restrictive definition of essential spectrum due to Kato (2, p. 243).

2. Algebraic considerations
We begin with some pure ring theory. Let A be a ring with identity 1 and
an involution x—x*. Let §(A4) denote the set x € 4 for which
(1—x*x)A(1 —xx*) = (0).
For x e §(4) we have 1 = xx* o x*x = x*x ° xx* where we use the familiar
notation (4) that uc v = u+v—uw,

Proposition 1. Let x € €(4). Then x"€ G(4) forn =1,2, ...

Proof. Let xe §(4). The following computations use ideas of Miles
(3, p. 631).
First we show that

(1~ (*)"xA(l ~ xx*) = (0) #))
forn = 1,2, .... By hypothesis, this is valid for n = 1 and we suppose it is true
for the integer n. Note that

1= (x*)" 1+ = 1 (*)"%" + (x*)"(1 — x*x)x". 3)
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Set w = (1—(x*)"*1x"*1)p(1 — xx*). Using (3), we write w = a+b where
a=(1-0x*)"x"Y)y(1—xx*)=0,
b=(x*)(1-x*))x"y(1—xx*) =0

since x € §(4). Likewise the relation

I—x" 1(x*)" ! = 1 —x"(x*)" 4+ x"(1 — xx*)(x*)" (C))
leads to the conclusion that
(1 =x*x)A(1—x"(x*)") = (0) (5)

forn=1,2,....

Now we show that x” € €(4) by induction. Suppose this holds for exponents

k=1,..,n Set

w= (1 _(x*)n+ lxn+1)y(l _ xx+1(x*)n+1)'
Using (3) and (4), we rewrite w as the sum of four terms each of which must
be zero by (2) and (5) and the induction hypothesis. This establishes the
desired result. In particular, x € €(A) is never a nilpotent element of A.

For further results we assume that the involution is proper (x*x =0
implies x = 0). One then readily verifies that the four statements (a) x*x is
an idempotent, () xx* is an idempotent, (¢) x = xx*x, (d) x* = x*xx* are
equivalent. We then call x a partial isometry. Arguments of Miles (3, p. 630)
show that any x € (A4) is a partial isometry. These results can fail if the in-
volution is not proper. For an example let A4 be the ring of all numbers of
the form a+bi, i2 = —1, under the usual operations, where a and b lie in
the ring of integers modulo 16. For x = a+bi,setx* = a—bi. Thenx = 2+
lies in €(A) but xx* is not an idempotent.

Proposition 2. Suppose that the involution in A is proper. If x" e G(A)
for some integer n and x is a partial isometry, then x € €(A).

Proof. Suppose that x"e €(4) and x is a partial isometry. For each
y € A we can, using (1) with x" instead of x, obtain an expression for y as
Y = (*)xy+yx"(x*)" = (x*F ) xyx"(x* )" - (6)
We use (6) in (1—-x*x)y(1 —xx*) and the facts x = xx*x, x* = x*xx* to see
that (1 —x*x)y(1—xx*) = 0.
We use the following language customary in the theory of von Neumann
algebras. A projection is a self-adjoint idempotent. A projection p is called

abelian if pAp is an abelian ring and [is called zninimal if pA is a minimal right
ideal.

Proposition 3. Suppose that the involution in A is proper. Let xe A be a
partial isometry. Then x*x is an abelian (minimal) projection if and only if xx*
is an abelian (minimal) projection.

Proof. Let p = x*x, ¢ = xx*. Suppose that p4p is commutative and
let y, ze A. Then
px*yxpx*zxp = px*zxpx*yxp. @)
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But px* = x*xx* = x* and xpx* = ¢q. Multiplying (7) on the left by x and
on the right by x* shows that gyqzq = gzgyq or q is an abelian projection.

Suppose that p is a minimal projection. By algebraic theory, either
xpA = (0) or xpA is a minimal right ideal. But xpx* = g # 0. Then

(0) # gAcxpA.

Proposition 4. Suppose that the involution in A is proper. Let x e €(A).
Suppose that x*x is an abelian (minimal) projection. Then A is a commutative
ring (division ring).

Proof. Let p = x*x, ¢ = xx*. Suppose that p is an abelian projection.
Then

Pqpxp = pxpqp. ®)
But xp = x = gx. Moreover, since x € &(4), we have, as noted earlier,
p°q=gq°p=1. In particular, pg = gp. Then
Papxp = gpxp = gpx = pgx = px.
On the other hand, pxpgp = pxpg = pxq. Then (8) yields px(1—¢q) = 0. We
combine this with (1—p)x(1—¢) =0 to obtain x(1—¢q) = 0. This gives
p(l—g) = x*x(1—q) = 0. Since p+g—pg = 1 we get ¢ = 1. But, by Pro-
position 3, g is an abelian projection. Hence A is abelian.

Suppose now that p is a minimal projection. First we show that pg = O is
impossible. For suppose otherwise. Then p+¢g =1 and x(p+q) = x.
Consequently, xg = 0 = x*(x*)2. Since the involution is proper, x> = 0.
This contradicts Proposition 1. This implies that pg is a non-zero projection.
Since pgd = pA, we may invoke a lemma of Rickart (4, p. 261) to see that
p = pg. Via Proposition 3 we also get g = gp. Then p =g = 1. - Since 1
is a minimal projection, A4 is a division ring.

3. The set € for a Banach algebra B

For x € B, a Banach algebra, we use the notation of (4), v(x) = lim || x" ||}/"
where v(x) is also the spectral radius of x. 'We assume that B has an identity 1
and an involution x—x* but do not suppose that the involution is proper.

Theorem 1. For each x € € we have v(x) = 1. If B is a B*-algebra, then
v(x) =1 for x e €.

Proof. Let xe € Proposition 1 gives x"e €, n = 1,2, 3, .... This implies
that
A-0G")*x")(1 —x"(x")*) = 0.

Hence, forn = 1,2, 3, ..., 1 belongs to the spectrum of (x")*x" or x"(x")*, leading
to the conclusion that

1 < wW((x")*x") = v(x"(x")*)

SIS I 1" 11", (r=1,2,3,..).
Therefore 1 < v(x*)v(x) = v(x)%.
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If B is a B*-algebra, Proposition 1 and the cited result of Kadison (1)
make | X" || =1, forxe € n=1,23,.... Hencev(x)=1. '

We show, by example, that one can have a Banach algebra B where v(x)
is as large as desired for a suitable x € & Let n be a positive integer, and let ¥
be the subset of the real line, ¥ = [0, 1]Ju{2, 3} with the usual topology. Let
C(Y) be the Banach algebra of all complex continuous functions on Y with
the sup norm. We define an involution x—x* on Y by the rule that x*(¢) = x(?)
if ze[0, 1], x*(2) = x(3) and x*(3) = x(2). One sees that the function
x(t) = 1,te[0, 1], x(2) = n, x(3) = n™! lies in € and v(x) = n.

Corollary 1. Let K be a proper two-sided closed *-ideal of B. Then
dist (€, X) = 1.

Proof. Let n be the natural homomorphism of B onto B/K and let x € €.
Clearly n(x) € €(B/K) and, by Theorem 1, dist (x, K) = || a(x)|] = v(n(x)) = 1.

Corollary 2. Let B, be a B*-algebra with an identity and T be an algebraic
*-homomorphism of B, onto a dense subset of B. Then v(T(x)) =1 and
I TG 2 | x || for each x € C(B,).

Proof. In this situation, 7(x) € &B). Then, by Theorem 1,
vx) 2 vT(x) 21 =vx)=|x]|.

Since we also have | T(x)| = v(Z(x)), the desired relations follow.

4. The set € for operator algebras

First we consider the algebra B(X) of all bounded linear operators on a
complex Banach space X and the closed two-sided ideal K(X) of compact
operators. Let R(T) denote the range of Te B(X). We define nul (T') as the
dimension of T71(0) and def (T") as the dimension of X/R(T) (these are called
oo if they are not finite). As usual(2) T is called semi-Fredholm if R(T) is closed
and either nul (T)< oo or def (T) <oo. If R(T)is closed and both nul (T") < o0,
def (T)< oo, T is said to be a Fredholm operator. For a Fredholm operator
we take as its index, ind () = nul (T)—def (T).

Let ¢ denote the natural homomorphism of B(X) onto B(X)/K(X). Follow-
ing (2), p. 242, we let A = A(T) denote the semi-Fredholm region for T € B(X).
This is the set of complex numbers a for which a—T is a semi-Fredholm
operator. Also A denotes the subset consisting of all a for which a—T is a
Fredholm operator. Then Ay can also be described as the a for which e(a—T)
has a two-sided inverse in B(X)/K(X); see (5), p. 617. We are also concerned
with the essential spectrum X, = I (T) in the sense of (2), p. 243, which is the
complement of A(7). That ApUZ, does not in general exhaust the complex
plane adds interest to Theorem 2. We use the notation

r = r(T) = lim |(a(T))" """

Theorem 2. Let T e B(X) where X is infinite-dimensional. Then each
complex number a, | a | = r, lies in ApUX,. At least one such a lies in X,.
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Proof. Let [a| = r and suppose that a ¢ Ar. First- we show that a—T
cannot have a closed range together with nul (a—T)<oo. For suppose other-
wise. As a ¢ Ap, def(@a—T) = 0. Let x4, ..., X, be a (finite) basis for the
null space of a—T. There exist y,, ..., y, in X, linearly independent modulo
R(a—T). Choose xTe X* j=1, ..., n,such that xJ(x,) =83, , k=1,..,n
and set

V(x) = le’;(x)yj.
= .
Then V(x;)) = y;,j =1, ..., n and Ve K(x).

‘We claim that a—T—V is one-to-one. For suppose V(z).= (a—T)(2).
Then (a—T)(z) is a linear combination of y,, ..., y,so that (a—T)(z) = 0 = V(z)
Then z can be written as z = b,x, +...+b,x, and V(z) = by, +.. +b,,y,, = 0.
Thus each b; = 0 and z = 0.

It is clear that R(a— T—V)cR(a T)®R(V). To see the reverse set in-
equality, suppose that u = (¢—T)(x) and v = V(y). Let

= ¥ 5o z=x= 3 i,

Then an easy computation shows that
(@a—T—-V)(z—w) = u+v.

Hence R(a—T—-V) is closed, Rla—T—-V) # X. By (5), p. 618, there exists
£>0 such that, for | A—al<s, A—-T—V is a one-to-one bicontinuous linear
mapping of X onto a proper closed subspace of X. This is the case for a
special choice of a complex number b, |b|>|a|, | b—a|<e. Since |b|>r,
b—T is invertible in B(X)/K(X) and b—T—V is a Fredholm operator. In view
of (5), Lemma 24, ind(J—~T-¥%)=0. But nul(b—T—V)=0 so that
def (b—T—V) = 0. But then R(b—T—V) = w, which is a contradiction.

We show next that a—T cannot be semi-Fredholm with nul (a—T) = o
and def (a—T)<o. For suppose otherwise. Then ¢—T* is a semi-Fredholm
operator on the Banach space X*, nul (a—T%*)< o0, def (a—T*) = oo, whereas
A—T* is a Fredholm operator if | A|>}a]. The above reasoning will again
lead to a contradiction.

Finally not all complex numbers a, |a| = r can be in Ag. For suppose
otherwise. First consider the case r = 0. Then the spectrum of ¢(7T) in

B(X)/K(X)

would be void. For the case r>0, we use the fact that Ay is open. Note that
A€ Agif | A|>r. Then there exists s<r such that A € Ag if | A |>s. But then
o(A—T) s invertible in B(X)/K(X) for all | A |>s. This makes r<s, which is a
contradiction,

Corollary 3. Let H be an infinite-dimensional Hilbert space and T be a semi-
unitary element of B(H). Then there exists a complex number b, | b| = 1, which
lies in (T).

E.M.S.—Q
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Proof. Consider again the natural homomorphism ¢ of B(H) onto

B(H)/K(H).
Then o(T) is a semi-unitary element of the quotient algebra and »(T) =1 in
the notation of Theorem 2. By that result, the desired conclusion follows.
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