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Abstract

This paper gives an approximate solution to the Wiener-Hopf integral equation for filtering
fractional Riesz-Bessel motion. This is obtained by showing that the corresponding covari-
ance operator of the integral equation is a continuous isomorphism between appropriate
fractional Sobolev spaces. The proof relies on properties of the Riesz and Bessel potentials
and the theory of fractional Sobolev spaces.

1. Introduction

Let X (t) be a real-valued random field of the form

X(t) = S(t) + N(t), teR", (1.1)

where S(t) is the useful signal and N(t) is noise. We shall assume that E(S(t)) = 0,
E(N(t)) = 0 and the covariance functions

R(s, t) = E(X(s)X(t)), g(s, t) = E(X(s)S(t)) (1.2)

are known, where E denotes mathematical expectation. Given that X (t) is observed
in a bounded domain T of K", we want to derive the best linear estimate of S(t) for t in
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the closure of T in the mean-square sense. This is obtained by solving the variational
problem

I//h(s, t)X(t)dt-S(s)

It is known that a necessary condition for (1.3) to hold is

R(s,t)h(z,t)dt = g(s,z), s €T

2

= min, s €T. (1.3)

L
(Ramm [12]). Since z appears as a parameter in this equation, we may study the
equation

/ R(s,
JT

t)h(t)dt = g(s), seT. (1.4)

Equation (1.4) is known as the Wiener-Hopf integral equation for filtering random
fields. This paper will study this equation for a class of covariance kernels defined
below.

Existing work on (1.4) commonly assumes that the random field X(t) displays a
short-range dependence behaviour (for example, the covariance kernel R(s,t) is the
Fourier transform of a rational spectrum). On the other hand, recent studies have
indicated that self-similarity (SS) / long-range dependence (LRD) and intermittency
are the central issues in modelling observed data in a large number of fields including
hydrology, geophysics, air pollution, image analysis, economics and finance (see, for
example, Beran [2]; Peters [10]; Anh and Lunney [1]). A key example of an SS/LRD
process is fractional Brownian motion (fBm) BH with Hurst index H, 0 < H < 1
(Mandelbrot and Van Ness [9]). In this paper, we shall consider an extension of the
class of fBm, namely, the class of fractional Riesz-Bessel motions (fRBm), which
exhibit possible LRD and intermittency. The members of this class have a spectral
density of the form

The interpretation of the form (1.5) and the bounds on y, a are verified in Section 2.
It is noted that the exponent y determines the degree of SS and possible LRD, while
the exponent a indicates the extent of intermittency of the random field. When a = 0,
the spectral density (1.5) reduces to that of fBm.

This paper will obtain an approximate solution to (1.4) for the class of fRBm. This
in fact will give an extension to the problem considered in Chapter 1 (Theorem 13
of Subsection 3, pp. 28-30) of [11], where / (A.) ~ A(l + X2)~fi as |A.| -> oo, A =
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constant > 0, X e R and P > 0 is an integer. When /J is assumed to be an integer, an
approximation based on the rational form of the spectrum and the theory of Sobolev
spaces of integer order can be applied, as detailed in [11]. On the other hand, the
exponents y and a of (1.5) are positive real numbers, hence Ramm's results are
not directly applicable. Our approach is based on the theory of Sobolev spaces of
fractional order and, in particular, the theory of Riesz and Bessel potentials.

The necessary results will be developed in Section 2. In particular, we shall establish
that the covariance operator corresponding to (1.5) is a continuous isomorphism
between the fractional Sobolev spaces H~(a+y) (T)andlF+y(T) (defined in Section 2).
This key result provides a solution method for problem (1.4). Its proof is given in
Section 3. Section 4 will outline an approximate solution to (1.4) by a least squares
method. Some comments on its implementation will then be given.

2. The covariance operator

In this section, we obtain the covariance operator corresponding to (1.5) on appro-
priate Sobolev spaces. These spaces are constructed from the spaces of C°°-functions
with compact support in R", @(W) and the space of C°°-functions with rapid decay at
infinity, y(R"). The duals of these spaces are respectively the space of distributions,
@'(W), and the space of tempered distributions, y'(R").

DEFINITION 2.1. For s e R, H*(R") is the space of tempered distributions u such
that

In this space, we use the inner product

( « , « ) , = f (l + |£|2)'«($

with associated norm
1/2a

We shall consider the case p = 2, that is, H%(W) = Hs(Rn).
The definition of fractional Sobolev spaces can also be given in terms of Bessel

potentials and their inverse operators (see, for example, Stein [14]). This approach
plays a key role in our work. Let / denotes the identity operator and A the Laplacian
operator. The integral operator

= U- A)-a/2
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for a e E + is called the Bessel potential of order a, whose kernel /„ is given by

/ (Y\ — l L _ f ~-x\*\2/s -S/4JT (-n+o)/2 ds

s

The following proposition gives some fundamental properties of Bessel potentials.

PROPOSITION 2.1. For each a e R+, Ia(x) e L'(K") and its Fourier transform is

7B(A.) = (2nYnl2 (1 + |A|2)""/2, keW. (2.1)

For f e LP(W), 1 < p < oo,

(the convolution ofla andf) and

Ia*Ip = I(a+p).

Therefore

Jf
a-J

!
fi= Aa+p), a > 0, /S > 0.

On the other hand, the inverse of' Jfa is the operator ̂ _a = (I — A)a/2,for a > 0.

PROOF. See [14, pp. 130-135].

The potential spaces are defined in terms of Bessel potentials as

(Stein [14]). These spaces coincide with the spaces Hs
p(W), s € D&+, given in

Definition 2.1.
The definition of Sobolev spaces of fractional or integer order can also be given

for functions defined on an open C°°-bounded domain satisfying certain regularity
conditions.

DEFINITION 2.2. Let T be an open C°°-bounded domain in R". Let s € K and
1 < p < oo. We define

TTp(J) = {/ 6 H;(R"); supp/ C T).

Again, we shall consider the case p = 2, that is, HS
2{T) = H\T).

We next introduce the definition of subspaces of distributions obtained as restric-
tions of tempered distributions belonging to the spaces HS(R"), s € OL
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DEFINITION 2.3. Let T be an open C00-bounded domain in W. For s 6 I , we
define

HS(T) = {ue &{J)\ 3 U € /*'(R") with u = UT)

where UT denotes the restriction of U to T. With the quotient norm

IMI«.(D=

is a Hilbert space (Dautray and Lions [3, p. 118]).

The spaces given by Definitions 2.2 and 2.3 are related by duality (see Triebel [15,
p. 332]), that is, [7f (7*)]* = H~S(T), s e R+> where H* is the dual space of the
Hilbert space H. In the following proposition, we show the relationship between
an element u € H\T), S e R+ (respectively, / 6 H~S(J), s € K+), and its dual
u* e H~S(J) (respectively, / * € H\T), S € K+), via Bessel potentials (see [3] for
the integer case).

PROPOSITION 2.2. The dual of~Hs(T), the space H~S{T), s € R+, is algebraically
and topologically equivalent to the space ^siH (T)). Also the dual of H~S(T),
the space H (T), s € R+, is algebraically and topologically equivalent to the space

PROOF. See Ruiz-Medina et al. [13].

It can also be proved that the quotient space HS(T), s € K, can be identified with the
orthogonal complement in Hs(Rn) of the class of distributions u e Hs(U.n) c &'(W)
whose restriction to T, uT, is the null distribution in @'(T). Therefore, in the following
development, we consider HS(T) as a subspace of //J(K") and we also have the
following inclusions for Sobolev spaces defined on an open C00-bounded domain
T c K".

For Si > s2 > 0,

C . . . C L 2 ( T )

c • •. c H~S2(T) c H~S'(T) c 9\T). (2.2)

In the development of this paper, the theory of Riesz potentials also plays a key
role. We recall that the Riesz potential is defined by ^Y = (—A)~y/2, 0 < y < n.
Then, for/ €

- y\r-y\r-f(y)dy = (Jy *f)(x),
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where

r(n/2-y/2)
and

U\Y-n
J' (/) = ill

8(Y)

is the Riesz kernel, whose Fourier transform is

?y(.k) = (27zy/2\X\-y, U K " (2.3)

(Stein [14, p. 117]; Donoghue [4, p. 292]).
We now define the random field which is characterised by the spectral density (1.5)

and determine its covariance operator.
Let (fi, &/, P) be a complete probability space and let Jf 2(Q, &/, P) be the Hilbert

space of real-valued zero-mean random variables defined on (Q, #/, P) with finite
second-order moments and inner product defined by

(X, Y)*Hn) = E[XY], X,Ye &2(n, */, P ) .

DEFINITION 2.4. For a e Q, a random function Xa(-) from Ua = 1T"(T) into
J^f2(f2, s/, P) is said to be an a-generalised random field (a-GRF) if it is linear and
continuous in the mean-square sense with respect to the Ua -topology.

We will denote by H(Xa) the closed span of {Xa((p) : <p e Ua}, and by Jif(Xa)
the closed span of {Ba((f>, •) = E[Xa((j))Xa(-)] : <j> e [/„}, which is the reproducing
kernel Hilbert space (RKHS) of Xa. The topologies in these spaces are defined from

The following concept of duality relative to a fractional Sobolev space Ua, a € Q,
plays a key role in a study of a-GRFs.

DEFINITION 2.5. For a € Q, we say that an a-GRF Xa : [£/„]* -*• ^f2(Q,si/, P)
is the dual relative to Ua (or a-dual) of the a-GRF Xa : Ua -> Sf2(Q, &/, P) if

(i) H(Xa) = H(Xa); and
(ii) (X(<P), X(g))Hm = (0, g')^, for <f> e Ua and g e [£/„]*, with g* being the

dual element of g with respect to the Ua -topology.

Conversely, the dual of Xa relative to [Ua]* is the GRF Xa.

In a parallel way to the case of GRF Xa, we consider for its a-dual GRF Xa the
definition of the spaces H(Xa) and JV(Xa) as the closed spans of

{Xa(g) : g 6 [£/„]*} and {Ba(g, •) = E[Xa(g)Xa(-)] : g e [Ua]*}
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respectively in the _Sf2(£2)-topology.
The existence of the /J-dual GRF Xfi, for some /? > a, allows us to derive the

covariance factorisation of Xa on the space Up, where the dual GRF exists (Ruiz-
Medina et al. [13]). We denote by Xs the a-dual GRF of Xa with a > a being the
minimum fractional order for which the dual GRF of Xa relative to Up with fi > a
exists. We call this order a the minimum fractional duality order of Xa.

This covariance factorisation is the basis for an abstract representation of Xs in
terms of generalised white noise.

DEFINITION 2.6. A generalised random field e( •) defined on a Hilbert space
(H, (•, • )H) is called a generalised white noise (GWN) relative to H if

(s(u), e(v))Hie) = <«, v)H VM, v e H.

DEFINITION 2.7. A generalised random field X defined on a Hilbert space
(H, (• ,) / /) is said to have a weak-sense abstract representation if there exists an
isomorphism L : H —* H such that

(XL(u),XL(v))HiX) = (u,v)H V « , u € / / ,

that is, if e = XL is a GWN relative to H. This abstract representation is written as

X(Lu) = £(«) VM € H.

PROPOSITION 2.3. Assuming the existence of the a-dual GRF Xs of the a-GRF Xa,
with a being the minimum fractional duality order of Xa, the restriction Xs to Us
ofXa has a weak-sense abstract representation, which is unique except for isometric
isomorphisms.

PROOF. See Ruiz-Medina et al. [13].

The above abstract representation is written as

X3(L<t>) = £5(</)) V0 e Us. (2.4)

Then

(Xs(L<t>), Xs(Lrlr))H(Xs) = (e3(<p), es^))H(Xs) = (0, V)tfc V0, f e Us- (2.5)

Since

V0, f e Us,

where ^s is the inverse of the Bessel potential ^s defined earlier, we also obtain the
following interpretation of the representation (2.4):

Xs{Lcp) = emT)J?_s(<p) Stp € Us, (2.6)
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where eL2iT)(-) is a GWN relative to L2(T). The right-hand side of (2.4) represents
the weak-sense derivative of fractional order a of a GWN in L2(T).

In a similar fashion, the condition of Proposition 2.3 also implies a unique abstract
representation for the a-dual GRF Xs :

(2.7)

with L = RsLIlUs]., Rs being the covariance operator of Xs, L the isomorphism
defining the abstract representation of Xs, and I[Us]. : [Us]* ->• Us the isometric
isomorphism defined by the Riesz representation theorem (Ruiz-Medina et al. [13]).

Similarly to (2.6), we can also write (2.7) alternatively as

XS (Lg) = eLHT)J?s(g) VgelUs]: (2.8)

The right-hand side of (2.8) is interpreted as a fractional integral in the weak sense of
a GWN relative to L2(T).

The abstract representation (2.8) can be equivalently expressed as

The generalised covariance function Zfe of the 3?-GRF Xs then takes the form

B5(g, h) = E [Xs(g)Xs(h)] = (SsL-*(gK-), J^sL'l(hK-))LHT)

j ( ) vg, h e [j (*()
Consequently, the covariance operator Rs of Xs is given by

R3 = [SsL-1]* \JsL~x\. (2.9)

We consider a = a + y, a, y € Q, in Proposition 2.3. Then the covariance
operator of (2.9) becomes

Ra+y = [Sa+yL-1]* [ A + ^ " ' ] • (2.10)

Here

L = Ra+yLI[U(i+yY = Sa+y^I[Uii+yy,

with

Sa+Y : H{Xa+y) - • [Ua+y]*, J : Ua+y -> H(Xa+y) = H(Xa+y)

and
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being isomorphisms. Therefore L~l = I{~Ja+ y<?~xS~lY. Also, it follows from Propo-
sition 2.2 that l[v\+yY = S-(2a+2Y). Thus Z>> = S_(2a+2Y)S-lS;lY.

In particular, we shall consider

with c/yig), g € Ua and J^+yOp), <p e [Ua+y]*, respectively defined as

Sr(g)(.4>) = (27T)-" f 8(^t(k) dk W<f> g [Ua+YT

and

With the above choice of Sa+Y, we have

^ o + , = [/»/;]'/«/; = jys:saj;, (2.12)

which, in view of (2.1) and (2.3), is understood in the following weak sense:

L^Wwi<*. = p^s/„
for/i, g e H-(

From (2.13), the spectral density of the random field resultant from the above
selection has the form

^ 7 T W r 0<)'<"-"ia <214)

interpreted in the weak sense.
Since this form involves the Fourier transforms of the Riesz kernel and the Bessel

kernel, these random fields are named fractional Riesz-Bessel motion (fRBm). We
shall prove the following proposition in the next section.

PROPOSITION 2.4. For 0 < y < n, a > 0, the operator Ra+y defined by (2.12) is
continuou.

continuous.
a continuous isomorphism from H <Of+>'>(7') to H (T) whose inverse Ralv is also

REMARK 2.1. From the remark after (9.5.10), p. 660, and Theorem 9.5.6(a), p. 658,
of Edwards [5], ̂ Y is compact for n/2 < y < n. Therefore, from Lemma 3.2 below,
•?aj?y is continuous for 0 < y < n, a > 0, and since J^ is continuous for a > 0,
the operator R~ly = ^Y <?*<?ac?y is compact for n/2 < y < n and a > 0.
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REMARK 2.2. Proposition 2.4 implies that, for any g e / / " ^
solution in H~{fl+y){T) and this solution depends continuously on g e H (T) in
the norm of H~ia+y)(T). Furthermore, the problem of solving (1.4) in H-(a+y\T)

T+yp
+yis well-posed since the operator R~ly : lT+y(T) - • H-(a+y)(T) is defined on all of

lT"+y (T) and is continuous there.

3. Proof of the main result

Proof of Proposition 2.4 is given in the following lemmas.

LEMMA 3.1. ForO < y < n, the Riesz potential JfY = (—A)~y/2 is a continuous
operator on L2(T).

PROOF. See [5, Theorem 9.5.10(a), p. 660].

LEMMA 3.2. For a > 0 and 0 < y < n, the operators Ra+y : H-(a+y\T)
- l
v+Y

'(T)andR;l : H +Y(T) -> H-(a+y)(T) are continuous.

PROOF. We prove the continuity of J'a^*, as an operator from H~(a+r)(T) into
L2(T), and its inverse {^ac/*Yx, which from (2.12) implies the statement of the
lemma.

It follows from (2.13) that

(3 1

for/i 6 H-{a+y\T).
Since

the inequality

" L
holds for h e H-(a+y\T). That is, the operator (</„ J*)~4s continuous.
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To prove the continuity of J?a<^*, we decompose the integral in (3.1) as

/

i2

•«-i (1 + w y l * w J . a

where eM(0) = (A e K" : |A.| < M], M > 0.
From Lemma 3.1, there exists C > 0 such that

forg € L2(T). Hence,

2 / ^ ( X ) ' + ) / ^ = Af ' | |A | |^ , ( 7 , . (3.2)

Now, as there exists M" > 0 such that

for X € K" - eM(0), we have

h < M" j 2y+Y
 dk < M"||/i||2H-<.+,,(r). (3.3)

The continuity of ^-aJ* follows from (3.2) and (3.3).

LEMMA 3.3. Ra+Y : H~(a+y)(T) -+ JF+Y(T) is an onto mapping for a > 0 and
0 < y < n.

PROOF. By definition, Ra+Y is a self-adjoint operator on L2(T). Also, the range of
Ra+Y coincides with the orthogonal complement of the null space of /?*+j, = Ra+Y

(see [7, Theorem 6.5.10(i), p. 164]). Since Ra+Y is injective, we have Range(Ra+y) =
L2(T). Additionally, in view of (2.2), 7F+y(T) c L2(T) c H-(a+Y)(T). Hence,
Ra+y(.H-<a+y\T)) 2 Ra+y(L

2(T)) = L2(T) 2 lf+r(T).

Proposition 2.4 now follows from Lemmas 3.1-3.3.
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4. Approximate solution

[12]

For the given equation

(4.1)

let us consider an approximation using least squares.
Let {\ffj ,j — 1, 2, 3 , . . .} be a complete system of linearly independent elements

of H-(a+y)(T) and let Mm = ~Sp{i//u... , f m } . Also let hm e Mm be a solution to

\\Rhm- g\\H-<°+rHT) = min. (4.2)

By the least squares principle and since Mm is finite-dimensional, (4.2) has a unique
solution in Mm. Also,

\\hm - h\\H-«+Y)(T) ->• 0 as m ->• oo, (4.3)

where h = R~lg e H~(a+y)(T). In fact, since R~l is bounded, there exists a finite
constant c such that

Now, the completeness of [y]/j] in H~(a+Y)(T) implies that {/?VO'J ^s complete in
cr+y

/ / (T) since R is an isomorphism between
right-hand side of (4.4) tends to 0 as m —*• oo.

~Ha+Y(T) since /? is an isomorphism between H~{a+Y){T) and TT+Y(T). Hence the

EXAMPLE 4.1. Let us consider the case n = I, a + y = I, Ho = L 2 ( - l , 1). Let
/? be an isometric isomorphism between Ho and H (—1, 1), and q = p~l. For a
Schauder basis {0,} of Ho, put fcm = ^ J = 1 cf1 V; • We shall consider an approximate
solution of the form

(4.5)

The constants Cjm\j = —2, —1, 0 , . . . , m, are obtained by solving the problem

The variational problem (4.6) can be written as

£m =
y=-2

= min,
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where ^ (*) = R<t>j, j = —2, — 1 , 0 , . . . , m. The linear system

— = 0 , y = - 2 , - 1 , 0 , . . . , m,
dc)

for cj"° is then

Myc,=fc,, » = - 2 , - l , 0 , . . . , m , (4.7)

where My = {fj,^)^, bt = (g, V/)//1. ij = - 2 , - 1 , 0 m. The linearly

independent system {ty} is complete in H . Also, the matrix My is symmetric and
positive definite for any m. Hence the system (4.7) is uniquely solvable for each m.

Liu and Anh [8] propose the use of Filon's method with parameter as a suitable
numerical integration scheme for computing the matrix M and the right-hand side
vector b of (4.7). The numerical results reported in [8] indicate a good performance
of the method.
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