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OSCILLATIONS OF HIGHER-ORDER NEUTRAL EQUATIONS

G. LADAS1 AND Y. G. SFICAS2

(Received 12 April 1985)

Abstract

Sufficient conditions are given for the occurrence of various types of asymptotic be-
haviour in the solution of a class of nth order neutral delay differential equations. The
conditions are in the form of certain inequalities amongst the constants involved in the
definition of the differential equations, and specify either oscillatory behavior, or asymp-
totic divergence, or solutions which converge to zero.

1. Introduction

A neutral delay differential equation (NDDE for short) is a differential equation
in which the highest order derivative of the unknown function appears both with
and without delays. Concerning existence, uniqueness and continuous dependence
for NDDE the reader is referred to Driver [3] and [4], Bellman and Cooke [1] and
Hale [6]. It is known that the behavior of solutions of NDDE exhibit features
which are not true for plain delay differential equations. For example, Snow [11]
has shown that even though the characteristic roots of a NDDE may all lie in the
negative half-plane, it is still possible for the equation to have unbounded
solutions.

In this paper we deal with the asymptotic and oscillatory behavior of the
solutions of the NDDE of order n > 1,

j - *)] +qy{t-o) = o, t>t0, (1)
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where q is a positive constant, the delays T and a are nonnegative, and the
coefficient p is a real parameter. The case n = 1 has recently been studied by
Ladas and Sficas [7] and by Grammatikopoulos, Grove and Ladas [5].

From the point of view of applications, NDDE appear as models of electrical
networks which contain lossless transmission lines. Such networks arise, for
example, in high speed computers where lossless transmission lines are used to
interconnect switching circuits. See [2] and [10].

As usual, a solution of Equation (1) is called oscillatory if it has arbitrarily large
zeros and nonoscillatory if it is eventually positive or negative.

2. Asymptotic behavior of nonoscillatory solutions

In this section we will study the asymptotic behavior of the nonoscillatory
solutions of the wth order NDDE

jp;[y(t)+py(t-r)]+qy(t-a) = O, t > t0, (1)

under the hypothesis:
(H) q is a positive constant, p is a real number, and T and a are nonnegative

constants.
The main feature of our results is that for n odd, the point p = - 1 is a

bifurcation point for the asymptotic nature of the nonoscillatory solutions of
Equation (1). However, this is not true, in general for even n. More precisely, the
following result is true.

THEOREM 1. Consider the NDDE (1) and assume that the hypothesis (H) is
satisfied. Then, the following statements are true.

(a) Assume that n is odd and that p < — 1. Then every nonoscillatory solution of
Equation (1) tends to + oo or — oo as t —» oo.

(b) Assume that n is odd or even and that p > - 1 . Then every nonoscillatory
solution of Equation (1) tends to zero as t —* oo.

PROOF, (a) As the negative of a solution of Equation (1) is also a solution of the
same equation, it suffices to prove that an eventually positive solution of
Equation (1) tends to +oo as / -» oo. For our convenience we will adopt the
convention that all inequalities about values of functions are assumed to hold
eventually for all t sufficiently large. Set

z(t)=y(t)+py(t-r). (2)
Then

z(n\t)= -qy{t-o)<Q (3)

https://doi.org/10.1017/S0334270000005105 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005105


504 G. Ladas and Y. G. Sficas [ 3 ]

and so z'""1^/) is (eventually) strictly decreasing. Also all the derivatives of z of
order less than or equal to n - 1 are monotonic functions. From (3) it follows
that either

Umz("-1>(0 = -00 (4)

or

L= lim z<"-»(t) is finite. (5)

However, we claim that (5) is impossible. Otherwise, integrating (3) from tx to t,
with tx sufficiently large, and letting t -* 00 we find

= -qf y(s-o)ds

which implies that y e /^['u 00). Thus, from (2), z e I}\tx, 00) and since z is
monotonic, it follows that

lim z(t) = 0 (6)
r->oo

and so L = 0. As the function z'""1^/) decreases to zero, it follows that

z<"-»(t) > 0. (7)

Also (6) implies that consecutive derivatives of z must alternate sign. Thus, in
view of (7) and the fact that n is odd, we have

z{t) > 0. (8)

However, (8) implies that

y(t) > -py(t - T)

and by iteration

y(t + kr) > (—p) y(t) -* 00 as k -» 00

which contradicts the fact that y e L1[t1, 00) and establishes the claim that (4)
holds. Furthermore, (4) implies that

lim z(t) = -00 .
r-»oo

But

py(t — T ) < y(t) + py(t — T ) = z(t) -> — 00 as t -> 00

and since p < 0 it follows that

lim y(t) = 00.
/-»oo

The proof of (a) is complete.
(b) Let y(t) be an eventually positive solution of Equation (1). Introducing the

function z, as in (2) of the proof of part (a), we find that either (4) or (5) holds.
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We claim that, in this case, (4) is impossible. Otherwise, we shall also have that

lim z(t) = - o o (9)
r-»oo

which implies that

0<y(t)< -py(t-r) (10)

and by iteration

0<y(t + kr)<(-p)ky(t). (11)

We have p > -1 and so (10) is impossible for p > 0 while (11) implies that
lim,^^, y(t) = 0 for -1 < p < 0. But in the latter case (9) is impossible. We have
established the validity of (5) for any p > - 1 . We also have, in this case, as in the
proof of (a), that (6) and (7) hold, the limit L in (5) is 0, and that consecutive
derivatives of z must alternate sign.

Next, we shall prove that l im,^^ y(t) = 0. For p > 0 this follows from the
observation that

0 <y{t) <y(t) +py(t - T) = z(t) -* 0 as t -> oo.

On the other hand, for -1 < p < 0 we shall apply Lemma l(ii) of Ladas and
Sficas [7] to the functions f(t) = z{t) and g(t) = y(t). According to this Lemma,
if fO) = g(t)+PS(t~T) where -1 < p < 0, if g is bounded and if the
l i m , _ ^ / ( O exists, then the l i m ^ ^ g t O also exists. Since the limM o o z(t) = 0 it
would then follow that lim,,,^ y(t) = 0. Therefore, to complete the proof of (b)
it remains to show that for -1 < p < 0, the solution y(t) is bounded. To this end,
first we assume that n is even. Then, from (7) and the fact that consecutive
derivatives of z(t) alternate sign, we find that z(t) < 0. Hence

y(t)< -py(t-T) <y(t-r)

which establishes the boundedness of y(t). Next, assume that n is odd. Assume,
for the sake of contradiction that y(t) is not bounded. Then, there exists a
sequence of points {tk} such that l i m t - a ) r t = 00, y(tk) = msixssilky(s), and
^mk_ooy(tk) = 00. We have

z(tk)=y(tk)+Mtk-T)>y(tk)+py{tk) = (1 +p)y(tk).

Hence

lim z(tk) — 00

which contradicts (6). The proof of the Theorem is complete.

REMARK 1. When n is even and p < - 1 , it is not true that the nonoscillatory
solutions of Equation (1) tend to + 00 as t -* 00 (as in case (a) of Theorem 1) and
it is not true that they tend to zero either. This follows from the NDDE

d2/dt2[y(t) - 2y(t - Iog2)] +(3/e)y(t - 1) = 0
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which has the nonoscillatory solution y(t) = e~' and from the NDDE

d2/dt2[y{t) - 4y(t - Iog2)] + ey(t - 1) = 0
which has the nonoscillatory solutions ±e'.

REMARK 2. When n is odd and p = - 1 , we shall prove in the next section that
all solutions of Equation (1) oscillate. However, this is not true for n even and
p = - 1 . Indeed, the NDDE

d2/dt2[y(t) -y(t - Iog2)] +(l/e)y(t - 1) = 0
has the nonoscillatory solution y(t) = e~'.

REMARK 3. When n is even and p = - 1 , we can show that every nonoscillatory
solution of Equation (1) is bounded. Indeed, if y{t) is eventually positive, then as
in the proof of Theorem 1, it follows that z(t) < 0. That is, y(t) < y(t - r)
which proves our claim. However, in agreement with the example in Remark 2,
we make the following conjecture.

Conjecture. Assume that n is even and p = - 1 . Then every nonoscillatory
solution of Equation (1) tends to zero as t -* oo.

We close this section by analyzing a little more the asymptotic behavior of the
nonoscillatory solutions of Equation (1) when n is even and p < - 1 . Let y(t) be
an eventually positive solution of Equation (1) and set z(t) = y(t) + py(t — T).
Then, by arguments similar to those in the proof of Theorem 1, it follows that
either

l imz( />(0= -oo , / = 0,1,2 n — 1, (12)

or
z{t) < 0,z'(t) > 0, z"{t) < O,...,z<"-»(t) > 0,

and

l i m z ( l ) ( 0 = 0, i = 0 , l , 2 , . . . , n - l . (13)
r-*oo

When (12) holds,
py(t - T) < z{t) -» - oo as t -> oo

and so
lim y(t) = +oo.
r-»oo

When (13) holds we make the following conjecture.

Conjecture. Assume n is even, p < -1 and that (13) holds for an eventually
positive solution of Equation (1). Then

hmy{t) = 0.
I—>O0
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3. Sufficient conditions for oscillation

Here we shall obtain sufficient conditions for the oscillation of solutions of
Equation (1). First, we should collect some facts that were established within the
proof of Theorem 1 for p ¥= -1 and which for p = -1 follow easily by arguments
similar to those in the proof of Theorem 1. As in proof of Theorem 1, we assume
that y(t) is an eventually positive solution of Equation (1). Set

z(t)=y(t)+py(t-r).

Then, for any i = 0,1,2, . . . , n — 1, we have

- oo if p < -1 and n is odd, (12)

0 ifp>-l. (13)

For p = - 1 , the above result follows by an argument similar to that in the proof
of Theorem 1. Also, for p > -1 (and any n, even or odd) we have that

z(""l>(0 > 0 (14)

and

z(l )(f)z( '+1>(0 < 0 fori = 0 , 1 , 2 , . . . , n - 1 . (15)

From (14) and (15) we find the following result which for easy reference we state
as a lemma.

LEMMA 1. Assume p > - 1 . Then z(t) is bounded. Furthermore, z{t) > 0 for n
odd while z(t) < 0 for n even.

It is useful to note that the function z(t) as defined above is an H-times
continuously differentiable solution of Equation (1). That is,

z(n»(0 + pz(n){t - T) + qz{t - a) = 0. (16)

Set

w(t) = z(t)+pz(t-r).

Then, from (16), it follows that

Furthermore, w is itself a In - times continuously differentiable solution of
Equation (1). That is,

w(n){t) +pwin)(t - T) + qw(t - a) = 0. (18)

From (17), (12) and (13) it follows that, for j = 0,1,2, . . . , n

oo, if p < -1 and n is odd,
Urn w<'>(/) , n ..
/-.oo \ 0 , if p > - 1 .
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Moreover , for p > - 1 , consecutive derivatives of w have al ternate signs. Fo r
future reference we state the following lemma about w.

LEMMA 2. Assume n is odd. Then, for any p e ( — oo, + oo),
„,<»+»(/) > 0 and w(t) > 0.

The following lemma, which will be essential in the proofs of our oscillation
theorems, has been extracted from Ladas and Stavroulakis [8] and [9].

LEMMA 3. Assume that r and n are positive constants and suppose that

r^n(ii/n) > l/e. (19)
Then

(i) for n odd, the inequality
x(n)(t) - rx(t + ju) > 0

has no eventually positive solution;
(ii) for n odd, the inequality

x(n)(t) + rx(t - n) < 0
has no eventually positive solution;

(iii) for n even, the inequality
x(n\t) - rx(t - ju)< 0

has no eventually negative bounded solution;
(iv) for n even, the inequality

x(n)(t) -rx(t + /*)<0
has no eventually negative unbounded solution.

We now are ready to state several sufficient conditions for the oscillation of
solutions of the NDDE

-^[y(t)+Py(t-r)]+qy(t-a) = O, t > t0, (l)

where the coefficients and the delays satisfy the hypothesis: (H) q is a positive
constant, p is a real number, and T and a are nonnegative constants.

THEOREM 2. Assume n is odd and that the hypothesis (H) is satisfied. Then, each
of the following three conditions implies that all solutions of Equation (1) oscillate.

(i) /><-land(-r4^)/(T-a)/n>lA; (20)

(ii) p = -\; (21)

(iii) p>-\ and (3-T7) \o-r)/n>l/e. (22)
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PROOF. Assume that one of the conditions (i)-(iii) is satisfied and that contrary
to the conclusion of the theorem, Equation (1) has an eventually positive solution.
Then, from Lemma 2, w(n+1)(/) > 0 which implies that

and Equation (18) leads to the inequality

(1 + p)w^(t — T) + qw(t — a) < 0. (23)

Also from Lemma 2,

w{t) > 0. (24)

First, assume that (20) is satisfied. Then, from (23) we find that

w(n)(0 + y^—w(l + T ~ °) > °

which by Lemma 3(i) has no eventually positive solution. This contradicts (24)
and proves the Theorem when (20) is satisfied. Next, assume that (21) is satisfied.
Then, from (23) we find that w(t) < 0 which contradicts (24). Finally, assume
that (22) is satisfied. Then, from (23) we find that

which by Lemma 3(ii) has no eventually positive solution. This contradicts (24)
and completes the proof of Theorem 2.

THEOREM 3. Assume n is odd and that the hypothesis (H) is satisfied. Suppose
that -1 < p < 0, and

q1/n(o/n) > l/e. (25)

Then every solution of Equation (1) oscillates.

PROOF. Assume, for the sake of contradiction, that Equation (1) has an
eventually positive solution y(t). Set

z{t)=y(t)+py(t-r).

Then

z<">(0 = -qy(t-r)<0,

and from Equation (16) we find the inequality

2<">(f) + qz(t - T) *S 0. (26)

Also from Lemma 1

z{t) > 0. (27)
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But in view of Lemma 3(ii) and condition (25), Inequality (26) cannot have an
eventually positive solution. This contradicts (27). The proof is complete.

Next, we turn to the case where n is even.

THEOREM 4. Assume that n is even and that the hypothesis (H) is satisfied.

Suppose

p>0. (28)

Then every solution of Equation (1) oscillates.

PROOF. Assume, for the sake of contradiction, that y(t) is an eventually
positive solution of Equation (1). Then, from (28),

z(t) = y{t) + py(t - T) > 0,

which contradicts Lemma 1. The proof is complete.

THEOREM 5. Assume that n is even and that the hypothesis (H) is satisfied.
Suppose that

-1 < />< 0 (29)
and

(-q/p)1/n(o - r)/n > 1/e. (30)

Then every solution of Equation (1) oscillates.

PROOF. Assume, for the sake of contradiction, that Equation (1) has an
eventually positive solution y(t). Then z(t) = y(t) + py(t - T) > py(t - T) and
so,

y(t-a)>-z(t-(a-r)).

It follows that

or

*<«>(,)+ | z ( r - ( a - T ) ) < 0 . (31)

Also from Lemma 1, we have that

z(t) < 0 and z(t) is bounded. (32)

In view of (30) and Lemma 3(iii), it follows that Inequality (31) cannot have an
eventually negative bounded solution. This contradicts (32) and completes the
proof of the theorem.
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THEOREM 6. Assume that n is even and that the hypothesis (H) and the condition
(30) are satisfied. Suppose that

p<-\.

Then every bounded solution of Equation (1) oscillates.

PROOF. Assume, for the sake of contradiction, that Equation (1) has an
eventually positive and bounded solution y(t). Then, as in the proof of Theorem
5, (31) holds. Also, in view of the fact that y(t) is bounded, (13) and in particular
(32) is satisfied. As in the proof of Theorem 5, this leads to a contradiction. The
proof is complete.
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