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Abstract

We will consider coactions of discrete groups on C*-algebras and imitate some of the results about
compact group actions on C*-algebras. In particular, the crossed product of a reduced coaction e of a
discrete amenable group G on A is liminal (respectively, postliminal) if and only if the fixed point algebra
of e is. Moreover, we will also consider ergodic coactions on C* -algebras.

1991 Mathematics subject classification (Amer. Math. Soc): 46L55.

1. Introduction and notation

The concept of coactions is defined so that it is the dual notion of actions of groups
on C*-algebras. The most interesting and important results about coactions are the
duality theorems (see [6,7,11]). Recently, Raeburn gave a systematic treatment of this
subject [12]; the terminology we use here mainly follows this and [8]. In this paper,
we will examine some properties of discrete reduced coactions on C*-algebras. In
the second section, we^vili give some elementary results of discrete coactions. When
the group is abelian, discrete coactions correspond to compact actions. It is believed
that many results in compact actions can be translated to the case of discrete coactions
with more direct and elementary proofs (since the representation theory of C0(G) for
G discrete is much simpler than that of C*(G) for G compact). Sections 3 and 4
are mainly used to demonstrate this. In the third section, we will translate results
of Gootman and Lazar [3] which state that the crossed product of a C*-dynamical
system is liminal (respectively, postliminal) if and only if the fixed point algebra is.
As a corollary, we show that if the fixed point algebra is postliminal, then the original
algebra is nuclear. In Section 4, we try to translate some results in the paper [5]
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which include: If a compact group acts ergodically on a C*-algebra A, then A has a
tracial state which is, in fact, the unique G-invariant state of A. However, the referee
has pointed out that there is some overlap between Section 4 and Theorem 3.7 of an
unpublished paper of Quigg [10].

For the definition of coactions and reduced coactions and their crossed products,
we refer the reader to [12, §2]. If A is a C*-algebra and S is a (respectively, reduced)
coaction of a locally compact group G on A, then we call the triple (A, G, 8) a
(respectively, reduced) codynamical system.

In this paper, unless otherwise specified, G is a discrete group with unit e, A is
a C*-algebra, all the coactions and crossed products are reduced, and all the tensor
products considered are spatial ones. By [ 1,7.15] reduced coactions of discrete groups
are automatically non-degenerate.

2. Discrete coactions

Let e be a reduced coaction of G on A. Since C*(G) is unital, e(A) c M(A <8>
C*r(G)) = A <g> C*r(G). Denote by X, the canonical image of t e G in C*r(G).
Then [X, : t e G] form a generating set of C*(G). Let ft e C*(G)* be defined by
\p-,(Xs) = I (if s = t) and \}r,(Xs) — 0 (if s ^ t). Note that x/re is the natural tracial
state of C*(G) and rfr, = X~l -i/fc (that is, \jr,(x) = ^(A."1*)) and hence is continuous.
Let S, be the slice map corresponding to \Jr, (t e G). Note that in this case, we have
S,(a ®z)- z(t) • a and SG(z) = J^sec Z(J) ' ^ ® k* for all z € Jf(G), the space of
continuous functions on G with compact, hence finite, support; a e A; and where <5G

is the co-multiplication on C*(G). (For its definition we refer the reader to [12, §1].)
Denote by Mf the canonical representation of / e C0(G) in 12(G) by multiplication.
In the following we will write M, instead of MSl, where S, e C0(G) is the map defined
by S,(s) = 1 if 5 =/and<5r(s) =0ifs ^t.

The following definition is an analogue of the case of finite coactions (see the
introduction to [8]) and the r-components correspond to the spectral subspaces in the
case of compact actions.

DEFINITION 2.1. Let A, = {a e A : €(a) — a <g> A,}, (t e G). We will call this
the t -component ofe. The e-component of e is called the fixed point algebra of e and
will also be denoted by Ae.

REMARK 2.2. Note that the fixed point algebra can be defined without G being
discrete (since Xe = 1) but in the case when G is discrete and A ^ (0), we have
A€ ^ (0). Suppose A( = (0). Let {uT} be an approximate unit of A. By the
non-degeneracy of e (as a *-homomorphism), {e(ur)} converges strictly to the unit of
M(A ® C*(G)). Since S,, is strictly continuous (see [8, 1.5]), Se(e(ut)) converges
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strictly to the unit of M(A). However 2.3(ii) implies that Se(€(uT)) 6 A( = (0),
which gives a contradiction.

LEMMA 2.3. Let € be a reduced coaction of G on A and S, as above.

(i) A* = A,-i and A, • As c A,s;
(ii) S,(e(A)) = AtforallteG.

PROOF, (i) is clear.
(ii) For any a G A, €(S,(e(a)) = S, [(e ®i)(€(a))] = S, [(/ ®8G)(€(a))] =

S,(e(a)) ® X,. (Here S, in the first and fourth terms means the slice map of f, on
A ® C*(G), while S, in the other terms means the slice map of ifr, on A ® C*(G) ®

PROPOSITION 2.4. The set {(ar®Xr)(l®Mt) :r,t€G,are Ar] is a generating set
for the reduced crossed product A x f G . Moreover, for any r,s,t,u e G, ar e Ar\(0)
and bs G As\ (0), we have (ar ® Xr){\ ® Mt) = (bs ® Xs)(l ® Mu) if and only if
r = s,t — u andar = bs.

PROOF. For simplicity, we will assume A acts faithfully on a Hilbert space H and
A xf G is a subalgebra of B{H <g> L2(G)) (see [8, 2.6(3)]). By an easy calculation,
we have XSM, = MslXs and M,XrMs = SrsJ • XrMs, where S is the Kronecker delta.
Now let x e A 0 C*(G) be an elementary tensor b <g) z, where z e JT(G). Then

= [Sts-,(b®z)]®Xls-,Ms

In fact, the above equality holds for any x e A ® C*(G) by linearity and continuity.
Moreover, by [8, 2.5], the set {(1 <g> M,)e(a)(l ® Ms) : r,s G G, a & A] spans a
dense subspace of A xfG. Thus, using the above calculation and Lemma 2.3(ii), part
one is proved.

Leta e Ar\(0)andb G ̂  \ (0) be such that (a®Xr)(\®Mt) = (b®Xs)(l®Mu).
Then by multiplying (1 (g> Me) on the left of both sides and using the calculations
above, we have S,-i(a ® Xr) ® MeX,-< = Su-i(b ® Xs) ® MeXu-\ and thus t — u.
Similarly, by multiplying (1 ® Mrl) on both sides, we have {a ® Xr)(l ® M,) =
(Sr(b ® Xs) ® Xr)(l ® Mt). Hence r = s and a = b as required.

R E M A R K 2 . 5 . (1 ) I t i s e a s i l y s e e n f r o m the c a l c u l a t i o n in 2 .4 tha t for a n y r, s,t,u e

G, we have (Ar ® Xr)(l ® Mt) • (As ® Xs)(l ® Mu) c (Ars ® Xrs)(l ® Mu) and also
(Ar ® Xr)(l ® M,)(AS ® Xs)(l ® Mu) = (0) ift / su.
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(2) Let a be the dual action on B = A x(G (see for example [8, proof of 4.8]). If we
define p, to be the projection 1 ® M, e M(B), then p, satisfies the following:

(i) a,(pe) = p,->;
(ii) p, • ps = 8,sps (where 8 means the Kronecker delta);

(iii) Let &(G) be the collection of all finite subsets of G and let pE = ^2leE p,.
Then pE converge to 1 strictly in M(B).

In fact, by a result of Quigg (see [9, 4.3]), it is easily seen that given a dynamical
system {B, a), the existence of the projection pe satisfying (i)-(iii) is equivalent to
(B, a) being a dual system.

PROPOSITION 2.6. Let A, be the t-component ofe. Then A = © f e G A,. Moreover,
ifA = 0 , e G B, then Br • B5 c Brs, B* = B r - and || £ , € G b,\\ = || £ r e G b, <g> X,\\
(for a finite number of non-zero b, e B,) if and only if there exists a reduced coaction
8 ofG on A such that A, = B,for all t e G.

PROOF. Note that Se{€(a)(l <8> /xX,)) = a,-\[i for any a e A and ix e C. By
[1, 7.15], e(A)(l <g> C;(G)) is dense in A (8) C*r(G). Now for any a e A, a <g> 1
= limn ^,n,e(an)(l ® fJ-'nX,) (where only finitely many ix'n are non-zero). Hence
a = Se(a<g>l) = limn ^,n,(an),i/,'n e @,eGAf Thus, the first part is proved. Suppose
now that A = ® , e G B, such that B, satisfies the prescribed properties. Define S on
@,eG B, by 8(b,) = b, ® X, for b, € Bt. Then S is an isometric *-homomorphism
from 0 , £ G B, to A ® C*(G). Hence <5 extends to a reduced coaction on A.

EXAMPLE 2.7. Let (A,G,a) be a C*-dynamical system and B be its reduced
crossed product with dual coaction e (where a is considered as in Proposition 2.6).
Then B = C*{a(a)(\ <g> kr) : a e A, re G}. Let B, be the ^-component of
€. For any x e B,, there exist xn G B of the form ^ j e / r a ( a j n ) ( l ® Xs) (where
[s e G : a j n ^ 0} is finite for all such n) such that xn converges to x in norm.
Hence, a(atJI){\ ® X,) — S, o e(xn) converges to 5, o e(x) — x. Since a is a mono-
morphism, a,,„ converges to some element a e A. Thus x = a(a)(l (g) X,) and
B, = {a(a)(l (8) A.,) : a e A}. Moreover, B = 0 r e G fi, and A ® JT(/2(G)) =
(A xa,r G) x«,r G = C*{[a(a)(l ® A,)] ® ArMr : r , ( e G , a e A } .

It is obvious that if G is a locally compact group and Gd is its discrete group, then
any action of G on A is an action of Gd on A. We now show the dual property in the
case of coactions.

PROPOSITION 2.8. Let G be a locally compact group and Gd be its discrete group.
Then any {respectively, reduced) coaction 8 of Gd on A induces a {respectively,
reduced) coaction 8' of G on A.
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PROOF. Here, we show the case of reduced coaction only. Let /x be the canonical
map from C*(Gd) to M(C*(G)) and let u, = /J-(k,) (that is, u, is the canonical image
of t e G in C*(G)). Define 8' = (i <g> /z) o 8 from A to M{A <g> C*(G)). The
non-degeneracy of 8' (as a *-homomorphism) follows from that of / ® /A and 5. Firstly
we show that S'(A) c M(A(gi C;(G)). Let a G A. Since S(a) e A®Cr*(Gd), there is
xn = Y,kak,n®Zk,n (ak,n e A, zk_n G C*(Gd)) such that xn converges to 8(a). Hence,
foranyz G C*r(G), we have aM<g>/i,(zM)z G A®Cr*(G) (as/i(zM) e M(C;(G)))and
so<5'(#)(l®z) = lim^a<:n0)U,(z<:,,)z G A <8>C*(G) (since /®/x is a homomorphism,
the convergence above is in the norm limit). Finally, we check the coaction identity.
For any z G Jf(Gd), z = £ , e F vtk, for some F e &(G) and v, G C. Thus,
{ix (g» /z)5Gd(z) = (/x (g) / i ) (£ , 6 f v,X; ® Ar) = J2tzF v'u' ® ut- On the other hand,
<5G(/z(z)) = 8G(J2,eF v<u<) = Eref v '« ' ® u, = (fi <8> ix)8Gd(z). Now, for any a e A ,

0 <8> 5G)«5'(a) as required.

3. Liminality of crossed products by discrete coactions

The ideas of the following results come from [3]. Lemmas 3.1 to 3.3 are well-known
results and are true for general locally compact groups.

LEMMA 3.1. Let a be an action of G on A. Then the largest liminal ideal I of A is
ot-invariant.

LEMMA 3.2. Let a be an action of G on A, I be an a-invariant ideal of A, q be
the quotient map from A to A/1 and f} be the induced action of a on A/1. If J is a
^-invariant ideal of A/I, then q~l (J) is an a-invariant ideal of A.

LEMMA 3.3. Let a be an action of G on A. The largest postliminal ideal I of A is
a-invariant.

LEMMA 3.4. Let G be a discrete group and € be a reduced coaction of G on A. If
J is a non-trivial €-invariant ideal of A, then we have A€/(Ae n / ) = (A/J)s ^ (0)
(here 8 is the coaction induced by e on A/J).

PROOF. Let q be the quotient map from A to A/J. Then by 2.3(ii), q(Ae) —
q [Se(€(A))] = Se [(q ® i)(e(A))] = Se[8(q(A))] = Se[8(A/J)] = (A/J)s.

The following is actually a direct consequence of strong Morita equivalence, but
we give an elementary proof here.
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LEMMA 3.5. Let B be a hereditary subalgebra of A such that there is no non-trivial
ideal in A containing B. If B is liminal (respectively, postliminal), then so is A.

PROOF. For any (n, H) e A, let (<p, K) be the restriction of (n, H) to B. Then
(0, K) is an irreducible representation of B. If x e B is such that (f>(x) e JXf(K),
then n{x) € JX^(H). Suppose B is postliminal. Then, since A is the only ideal in A
containing B, we have (j> ^ 0. Thus, there exists x e B such that (p(x) e Jff(K) \ (0).
Hence n{x) e J(f(H) \ (0) and A is postliminal. Moreover, if B is liminal, then
<p(x) e X(K) for all x e B. Hence B is contained in the largest liminal ideal / of
A. Thus I — A, by hypothesis.

THEOREM 3.6. Let € be a reduced coaction of a discrete amenable group G on
A. Then Af is liminal (respectively, postliminal) if and only if A xf G is liminal
(respectively, postliminal).

PROOF. Necessity: By Proposition 2.4, M = {(a <g> ke)(\ <g> Me) : a e Ae} =
[a ® Me : a e Ae} is a subalgebra of A xe G which is isomorphic to Ae. Hence the
liminal or postliminal property of A x( G implies that of A*.

Sufficieny: Let p — I <8> Me e M(A x( G). Then p is a projection and by the
proof of Proposition 2.4, we have p(A x e G)p = M (where M is as in the first part
of the proof). Hence M is a liminal (respectively, postliminal) hereditary subalgebra
of A xf G. Therefore, M is contained in the largest liminal (respectively, postliminal)
ideal / of A xe G by 3.5. Now we claim that I = A xe G. Suppose not: Then since
/ is € -invariant for the dual action e of e, there is an e-invariant ideal / of A such
that / = J x e G (by [2, 3.7]). By Lemma 3.4, there exists x e A( such that x 4 J.
But since x<S)MeeMc.I = JxeG,xeJ (see Proposition 2.4) which gives a
contradiction.

REMARK. Note that [2, 3.7] is the only place where we need the amenability of G
and so the proposition can be improved if [2, 3.7] is true for any reduced coaction of
discrete group.

COROLLARY 3.7. Let G be a finite group and e a reduced coaction ofG on A. Then

the following are equivalent:

(i) A* is liminal (respectively, postliminal);
(ii) A xf G is liminal (respectively, postliminal) ;

(iii) A is liminal (respectively, postliminal).

For G not finite, we have a weaker result as follows:
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COROLLARY 3.8. Let G be a discrete amenable group and € a reduced coaction of
G on A. If Af is postliminal, then A is nuclear.

PROOF. By 3.6, A x€ G is postliminal and hence nuclear. Now, by Katayama's
duality theorem [7, 8] and the fact that nuclearity is preserved under crossed products
of amenable groups (see [4, 14]), A ® J>f(L2(G)) is nuclear and so is A.

By replacing 3.6, [7, 8] and [4, 14] by [3, 3.2], [11, 7] and [12,4.6] in the proof of
3.8, we get the following result:

PROPOSITION 3.9. Let G be a compact group and a an action of G on A. If Aa is
postliminal, then A is nuclear.

REMARK 3.10. Note that by Corollary 3.8, if there exists an ergodic coaction (see
4.1) of a discrete amenable group on A, then A is nuclear. In fact, in the next section,
we can show that A has a continuous faithful trace (see 4.6).

4. Ergodic coactions

DEFINITION 4.1. A reduced coaction e of a discrete group Gona unital C*-algebra
A is said to be ergodic if Ae (= Ae) consists of scalar multiples of the unit only.

LEMMA 4.2. Let (A,G,e) be a discrete reduced codynamical system. If A is unital
and € is ergodic, then for any t € G, all elements in A, are scalar multiples of
unitaries. Moreover, A, is one dimensional if A, =£ 0.

PROOF. For any x e A,, u= x*x and v = xx* belong to Ae = C by 2.3. Hence x
is a scalar multiple of an isometry and a co-isometry and thus x is a scalar multiple of
a unitary. Now, suppose A, ^ 0 and let x and y be two unitaries in A,. Then x*y is a
unitary in Ae and so x*y = ew • 1 for some 9 € R. Hence, x is a scalar multiple of y
and thus A, is one dimensional.

If € is an ergodic coaction of G on A (1 e A), then the map a> defined by
0)(x)l = Se o €{x) IS a State on A. Moreover, co is averageJy ^-invariant in the
following sense:

DEFINITION 4.3. Let (A, G, e) be a discrete (reduced) codynamical system. Then
<f) € A* is said to be averagely € -invariant if <p — (4> (8 fe) ° £•
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REMARK 4.4. (a) The above definition corresponds to <j> (x) = cj> ( / as (x)ds) in the
case of actions. This is why the term 'averagely' is used. For simplicity, we will drop
the term 'averagely' in the following.

(b) on is e- invar iant s ince (00 <g> \fre) oe = [(i <g> r/se) o e <g) \jre] o e = (i ® rfre <g> x/re) o
(/ <g> <5G) oe = (i <S> fa) o e = w.

(c) For ergodic coactions, the e -invariant state is unique, hi fact, if co' is an
e-invariant state, then a>'(x) = co'((i <S> Vf«)e(^)) = co'(a)(x)l) = co{x).

(d) If <p is e-invariant, then 0 vanishes on A, (for t ^ e). In fact, if x e A,, then

PROPOSITION 4.5. The state co defined above is faithful.

PROOF. Since e is injective, it suffices to show that (i <g> ire)(y*y) = 0 implies that
y = 0 for y e A <g> C*{G). Note that \jfe is a faithful state on C*(G). Now for any state
/ of A, fe[(f ® i)(y*y)] = / <8> fe(y*y) = 0 which implies that ( / ® i)(y*y) = 0.
Hence y = 0 as required.

Corresponding to the results of Hoegh-Krohn, Landstad and Stormer (see [5]), we
have the following results.

PROPOSITION 4.6. Ife is an ergodic coaction as above, then the unique e-invariant
state is a tracial state.

PROOF. Since e is a homomorphism, we have to show that Se(y*y) = Se(yy*) for
any y e e(A). By 2.6, it is required to show that this holds for y e e(©, e G A,). Now
for all y e e ( 0 , e G ^4,), y — J2teFat ® ^' f° r s o m e a' e At and F € ^(G). So
Se(y*y) = Se(J2r,szF a*°s ® ̂ -'s) = EreF a>r = E r e F ^ < = Se(yy*) by 4.2 and
hence the proposition is proved.

DEFINITION4.7. Let (A, G,e) be a reduced codynamical system and <f> an e-
invariant state of A. Then e is said to be

(a) cyclic with respect to (f> if there exists an x e A such that for any y e A, (0 ®
Î MCy ® 1M*)] = 0 (for all t € G) implies y = 0.

(b) weakly cyclic with respect to </> if there is a family {z, e A, : t e G} such that for
any y e A, </>(vz,) = 0 (for all t e G) implies y = 0.

LEMMA 4.8. Lef (A, G, e) fee a reduced codynamical system and (j) an e-invariant
state of A. If € is cyclic with respect to <j), then it is weakly cyclic with respect to (j>.
The converse holds ifG is countable.
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PROOF. For any x e A, x = limn ^ , e G x n i , by 2.6 (where for a fixed n, only
finitely many *„_, e A, are non-zero) and xnJ will converge to x, = S,(e(x)). Now
we have (</> <8> Vf?)[(37 ® l)e(x)] = lim« <p(yxn,) = 0(yx,). If € is cyclic with respect
to </>, then it is clear that it is also weakly cyclic with respect to </>. Now suppose that
G is countable and let G = {tn : n e N}. If e is weakly cyclic with respect to <p, let
{z,}l€G be the collection of elements as in 4.7(b). Let*, = z,/||z,|| if z, / Oandx, = 0
if z, = 0. Define x = £ n e N 2~"xla. Then (</> ® VOtO* <g> l)e(x)] = 0 if and only if

= 0, and thus the converse is proved.

PROPOSITION 4.9. Let (A, G, e) fte a discrete reduced codynamical system with A
unital. Then e is ergodic if and only if there exists an e-invariant state co such that e
is weakly cyclic with respect to co.

PROOF. Necessity: Define 0 e A' by <p(y) = co(yze) (where {z,} are the elements in
4.7(b)). For any y e Af, co(yz,) — (co®ire)(€{yzt)) = Sle(p(y) (as co is e-invariant).
Hence (p(y) = 0 if and only if co(yz,) = 0 for all t e G, if and only if y = 0. Now <p
is an injection from Ae to C and the necessity is shown.

Sufficiency: Since e is ergodic, co{x)\ = Se(e(x)) is the unique e-invariant state
by 4.4(c). Now for any t € G, take any x, e A, with \\x, || = 1 if A, ^ (0) and
x, = 0 otherwise. By 4.2, the set [x, : t € G} generates 0 ( 6 G A,. Consider the
GNS-representation (n, H) for co and let <p : A —»• / / be the canonical map. Then
{<p(x,)} generates H (since *>(©,€G A,) is dense in / / ) . Hence, for any y e A, if
<<K;v*)> <?(•**)> = co(yxs) = 0 for all s e G, then ^)(y*) = 0 in / / and thus y = 0.
(Note that <p is injective since o> is faithful.)

REMARK. AS a corollary of 4.8 and 4.9 we obtain the translated version of [5, 4.4
and 5,4.5].
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