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ON A CONTINUUM PERCOLATION MODEL

MATHEW D. PENROSE, * University of California, Santa Barbara

Abstract

Consider particles placed in space by a Poisson process. Pairs of particles are
bonded together, independently of other pairs, with a probability that depends on
their separation, leading to the formation of clusters of particles. We prove the
existence of a non-trivial critical intensity at which percolation occurs (that is, an
infinite cluster forms). We then prove the continuity of the cluster density, or free
energy. Also, we derive a formula for the probability that an arbitrary Poisson
particle lies in a cluster consisting of k particles (or equivalently, a formula for the
density of such clusters), and show that at high Poisson intensity, the probability that
an arbitrary Poisson particle is isolated, given that it lies in a finite cluster,
approaches 1.

POISSON PROCESS; CLUSTER DENSITY; LARGE DEVIATIONS AT HIGH DENSITY

1. Introduction

In this paper we consider the following percolation model on Euclidean space !R d,

d~2 (with the Euclidean norm 1·1). This model was introduced by Gilbert (1961).
Let g(x), x E !R d

, be a measurable function taking values in [0, 1], such that

(1.1) g(-x) =g(x),

(1.2) o< Lg(x) dx < 00.

IRd

Let ~ be a homogeneous Poisson process on IR d with rate p (so the expected
number of points of ~ in any region is p times the Lebesgue measure ('volume') of
that region). Each realization of ~ may be viewed as a random subset
{Xl' X 2 , X 3 , ••• } of !Rd. Think of particles being placed at Xl' X 2 , X 3 , ••• by ~.

Given a realization of ~, for each pair (X;, Xj) of particles of ~, form a 'bond'
between X; and X, with probability gtX, - X j ) , independently of all other pairs of
points of ~. Let the connected components of the resulting infinite random graph be
called clusters.

There are several reasons for studying this model (see Kesten (1987), Section
2.4). A version of the motivating model of Gilbert (1961) (see also Kesten (1987),
Section 2.4) is to set d = 2 and X; to be the location of a communications station.
Two stations separated by a vector x may pass messages directly between each other
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On a continuum percolation model 537

with probability g(x). The clusters of stations which can communicate with one
another may be of interest.

Another motivating model is to consider the spread of disease in a forest, in which
trees are scattered randomly over ~z by a Poisson process, and disease communi
cates between two trees with a probability depending on their separation. Other
percolation models in polymerization and statistical mechanics also fit naturally into
a continuous context.

Generally, in these physical models the point process used consists of a large finite
number of points independently uniformly distributed over some large set in ~d. It
is more convenient to consider an infinite Poisson process, which is a good
approximation to this finite point process, away from the boundary of the set.

A special case of our model has g(x) = I{lxl~ro}' where I{ } denotes indicator
function, that is g(x) = 1 if [x] ~ ro, 0 if Ixl > roo In this case all the randomness of the
model is from the Poisson process. This model is equivalent to the placing of balls of
radius ro/2 around each particle Xi' and examining the connected components (i.e.
clusters) of the union of these balls. Such a model (the 'Poisson blob' model) can be
found in Section 10.5 of Grimmett (1989), and references therein. One generaliza
tion of the Poisson blob model is to replace the balls of fixed size by random shapes
(the 'Boolean model'). See Hall (1985), (1986), (1988), and Stoyan et al. (1987).
The model here is an alternative generalization.

In this paper we derive three facts about this model. First, we show that the
critical intensity PI of the Poisson process, at which the mean cluster size becomes
infinite, and the critical intensity pz at which an infinite cluster appears, are
non-trivial in the sense that 0 < Pi< 00 (i = 1, 2). This is one difference between our
model and the Boolean model, in which PI may be 0 (Hall (1985)).

Second, we look at the cluster density (number of clusters per unit volume) and
show it is a well-defined continuous function of the parameter p. This is known as
the 'free energy' in the physics literature. Our results are the continuum analog of
the results of Grimmett (1976).

Third, we show that under some extra conditions on g, one of which is that g have
bounded support, when p becomes large, the expressions for the density of finite
clusters, and for the proportion of the particles not in an infinite cluster, are
dominated by terms from the isolated particles. In other words, when p is large,
'most of the finite clusters are J-clusters' (a l-cluster is one that consists of a single
Poisson unit). The argument of this result can be extended to some cases of the
Boolean model.

2. The cluster at the origin

Suppose now that we add a point X 0 = 0 to the Poisson process
{Xl' X z, X 3 , • • .} = PfJ. The resulting point process, given by PfJ U {O} =

{Xo, Xl' X z, • • .}, is a Poisson process 'conditioned to have a point at 0', in the
sense of Palm measures (see for example Daley and Vere-Jones (1988), and
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538 MATHEW D. PENROSE

references therein). Indeed, if we condition PJ to have a point in a small
neighborhood of 0, the conditional distribution of the points of r;} outside that
neighborhood is still a Poisson process. In the terminology of Hall «1985), (1986»,
we are considering an 'arbitrary point of the Poisson process', which is without loss
of generality assumed to lie at O.

Given a realization of r;}, form bonds between points of r;} U {O} by the same rule
as before. That is, form a bond between Xi and Xi (0 ~ i < j < (0) with probability
gt X, - X j ) , independently of all other pairs (Xi' X j ) .

Denote by C(O) the 'cluster at the origin', that is C(O) is the union of {O} and the
set of Xi for which there exists n ~ 1 and i(O), i(l), · .. , i(n) with i(O)= 0, i(n) = i
and Xi(k) bonded to X i(k+l)' 0 ~ k < n. Denote by #[C(O)] the number of points
(including 0) in C(O), so that #[C(O)] is a random variable taking values in
{(X), 1,2,3,· · .}. Let qk(P) denote the probability, when r;} has intensity P, that C(O)
consists of k points. That is,

qk(P) = P(#[C(O)] = k), k = 1,2,3, · ...

Also, for any N E ~, define the function fN(P) by
00

fN(P) = 2: kNqk(P).
k=l

Functions of the form fN(P) are of great interest in this model. For example,
fi>(p) =P[#[C(O)] <00], so that fo(p) is the proportion of the particles of r;}, at
intensity o.. which do not lie in an infinite cluster. We shall see that fo(p) is
non-increasing in P and the probability that an infinite cluster exists is 0 if fo(p) = 1,
1 iffo(p) < 1. These facts correspond to basic results in lattice percolation (Grimmett
(1989), Section 1.4).

As another example,
00

pf-l(P) = P 2: (qk(p)/k)
k=l

is the cluster density; that is, the number of clusters per unit volume in a sense to be
made precise below. This quantity, also known as the 'free energy', is sometimes
useful (see, for example, Sykes and Essam (1964), and Aizenman et al. (1987».

More generally, fN(P) is the Nth moment of the size of the cluster at an arbitrary
point of PJ, discounting infinite clusters. That is,

fN(P) = E[(#[C(O)])NI{#lC(O)]<oo}],

where I{ } denotes indicator function.

3. Definitions and notation

Suppose we are given a measurable function g:~d~[O, 1], satisfying (1.1) and
(1.2). On a probability space (Q, ~, Pp ) , with corresponding expectation Ep , set up
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f/}, a homogeneous Poisson process with rate p on ~d, and a set of Bernoulli
(zero-one) random variables (D{x,y}, {x, y} E .sIi), where the indexing set .sIi consists
all unordered pairs {x, y} of distinct elements of ~d. Using the Kolmogorov
existence theorem, arrange that for each {x, y} e si, P[D{x,y} = 1] =g(x - y), and
that the D{x,y} are independent of ~ and of one another.

Given a realization of (g;, (D{x,y}, {x, y} E .sIi», write g; as a random set:
f/} = {Xl' X 2 , X 3 , ••• } C ~d. Define an undirected graph CD with vertices at the
points of ~, by including the edge (Xi' Xj) if and only if D{x;,x

j
} = 1. The connected

components of CD are the clusters associated with this realization of (~, (D{x,y}».
We can obtain the cluster at the origin C(O) on the same probability space by

extending CD to a graph ~, obtained by adding a vertex at 0 to g; and including the
edge (0, Xj) in ~ if and only if D{o,x

j
} = 1. Define the cluster at the origin C(O) to be

the component of ~ which includes 0 (or more precisely, the set of vertices of ~
lying in that component). Write #[C(O)] for the cardinality of C(O).

We introduce some more notation. Suppose C = {Xl' X2, ... , Xk} is a finite set of
points in ~d, and Xo is another point of ~d. Suppose a random graph G is formed
on the points of C U {xo} by closing the edge (Xi' Xj) with probability g(x; - Xj)
independently of all other edges. Let gl(XO; C) denote the probability that Xo is not
isolated in this random graph. That is,

k

gl(XO; C) = 1- IT (1 - g(xo - Xj».
j=l

Also, define g2(XO, Xl' · · · , Xk) to be the probability that the random graph G is
connected. That is,

g2(XO, Xl' ... , Xk) = 2: TI'g(x; - Xj)TI"(1- gtx, - Xj»,
G1

where the summation E is over all connected graphs GI on {O, 1,2, · . · ,k}, the
product TI' is over all edges (i, j) (1 ~ i <i ~ k) which are in GI , and the product TI"
is over all edges (i, j) (1~ i <i ~ k) which are not in GI .

Finally, if A is a (Lebesgue) measurable set in lRdiet IA I denote its Lebesgue
measure. If also X E ~ d, let X + A denote the translated set {x + y :YEA}.

4. Statement of results

By way of practice, consider the points of g; which are bonded to O. By
proposition 3.8 of Resnick (1987), for example, the random set of points in
IR d x {O, I}, given by {(X;, D{o,x;}), i?;; 1}, is a homogeneous Poisson process on
IR d x {O, I} for which the expected number of points in A x {I} is pIA g(x) dx. So
the set of points of ~ which are bonded to 0 forms a non-homogeneous Poisson
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process on ~ d with intensity measure pg(x) dx. In particular,
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(4.1)

(4.3)

The next result extends this to a formula for all qj(p),

Proposition 1. (a) For any measurable A c ~d and k E {I, 2, 3, .. '},

Pp[#(C(O»=k and C(O)cA]

(4.2) = (:~-:)! L···Lg2(O, Xl, · • • , Xk-l)

x exp {-pLdgl(Y; {O, Xl' X2, · · · , Xk-l}) dY}dx 1 • • • dxi :«.

(b) If A is a measurable set in (~d)k-l which is permutation invariant, then

Pp[#(C(O» = k and C(O) = {O, Xl' XZ, ..• ,Xk-l} for some (Xl' .•• ,Xk-l) E A]

k-l J
= (:_ 1)! A g2(O, Xl, · · · , Xk-l)

x exp {-pLdgl(Y; {O, Xl' · · · , Xk-l}) dY} dix«, · · · , Xk-l).

By setting A = ~d in (4.2), we obtain an expression for qk(P), In the special case
where g(x) = I{lxl~ro}' this expression reduces to

where the integral is over all Xl' ••. , Xk-l such that the union of the radius (ro/2)
balls centered at 0, Xl' .•• ,Xk-l is connected, and V(O, Xl' .•• ,Xk-l) is the volume
of the union of the balls of radius ro centered at 0, Xl"'" Xk-l'

Proposition 1 shows why the integrability condition (1.2) on g(.) is needed for the
model to be non-trivial: if it fails, then with probability 1 there are no finite clusters.

The next three results are continuum reworkings of well-known facts on the
critical phenomena of lattice percolation.

Proposition 2. The function 1- fo(p) (which equals Pp[#(C(O» = 00]) is non
decreasing in p. Also, Ep[#(C(O»] is non-decreasing in p.

Proposition 3. The probability (under Pp) that there exists an infinite cluster is 0 if
fo(p) = 1, 1 if fo(p) < 1.

Theorem 1. There exist critical intensities PI and pz with 0 < PI ~ pz < 00, such that

Ep[#(C(O»] < 00, Ep[#(C(O»] = 00,
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and

Pp[an infinite cluster of <fj exists] = 0,

Pp [an infinite cluster of C§ exists] = 1, P>P2·

541

Zuev and Sidorenko (1985a) (see also Grimmett (1989), Section 10.5) proved that
p, = P2 in the Poisson blob model (that is, when g(x) = I{lxl~ro}).

The next result says that as a function of P, the 'cluster density' is a well-defined
continuous function of p. Let k 1(n), k2(n),···, kd(n) be sequences of positive
numbers, each of which converges (independently) to 00 as n~ 00. Let B = B(n)
denote the box (-kt(n), kt(n)) x (-k2(n), k2(n)) x··· x (-kd(n), kd(n)). Let
K(B) denote the number of clusters contained in the box B. For a cluster which is
partially in B you may take its contribution to K(B) to be either 0 or as many
components as it splits into when particles not in B are removed, or any number in
between; the following theorem is true in all these cases.

Theorem 2. (a) [K(B(n))/IB(n)l] ~ pf-t(p) almost surely and in oab mean,
for all lX ~ 1.

(b) The function f-t (p) is continuous in p.

Thus it is reasonable to speak of pf-l(P) as the 'cluster density', and this density is
continuous in p.

The motivation for the next result is the fact that actual calculations of the value
of fN(P) (for example when N is -1 or 0) for given values of p, are sometimes of
physical interest. The definition of fN(P) by the series

(4.5)
00

fN(P) = L kNqk(P)
1

suggests that we approximate to fN(P) by the sum of the first few terms in the series
(4.5). By (4.1), the first term is given explicitly by qt(p) = exp {-pJ g(y) dy}, but
in subsequent terms, the expression given by (4.2) for qk(P) rapidly becomes very
complicated.

If we sum a finite number of terms in the series (4.5), we obtain a lower bound for
fN(p); for example, fN(P)~ql(P). In the case N= -1, we can obtain an upper
bound for the cluster density by the argument of Mack (1954), (1956); combining
these upper and lower bounds, we have, for all P,

(4.6) exp {-p{dg(y) dY} ~f-l(p) ~ exp {-(P/2){dg(y) dyl
The next result shows that at least under certain conditions on g, when P is large the
lower bound in (4.6) is much sharper than the upper bound, and in fact the first
term of the series (4.5) for fN(P) dominates (a similar statement applies when P is
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small; see Theorem 3.1 of Hall (1986), in the case of the Boolean model when p is
small).

Let us say a function g: ~ d~ [0, 1] encloses zero if there exists a continuous
function h:§d-I~(O, 00), where §d-l denotes the sphere of all unit vectors in IR d,

such that:
(i) h(e) = h(-e), e E §d-t,

(ii) g(x) = 0 for almost all x E ~d of the form x = Ae where A> 2h(e), e E §d-l;

and
(iii) for some E > 0, g(x) > E for all x E ~d of the form x = Ae, where IA - h(e)1 <

E, e E §d-l. In other words, g is bounded away from zero in some open
neighborhood of the surface {h (e)e :e E §d-l}.

Condition (ii) ensures that g has bounded support if it encloses zero. The
condition that g encloses zero is not very elegant, but it covers many natural cases.
For example, if g(x) is a decreasing function of Ixl (or of some other norm on ~d)

with bounded support, it encloses zero. Also, if g is the indicator function of some
annulus, it encloses zero.

Theorem 3. Suppose g encloses zero. Then for all N E ~ ,

(4.7)

We have been unable to prove (4.7) when g has unbounded support, but we can at
once obtain the following.

Corollary. Let N ~ o. If g(x) depends only on [x] and is a decreasing function of

Ixl then

(4.8)

In the case N = 0, we can restate (4.8) as a large deviations principle for the
probability that the cluster at 0 is finite:

As motivation for the proof of Theorem 3, consider first the case g(x) = I{lxl~ro}.

At high density the exponential term in (4.4) makes it very beneficial, in terms of
maximizing probabilities, to make the volume V(O, Xl' .. · ,Xk-l) of the region
which must be empty for {O, Xl' ... ,Xk-l} to be a finite cluster, as small as
possible. This is done by setting k = O.

5. Proof of Proposition 1

(a) It suffices to prove (4.2) for bounded Borel A c ~d. Let E(k, A) denote the
event that #[C(O)]= k and C(O)cA. To find its probability, condition on the
number of points of ~ inA. Conditional on there being r points of ~ in A, where
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(5.1)

r ~ k - 1, we may denote the positions of these points as Xl' X 2 , • • • ,Xn where
Xl' . · · , X, are independent and uniformly distributed over A. The set of points
other than 0 in C(O) is then equally likely to be any size k - 1 subset of
{Xl' . · · ,Xr } . So

Pp[E(k, A) I@'J places r points in A]

=(k ~ 1) IAI-rLdx, · · ·LdxrQ[C(O) = {O, Xl' · · · ,Xk-l}],

where Q[ ] denotes probability when points at 0, Xl' ... , .r, are superimposed on a
rate p Poisson process on lRd\A, and the points of the resulting point process are
bonded by the usual rule (points at X and yare bonded with probability g(x - y),
independently of all other pairs of points).

But the probability that a point at y is bonded to at least one of
{O,XI' X2, ... , Xk-l} is gl(Y; {O, Xl' ... , Xk-l}) by definition. By the same argu
ment as in the proof of (4.1), the probability that no point of a homogeneous rate p
Poisson process on lRd\A is bonded to any of 0, Xl' ... , Xk-l is

exp [ -pL."\A gl(Y; {O, Xl, · · · ,Xk-l}) dy J.
Hence

Q[C(O) = {O, Xl' . · . , Xk-l}] = g2(0, Xl' . · · , Xk-l)

x exp [-PI. gl(Y; {O, Xl' · · · ,Xk-l}) dy]rr (1- gl(Xj; {O, Xl' · · · ,Xk-l}))'
~~ j=k

Substituting in (5.1), we have

Pp[E(k, A) n {@'J places r points in A}] = exp (-p IAl)pr[(k -1)! (r - (k -1))!]-1

xLdx, ...Ldxk- lg2(O, Xl' · ", Xk-l) exp [ -pL."\A gl(Y; {O, Xl' · · " Xk-l}) dY]

x (L [1- gl(Z; {O, Xl> · · · ,Xk-l})] dz s":
Summing this last expression over r ~ k - 1, we obtain

P[E(r, A)] = exp (-p IAI)(pk-I/(k - 1)!)

x Ldx, ... Ldxk- l[g2(O, Xl' "', Xk-l) exp {-pL."\A gl(Y; {O, Xl> . · " Xk-l}) dY}

x exp {pL(1- gl(Z; {O, Xl, · · · , Xk-l})) dz }]

which reduces to the desired result.
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(b) By (a), the result holds for all sets A of the form A = (A x A x ... x A),
where A is a Borel set in IR d

• Unfortunately, such sets do not generate the
sigma-field of all permutation-invariant Borel sets in (IRd)k-l. However, this
sigma-field is generated by the sets A of the form

A = {(Xl' ... , Xk-l): exactly i; out of {Xl' ... , Xk-l} lie in Am, 1~ m ~ M}

where M~k-l, jm?;;1 (l~m~M), ~~=ljm=k-l, and Am (l~m~M) are
mutually exclusive, bounded Borel sets in IR d

•

For sets A of this form, it is possible to prove (4.3) by conditioning on the number
of points placed by ~ in AI, A 2 , ••• ,Am. The argument is similar to the proof of
(a) above.

6. Proofs on critical probabilities

Proof of Proposition 2. Let Cp(O) denote the cluster at the ongm when the
Poisson process ~ has intensity p. It suffices to show that whenever P' < P, the
random variable #[Cp(O)] stochastically dominates the random variable #[Cp,(O)]
(that is, Pp[#(C(O)) ~x] ~ Pp,[#(C(O)) ~x], for all real x).

We can couple Cp(O) and Cp,(O); place them on a single probability space by
superimposing an independent Poisson process ~" of intensity p - p' on a Poisson
process ~' of intensity p', to obtain a Poisson process ~ = ~' U ~', of intensity p.
To obtain Cp,(O), use only points of ~'; to obtain Cp(O), use all points of ~, using
the same collection of Bernoulli random variables D{x,y} in each construction. In this
coupling, every point of Cp,(O) lies in Cp(O), which implies the desired stochastic
domination.

Proof of Proposition 3. Let B be any cube in ~d. Let NB be the number of
particles of ~ which lie in B and are part of an infinite cluster. Then

(6.1)

To see this, condition on the number of particles of ~ in B.
Hence, if fo(p) = 1, then N = 0 almost surely. Since B is an arbitrary cube, there

are almost surely no infinite clusters in this case.
On the other hand, if fo(p ) < 1, then if we set B (n) = [- n, -r. then by an ergodic

theorem (Dunford and Schwartz (1958), Theorem VIII.6.9),

NB(n)/(2n)d~ p(l- fo(p)) almost surely,

which implies the existence of an infinite cluster almost surely (there exists a more
elementary proof of this fact using the Kolmogorov zero-one law for sequences of
independent sigma-fields).

Proof of Theorem 1. Let PI = sup {p: Ep[#(C(O))] < oo} and

P2 = sup {p: Pp[#(C(O)) < 00] = I} = sup {p :fo(p) = I}.

https://doi.org/10.2307/1427621 Published online by Cambridge University Press

https://doi.org/10.2307/1427621


On a continuum percolation model 545

(6.2)

Clearly PI ~ P2. In view of Propositions 2 and 3, it suffices to show that PI > 0 and
P2 < 00.

To prove that PI > 0, use an adaptation of the 'method of generations' (Zuev and
Sidorenko (1985b), Section 4.1; also Gilbert (1961), Section 2). Here, the first
generation consists of particles bonded directly to O. The (k + 1)th generation
consists of particles bonded to particles from the kth generation but to no particles
of earlier generations. This method shows that

Ep[#(C(O»] ~ ~o [pLdg(X) dx r-
In particular, if pJ g(x) dx < 1, then Ep[#(C(O»] < 00. Thus,

PI ~ [Ldg(x) dxrl

> o.

It remains to show that P2 < 00 (this is immediate from the case N = 0 of Theorem
3 or of its corollary, if g satisfies the extra hypotheses of those results).

Take linearly independent Xl and X2 such that g(Xi) > 0 and Xi lies in the Lebesgue
density set of g (see Dunford and Schwartz (1958), Theorem 111.12.8), i = 1, 2.
Then there exists 6 so small that for all cubes B of side at most 6 with Xi E B,

(6.3) Lg(y) dy liBI> (!)g(x;) (i = 1, 2).
IRd

Let B{, denote the cube [-6, 6]d. We may assume that 6 is so small that all the sets
of form (nxl + mx- + B{,), n, m E 7L, are mutually exclusive.

If X E B{, and {Xl' X 2 , X 3 , • •• , X N } is a homogeneous Poisson process with rate
p/4 on the cube Xi + B6 (or on -Xi + B6 ) (i = 1 or 2), then the probability that
D{x,x

j
} = 0, 1~j ~ N, (i.e. that X is not bonded to any of the particles

Xl' X 2 , • • • , X N ) is

(6.4)
exp {( -pI4)I. g(y - x) dy}

x, + B{)

= exp {( -pI4)I. g(y) dy} ~ exp {(-p/8) bdg(x;)},
x+x;+B{)

where the inequality is from (6.3).
One way to construct the Poisson process ~ is as follows. For each edge e of 7L2

,

say between (n, m) and (n', m') (where I(n - n')1 + I(m - m')1 = 1), place inde
pendent Poisson processes with rate p14, ~e,n,m and ~e,n"m" on the sets (nxI + mx2 +
B{,) and (n'xI + m'x-.+ B6 ) , respectively, independently of all the other edges of 7L2

•

The superposition (that is, the union) of all the Poisson processes given in this way is
a rate P Poisson process on the union of all sets in IR d of the form nXI + mx2 + B6,
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n, m E 7L. If we superimpose a Poisson process with rate P on the complement of this
set, we end up with r;} a Poisson process with rate P on the whole of ~d.

Given a realization of (r;}, (D{x,y}», constructed in this way, we can construct a
discrete cluster D(O) (that is, a subset of £?) by the following algorithm.

Step 1. Place 0 in D(O). Define Xo,o to be the origin in ~d.

Step 2. (ii) Consider some edge e of 7L2
, between (n, m) and (n', m '), such that

(n, m) E D(O), (n', m') ~ D(O) and e has not been considered before. If no such e
exists, stop.

Step 3. If there exists a point of the Poisson process r;}e,n',m' which is bonded to
Xn,m, then choose such a point, denote it Xn',m" and add (n', m') to the set D(O).

Step 4. Return to Step 2.
If C(O) is finite, then so is D(O) and the algorithm terminates. But at Step 3 of the

algorithm, the probability of adding a new point of 7L2 to D(O) exceeds 1 - exp
(-cp), c being a finite constant, by (6.4). The critical probability for bond
percolation in 7L2 lies strictly below 1 (see for example Grimmett (1989), Theorem
1.10), so that for large p, the probability that the set D(O) (and hence C(O» is
infinite exceeds zero.

7. The cluster density: proof of Theorem 2

(a) In the statement of this theorem, B(n) is a box in ~d, centered at 0, whose
side lengths are 2k1(n), 2k2(n),···, 2kd(n), which converge independently to
infinity as n --+ 00. Assume for now that k1(n), ... , kd(n) are all integers.

First, we follow Section 4.1 of Grimmett (1989); see also Lemma 2.1 of Aizenman
et al. (1987). For any set B c ~d define K(B) by

K(B) = 2: [#(C(Xi)]-l.
X;EB

Then

(7.1)

as in (6.1), this can be proved by conditioning on the number of particles of r;; in B.
By an ergodic theorem (Dunford and Schwartz (1958), Theorem VIII.6.9), as n--+oo

(7.2) K(B(n»/IB(n)1--+ P!-l(P)

a.s. and in L lX, for all a ~ 1. Also,

(7.3) IK(B(n» - K(B(n»1 ~ 2N(n),

where N(n) is the number of particles Xi of r;; for which Xi E B(n), and Xi is bonded
to some particle X, of r;} lying in ~d\B(n). It remains to estimate N(n).

Let e > O. Denote by (1- e)B(n) the box {(1- e)x:x E B(n)}. Let JT denote the
(random) counting measure on ~d associated with r;}. By the ergodic theorem
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already referred to, as n~oo, n(B(n»/IB(n)I~,p and n[(1- E)B(n)]/
1(1- E)B(n)l~p so that

(7.4) n[B(n)\(I- E)B(n)]/IB(n)l~p(l- (1- s)")

a.s. and in La, a~ 1.
Now choose '0> 0 to be so big that

L~rog(x) dx < E.

For large n, each point of (1 - E)B(n) lies a distance of at least '0 from all points of
~d\B(n). Hence the number of points of ~ which lie in (1- E)B(n) and are bonded
to at least one point of IR d\B (n) is at most M (n), where we define M (n) to be the
number of points Xi of ~ lying in B(n) for which Xi is bonded to some point X, of ~
with IXi - Xjl ~ '0. By conditioning on the number of particles ~ places in B(n), we
find that

E(M(n» = p2IB(n)II g(x) dx.
IXI~ro

So by the same ergodic theorem as before, as n~ 00

(7.5)

Since for large n,

o~ N(n) ~ n[B(n)\(1- E)B(n)] + M(n)

and E is arbitrary, (7.4) and (7.5) imply that

(7.6) N(n)/IB(n)I~O

a.s. and in L a(a ~ 1); together with (7.2) and (7.3) this implies the desired result.
Finally, we can remove the restriction that kt(n), k2(n), ... , kd(n) be integers by
approximating to them by integers and using similar arguments to the above.

(b) By (7.1) and (7.3),

(7.7) I(Ep[K(B(n»]/IB(n)1) - p!-l(p)1 ~ 2Ep[N(n)]/IB(n)l,

where N(n) is as in (7.3). By conditioning on the number of points of ~ lying in
B(n), or otherwise, we have

Ep[N(n)] = p J. [1- exp {-pL g(y -x) dy}] dx
B(n) 1Rd\B(n)

~ p2J. (L g(y - x) dy ) dx,
B(n) 1Rd\B(n)
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so that (Ep[N(n)]/IB(n)I)~Olocally uniformly in P as n~oo. Hence by (7.7), for
continuity of pf-l(p) in p it suffices to prove that for any fixed box B, Ep[K(B)] is
continuous in p. We prove this in the case where K(B) is the number of clusters
obtained when all points of ~ not lying in B are removed.

Let u(r) denote the expected number of clusters formed when r particles are
placed independently in B according to a uniform distribution. Clearly, 0 ~ u(r) ~ r.
Then conditioning on the number of points ~ places in B, we have

oo

Ep[K(B)] = L (e-P1B1(p IBl)r/r!)u(r).
r=O

Each term in the series is continuous in p, and the tail of the series converges to 0
locally uniformly in p. Hence, Ep[K(B)] is continuous in p.

8. Large density: proof of Theorem 3

Since fN(p) is an increasing function of N, it suffices to prove the theorem when N
is a positive integer. An important tool in this proof is the discretization of [Rd. This
technique has been used before, for example in Zuev and Sidorenko (1985a,b).

Let D> 0 and let D7Ld be the lattice of points in [Rd of the form
(Dn 1, Dn2' ... , Dnd), where n 1, n2, ... , nd are integers. Let Flj: [Rd~ D7Ld denote
the many-to-one mapping which sends each point of [Rd to the closest point to it of
D7Ld

• The mapping Flj is well defined except on a Lebesgue-null set which we may
ignore. Then the image of C(O) under Flj is a random subset of D7Ld, which we
denote by S(O). Clearly 0 E S(O) and #(S(O» ~ #(C(O», where #( ) denotes
cardinality. If #(C(O» = 1, then S(O) = {O}. We shall prove the following three
lemmas which when combined prove the theorem. The first one does not require
that g enclose zero, but the other two do.

Lemma 1. If Dis small enough, then as p~ 00,

00

L kNpp[#(C(O» = k and S(O) = {O}]/ql(P)~ 1.
k=l

Lemma 2. Suppose g encloses zero. If D is small enough, then for some m., > 0, as
p~oo,

00 00

L L kNpp[#(C(O» = k and #(S(O» = m]/ql(p)~O.
m=mo k=2

Lemma 3. Suppose g encloses zero. If D is small enough, then for each fixed m, as
p~oo

00

L kNpp[#(C(O» = k and #(S(O» = m)]/ql(P)~O.
k=l
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In the proofs which follow, C, Cl, C2 and so on denote positive finite constants
which may change from line to line. We shall prove Lemmas 2 and 3 in the case
d =2; the modifications to d ~ 3 are not hard. To prove Lemma 1 we require the
following.

Lemma 4. If g: (Rd --+ [0, 00) satisfies 0 < Jg(x) dx < 00, then

lim inf Ihl-li Ig(x + h) - g(x)1 dx > o.
Ihl!O Rd

Proof We prove this only in the case when g has bounded support. Consider the
vector integral

f(g(x-h)-g(x»xdx= fg(x-h)xdx- fg(x)xdx

=hfg(x) dx.

Here, all integrals are over (Rd. Taking Euclidean norms, we have J Ixllg(x - h)
g(x)1 dx ~ Ihl Jg(x) dx. Take r. so that g(x) = 0 for Ixl > r.. For Ihl~ 1, both
g(x - h) and g(x) are zero for Ixl > 1+ r., Hence

(1+ rl) f Ig(x - h) - g(x)J dx ~ Ihl f g(x) dx, Ihl ~ 1.

This implies the desired result.

Proof of Lemma 1. Let A 6 denote the d-dimensional cube (-6/2, 6/2)d. Set
q2(p) = Pp[S(O) = {O} and #(C(O)) = k]. We are required to prove that for any
given N>O,

(8.1)
00

L kNqZ(p)/ql(P)--+O as p--+oo.
k=2

By Proposition 1 and the formula (4.1) for ql(P),

qZ(P)/ql(P) = (pk-l/(k -1)!)J ...J g2(0, Xl' · · · ,Xk-l)
A6 A6

(8.2) X exp(-pLdgl(Y; {O, xv'" ,Xk-l})dy)/exp (-pfg(y)dy) dx l · · · dxk- l

~ (pk-l/(k -1)!)J ...Jexp (-pi [gl(Y; {O, Xl' · · ., Xk-l}) - g(y)] dy)
A6 A6 Rd

X dx, · · · dxi :«.

Define the set f!..(k, 6) c «(Rd)k-l by

f!..(k, 6) = {(Xl' · · · ,Xk-l) E (A 6 )k- l : IXll~ lXii, 2~ i ~ k - I}.
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The integrand on the right-hand side of (8.2) is symmetric in Xl' · · · , Xk-l; hence,

qZ(P)/ql(P) ~ (pk-l/(k - 2)!)! · · -f
6(k,6)

exp ( -pLd {gl(Y; {O, Xl> • • • ,Xk-l}) - g(y)} dy ) dxk- 1 • • • dxi.

By definition, the integrand inside the braces equals the probability that if particles
are placed at 0, Xl' X2, - - - , Xk-l and y by PfJ, the particle at y is bonded directly to
at least one of {Xl' - - - , Xk-l} but not to O. Thus

gl(Y; {O, Xl' - - - , Xk-l}) - g(y) ~ g(y - XI)(l - g(y» ~ (g(y - Xl) - g(y»+
where (-)+ denotes positive part (that is, u ; = max (u, 0». By Lemma 4 there is a
constant c such that for all X I E A 6 we have

Hence,

qZ(P)/ql(P) ~ (pk-l/(k - 2)!)! - - -f exp (-pc IXII) dxk- 1 • - • dx,
6(k,6)

= (pk-l/(k - 2)!) f exp (-pc IXll)(Cl IXlld
) k - 2 dx,

A6

where CI is the volume of the unit ball in IR d
• Noting that r ~ d6 on A 6 , we have

(8.3)

so that each term in the series ~;=2kNqZ(p)/ql(P) converges to zero as p~oo.

Also, there exists a constant c such that for k ~ (N + 2), (k N /(k - 2)!) ~ c/(k 
2 - N)!. Hence, by (8.3)

(8.4) x i (pC
1)k-2-Nrd(k-2-N)/(k - 2 - N)!} dr

k=N+2
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Taking 6 to be so small that for r < do, c.r" ~ cr/2, we have by (8.4) that

~ CZp-(d-l)(N+l)1'''' exp (-sc/2)Sd(N+l)-l ds,

where we substituted s = pro Thus,

551

This completes the proof of (8.1), and hence of Lemma 1.

Proof of Lemma 2. Assume d = 2. Let h(e), e E §d-l, be as in the description
immediately preceding the statement of Theorem 3 of when the function g encloses
zero. Denote by A h the open set {Ae:O~A<h(e), eE§d-l}. Take 6>0 to be so
small that 26 ~ h(e) for all e E §d-l and, for x on the boundary of A h and lyl < 36,
g(x + y) ~ 6. Such a 6 can be found by compactness arguments.

Given a finite set C of points in 1R 2
, define the set W(C) c 1R 2 as follows. Let

Wo(C) be the union of all sets of the form x + A h , X E C. Let W(C) be the union of
all the squares of the form [n6, (n + 1)6] x [m6, (m + 1)6], n, m E 7L, which
intersect Wo(C).

Set W = W(C(O)). Then W is a connected subset of 1R 2
• Indeed, by the definition

of h, with probability 1 for any Xi and X, in g; between which a direct bond forms,
the sets Xi + A h and X, + A h overlap. The exterior boundary aw of W is a closed
curve composed of edges of the lattice 67L?, which we endow with its natural graph
structure. Let #(aW) denote the number of edges of 67L2 comprising aw, so that
the length of aw is 6#(aW).

The curve aw is completely determined by C(O). We examine the probability that
aw is a particular closed curve, y say, composed of edges of 67L2

• Let y denote the
set of points in IR 2 which lie a Euclidean distance at most 6 from some point of y.
Let int (y) denote the set of points of 1R 2 which lie in the interior of y but not in y.

If aw = y, then no point of C(O) lies in y. For if y E Yand y = aw, then there
exists a point of the boundary of W close to y, and hence a point not in Wo(C(O)
which is close to y. To be precise, there is a point z with [z - YI ~ 26, for which
z ft Wo(C(O)). But for all such z, by the construction of Wo(C(O»), Z is distant at least
inf {h(e) .e E §d-l} from the nearest point of C(O); hence, by our choice of small 6,
y cannot be in C(O).

Let C1(0) denote the cluster including 0, obtained when we remove all bonds of
~ except those between points in int (y). Let Ek,y denote the event that C1(0)
consists of k particles and the disposition of these particles is such that the curve
aW(C1(0)) equals y. Let E~,y denote the event that no particle of ~ in y is attached
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to any particle of C1(O). Given that Ek,y occurs, the conditional probability of E~,y is
exp{-pfy gl (y ; C1(O)) dy } (note that the Poisson process of points in Y is
independent of the Poisson process of points in int (y)). But for each Y E y, if Ek,y
occurs, by the construction of W(C1(O)) there exists z on the boundary of WO(C1(0))
for which [z - yl < 3<5. Hence, again by our choice of small <5, gl(Y; C](O)) ~ <5.
Also, y contains the side <5/2 squares centered at the center of each edge of y, which
are disjoint. Hence, the area of y is at least (<52/4)# (y). Hence,

P[E~,y IEk,y]~ exp {-p(<53/4)#(y)} = exp (-cp#(y)),

where c is independent of y. Thus,

Pp[#(C(O)) = k and aw = y] ~ Pp[Ek,y n E~,y]

~ exp (-cp#(y))Pp(Ek,y).

Now #(C1(0)) ~X + 1, where X is the number of points of ~ (in C1(0) or not)
lying in int (y), a Poisson random variable with parameter p lint (Y)I. Since the area
enclosed by y is at most a constant (independent of y) times the square of its length,
for N~O

00 00

2: kNpp[#(C(O)) = k and aw = y]~ exp (-cp#(y)) 2: kNpp[Ek,y]
k=l k=l

Also, -the lattice set S(O), defined earlier to be the image of C(O) under the
many-to-one mapping Ftn is contained in the interior of y; hence, #[S(O)] is at most
a constant times (#(y))2, so

2: kNpp[#(C(O)) = k and #(S(O)) ~mo]
k~l

~ 2: kNpp[#(C(O))=k and #(y)~cm&]
k~l

~ 2: 2: C1 exp (-c2pm)pNm2N.
m~cm~ y:#(y)=m

By a Peierls argument (that is, one based on enumeration; see Grimmett (1989), p.
17), the number of closed curves y along edges of <5Z2

, enclosing 0, for which
#(y) = m, is at most c'", for some constant c. So

(8.5)
2: kNpp[#C(O) = k and #(S(O)) ~mO]/ql(P)
k~l

~ 2: c] exp (C2m + C3P - C4mp)pNm2N.
m~cm~

If we take m., to be big enough, then for m ~ cm~, C4m ~ 2C3; if also P ~ 4C2/C4' the
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right side of (8.5) is at most

L CI exp (C2m - (!)C4mp)pNm2N ~ L CI exp (-(~)C4mp)pNm2N.
m~m~ m~m~

553

This last series is convergent; each term converges to 0 as p ---+ 00, and for p large,
each term is decreasing in p. Hence, the sum of the series tends to 0 as p ---+ 00.

Proof of Lemma 3. Assume d =2. Since g has bounded support, there are only
finitely many possible configurations for S(O), of cardinality m. So it suffices to show
that for any finite subset fJ of the lattice 6Z?,

00

(8.6) L kNpp[#[C(O)] = k and S(O)= 1]]/Ql(P)---+O as p---+ oo•
k=l

Let C,,(O) be the cluster including 0 obtained when we remove all points of gp not
lying in F"6 I(1]). Let E",k be the event that C,,(O) has k points, and for each point S
of TJ, at least one point of C,,(O) lies in F"6 1(s ). So E",k lies in the sigma-field ~"

generated by the points of gp in F"6 I(1]) and the bonds between them. Let H" be the
event that there is no point of gp in IR 2\F"6 I

( 1]) which is bonded to any point of
C,,(O).

The event [#(C(O» = k and S(O) = TJ] equals the event E",k n H". The conditional
probability of H" given ~" is equal to

We wish to estimate this conditional probability when E 71, k occurs.
Write points in 1R 2 in Cartesian form as (z ', x 2

) . Write random variables in 1R 2

similarly as (xl, X 2
) . Define the width of a set A c 1R 2 to be sup {Ix l

- yll : (z ', x 2
) E

A, (yl, y2) E A}, and its height to be sup {lx2
- y21: (z ', x2) E A, (yt, y2) E A}.

Let 61 > 0 be small enough for the conclusion of Lemma 1 to hold. We shall take
6 to be much smaller than 61• If both the width and the height of F"6 I ( fJ ) are less
than 61/2, then C(O) is contained in a side 61 square centered at O. In this case,
Lemma 1 gives us the desired result (8.6); so we may assume without loss of
generality that the width of fJ exceeds 61/2. Define the numbers X:efH X~ght' and x~op

(all of which are of the form nb, n E Z) as follows:

x:eft = inf {Xl: (z ', x2) E fJ}, X~ght = sup {x": (z ', x2) E fJ},

x~op = sup {x 2
: (r ', x 2

) E fJ}.

Also, define the sets A left , Aright and Atop in 1R 2 as follows:

A left = {(Xl, x 2
) :Xl < X:eft - 6/2}, Aright = {(Xl, X2

) :X1 > X:ight + 6/2},

Atop= {(xl, x 2
) :x 2 > x~op + 6/2 and x:eft - 6/2 ~Xl ~ X:ight + 6/2}.

Then A left , Aright and Atop are disjoint regions of IR d\F"6 1( fJ ).
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From the definition of the event ETI,k, if ETI,k occurs, then at least one point,
denoted by X, = (X], Xi) say, of CTI(O), satisfies IX] -xleftl ~ D/2. So if ETI,k occurs
we have

Left gl(Y; C,,(O» dy ~ Left g(y - Xj) dy ~ L-oo,-o)x<_oo,OO) g(y) dy,

and similarly for Aright; so

(8.7) LleftUArighl gl(y; C,,(O» dy ~ L2 g(y ) dy - L-o.o)x<_oo.OO) g(y) dy.

Also, if ETI,k occurs there exists at least one point, Xi=(x:,Xf) say, of CTI(O)
such that Ix~op - Xrl ~ D/2. So

(8.8) f gl(y; C,,(O» dy ~ f g(y - Xi) dy.
Atop Atop

Define the sets A+ and A_ in 1R 2 by

(8.11)

The condition that g encloses 0 ensures that

min {L g(x) dx, L g(x) dx} > 0,
(0,61/2) x (0, 00) ( - 6 1/2,0) x (0,00)

so that for small enough D> 0,

(8.9) min {L+ g(x) dx, L_ g(x) dx} ~ L-o.o)x<_oo.OO) g(x) dx + c

for some c > O.
Since we are assuming that the width of TJ is at least Dt , it follows that at least one

of the sets Xi + A+ and Xi + A_ is contained in Atop. Hence, by (8.8),

(8.10) f gl(Y;C,,(O»dy~min{f g(x)dx, f g(x)dx}.
Atop A+ A_

Combining (8.7), (8.9) and (8.10) we have

LeftuArightUAtop g 1(y; c; (0» dy }) ~ L2 g(y) dy + c.

Given that ETI,k occurs, the conditional probability of BTl is at most
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Hence,
00

L kNpp[#(C(O)) = k and S(O)= 1J]/ql(P)
k=l

555

(8.12)

as p~oo.

= ~1 kNpp[E",kn H,,]/exp {-pL2 g(y) dY}

~ (~1 kNPp(E"'k») exp (-pc),

where the last inequality follows from (8.11). If N~O, the first factor in the
right-hand side of (8.12) is at most

Ep(number of points of f?P U {O} in F 61(1J ))N

= E«X + l)N) (where X is Poisson (p62#(1J))) ~ ClpN.

Thus, for small enough (fixed) 6, for each 1J the right-hand side of (8.12) converges
to 0 as P~oo, as desired.

Proof of Corollary. Let Cr(O) be the cluster at the origin obtained when all bonds
of length greater than r are removed. Then, for N ~ 0,

(#[C(O)])NI{c,(o) is finite} ~ (#[Cr(O)])NI{c,(o) is finite},

SO that, taking expectations and applying Theorem 3,

fN(P)~ ~ kNpp[#Cr(O)= k] -exp (-p L,~r g(x) dx) as p~oo.

Hence,

(8.13) limSuP(fN(P)/ql(p))1/P~exp(J g(x)dx).
~oo Ixl>r

SincefN(p)~ql(P) and we may let r~oo in (8.13), lim~oo(fN(P)/ql(P))1/P=l.

Taking logarithms,

p-1(logfN(p) -log ql(P))~0 as P~ 00,

and dividing through by p-1logql(P), which equals f g(x) dx, we obtain

logfN(p)~ 1
log ql(P)
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