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1. Introduction. The aim of this paper is to generalise the results of [7] from the
prime to the semiprime case. It was shown, for instance, that if M is the annihilator of a
simple right module S of projective dimension 1 over a Noetherian prime polynomial
identity (PI) ring R then M is either an invertible ideal or an idempotent ideal [7,
Proposition 4.2]. One of the main applications of this result was that a prime Noetherian
affine PI ring of global dimension less than or equal to 2 is a finite module over its centre.
It turns out that this theorem is valid more generally when the ring is semiprime [1,
Theorem A]. Clearly this requires [7, Proposition 4.2] also to be strengthened to the
semiprime case. We do this by showing that a right invertible maximal ideal in a
semiprime Noetherian PI ring is also left invertible (Theorem 3.5).

We also show that a right invertible prime ideal in a semiprime Noetherian PI ring is
localisable (on both sides), (Theorem 4.3). In order to do this we need to prove the
theorem first for maximal ideals using the Artin-Rees property and then appeal to a
result of Stafford on the localisability of cliques in polynomial extensions. This route
seems surprisingly intricate but perhaps some difficulty is to be anticipated given that it is
usually not straightforward to change sides.

2. Preliminaries and notation. We refer the reader to [7, Section 2] for the notation
which we shall continue to follow. However we need to make some changes to allow for
zero divisors and torsion.

Let R be a ring with a quotient ring Q and let / be an ideal of R. The sets
/* = {q e Q | ql £ R) and / # = {q e Q | Iq £ R} will only be denned when / contains a
regular element of R. In particular a right (left) invertible ideal will by definition be
assumed to contain a regular element.

Let y be a multiplicatively closed subset of R. The set y is called a right Ore set if
given a e R and c e if there exist a\ e R and ct s y such that acy = coj.

Let ¥ be a right Ore set. Then T = {x e R \ xc = 0 for some c s if\ is an ideal of R.
When R is right Noetherian, the images in R/ T of the elements of y are regular elements
of R/T [5, Proposition 9.9]. So in this case we can form the right localisation Ry which in
reality is an overring of R/T.

A left Ore set is defined analogously. When R is a Noetherian ring and y is an Ore
set on both sides, by [5, Proposition 9.9] the ideal T defined above coincides with
T' = {x e R | ex = 0 for some c e 9). Thus Ry can be considered a two sided localisation
in this case. In particular if P is a prime ideal of R and 5 = ^(P) is an Ore set then P is
said to be localisable. In this case Ry is a local ring and is denoted by RP.

More generally, the term localisable is also applicable to a clique of linked prime
ideals {Pa} where the Ore set considered is fy^{Pa)- For the definitions and further detail
in this area we refer the reader to [5].

An ideal / is said to have the right Artin-Rees property (AR property) if given a right
ideal E there exists an integer n ^ 1 such that £ f l / " c E l .
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Q(A) will denote the quotient ring of a ring A when it exists. Let R be a semiprime
Noetherian ring and Pu... , Pn the minimal primes in R. Since the P, are annihilators we
have ^(O) c <£(/> n . . . n Ps) for each s. It is easily seen then that there is a natural
homomorphism from Q(R) into the ring Q(R/(Pl D . . . n />)). It follows from this that if /
is a right invertible ideal of R then the image of / is a right invertible ideal of the ring
R/(P1n...nps).

A(R) will denote the Artinian radical of a ring R.
R is called a pri (pli) ring if every right (left) ideal of R is principal.
As before, unless otherwise stated, conditions will be assumed to hold on both right

and left.
For any unexplained terminology we refer the reader to [3] or [5].

3. Right invertible maximal ideals.

LEMMA 3.1. Let M be a right invertible maximal ideal of R where R is a semiprime
Noetherian PI ring. Then M has the AR property (on both sides) in R.

Proof. Let Pu... ,Pn be the minimal primes in R. The proof is by induction on n.
For n = 1 this is the prime case. [7, Proposition 4.1 (i)] shows that M is invertible. The AR
property follows by [3, Lemma 3.3].

Assume now that the result holds in the ring R/(P} D . . . n Pn-i)- As stated in Section
2 the images of M are right invertible ideals in the rings R/(Pi D . . . PiPn-\) and R/Pn

respectively. By the induction hypothesis (or trivially), [M + (P] D . . . nPn_i)]/
(Pi f l . . . fl Pn-\) has the AR property on both sides. Again by the prime case the same
also applies to the ideal [M + Pn]/Pn. We shall now show that this gives the AR property
for M in R.

Let £ be a right ideal of R. Then there exists an integer k^l such that

(E n pn) n Mk c (E n pn)M + (P, n . . . n />„_,).
Therefore

(i) (En/>„)n#g(£npn)Msincep,n...n/>„_,n?„ = o.
(ii) Also there exists an integer s > 1 such that E (~)MS £ EMk + Pn.

Clearly we may take s > k. Then (ii) gives
(iii) f H M ' c E M k + (EnMk)nPn.

(i) and (iii) now yield £ H F g £M* + (E n P,,)M c £M.
Thus A/ has the right AR property. The left AR property follows analogously.

COROLLARY 3.2. With R and M as above, ^(M) is an Ore set.

Proof. This now follows from Lemma 3.1 and a result of P. Smith [3, Lemma 11.9]
noting that the factor rings RIM" are Artinian.

LEMMA 3.3. Let R be a semiprime Noetherian local PI ring. Suppose that J the
Jacobson radical of R is right invertible. Then R is a prime pri and pli ring. In particular, J
is an invertible ideal.

x

Proof. By Jategaonkar's theorem [3, Theorem 7.11] we have Pi /" = 0. By

Formanek's theorem every non-zero ideal of R contains a non-zero central element. Let a
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be a non-zero central element of R. Then there exists an integer i > l such that a e /* but
a e Jk+\ Therefore a{J*)k £ /? and a(y#)* is an ideal of R. If a{J*)k £ R then a{J*)k £ / .
Since fl is central, this implies that a E / + I which is a contradiction. Hence a(J*)k = R
and so a/? = Jk. Since 7 is right invertible, £(J) = 0. So a is regular and aR is an invertible
ideal. Hence J is invertible. We have also shown that every non-zero ideal of R contains a
regular element. So R must be a prime ring. By [6, Proposition 1.3] it follows that R is a
pri and pli ring.

We note that if P is a prime ideal of a Noetherian ring and if is an Ore set then either
or

PROPOSITION 3.4. Let P be a right invertible and localisable prime ideal of a semiprime
Noetherian PI ring R. Let Pu. . . , Pn be the minimal prime ideals of R numbered so that
precisely Pu...,Pk lie inside P, l < i t < n . Denote if = <<?(/>) D <<?(P*+1) f~l. . . n <g(Pn).
Then if^ ^(0), if is an Ore set and PRy is principal as a right as well as a left ideal of R.

Proof. Since ^(P) and each <<?(P,) are Ore sets, we obtain by [3, Lemma 13.4] that if
is an Ore set. As above <g(P)£ <g(P,) for l < i < f c S o ^ c <g(0). Thus the localisation Ry

exists and is a semiprime partial quotient ring of R. By [3, Theorem 1.23] Rf/ splits as a
direct sum of rings Ry = B © C where A(B) = 0 and C is Artinian. So by [3, Lemma 4.10]
no minimal prime of B is maximal. Therefore B f~l PtRy = B for k + 1 ^ / s n. Also since P
properly contains a minimal prime ideal, we have C D PRy = C. Thus B Pi PRy is the
unique maximal ideal of B and B is a semiprime Noetherian local PI ring. So by Lemma
3.3, B fl PRy is a principal right as well as left ideal of B. Hence the same is true of PRy

as an ideal of Ry.

REMARK. Theorem 4.3 will show that the assumption concerning the localisability of
P in the above is in fact redundant.

THEOREM 3.5. Let M be a right invertible maximal ideal of a semiprime Noetherian PI
ring. Then M is left invertible.

Proof. We follow the notation of Proposition 3.4 with M = P. By Corollary 3.2, M is
localisable. So we have MRrJ = mRy for some m e M. Since M is right invertible, so is
MR<f= RyM (noting that ifc%(Q) and so P»y is an overring of R). Hence {(MRy) = 0
and m is a regular element. The rest of the proof can now proceed as in [4, Lemma 4.1].

We can now generalise [7, Proposition 4.1] to the semiprime case.

THEOREM 3.6. Let S be a simple right module of projective dimension 1 over a
semiprime Noetherian PI ring R. Let M be the annihilator of S in R. Then M is either an
invertible or an idempotent ideal.

Proof. Since J1? is a PI ring M is a maximal ideal and RIM is isomorphic to a finite
number of copies of S. Thus M is projective as a right ideal. We have M c M*M £ R and
soM = M*M or M*M = R. The former possibility implies that M is idempotent and the
latter that M is invertible by Theorem 3.5.
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As a consequence of Theorem 3.5 we also have the following result.

COROLLARY 3.7. Let R be a semiprime Noetherian PI ring. Let M be a maximal ideal
of R which is not minimal. Then M is a principal right ideal <=> M is a principal left ideal.

Proof. Let M = Ra with a e M. By assumption a is a regular element and so M is
right invertible. The result now easily follows.

4. Right invertible prime ideals. We can now extend Corollary 3.2 from the
maximal to the prime case.

LEMMA 4.1. Let y be a right Ore set in a semiprime left Noetherian ring R. Then the
right localisation Ry is a semiprime ring.

Proof. The set T = {x e R | xc = 0 for some c e .9"} is an ideal and we must show that
it is semiprime. Let A be an ideal of R such that A2^ T. Since R is left Noetherian RT is
finitely generated and there exists c e y such that Tc = 0. Hence A2c = 0 and so
A(Ac) - 0. Since R is semiprime, we have AcA = 0. Thus {Ac)2 = 0 and Ac = 0 again since
R is semiprime. Therefore A c T and T is a semiprime ideal as required.

COROLLARY 4.2. Let R, y be as above and let I be a right invertible ideal of R. Then
IRy is a right invertible ideal of Ry.

Proof. It is easily seen that T is an annihilator. So ^(0)g ^(T). Thus there is a
natural homomorphism from Q{R) into Q(Ry). It follows that IRy is a right invertible
ideal of Ry.

Since it is not known if cliques in a Noetherian PI ring are localisable, we need to
shift to the polynomal ring R[x] in the next theorem.

THEOREM 4.3. Let P be a right invertible prime ideal in a semiprime Noetherian PI
ring. Then P is localisable.

Proof. The polynomial ring R[x] is a semiprime Noetherian PI ring and P[x] is a
prime ideal of R[x]. So by [9] the clique of P[x] is localisable in R[x]. Clearly P[x] is a
right invertible prime ideal of R[x]. Let S = f\€{P^) where Pt ranges over the clique of
P[x]. Let T = {r e R[x] \rc = 0 for some c e Sr}. Thus T is an ideal of R[x) and as
explained in Section 2, T coincides with its left hand analogue. By Lemma 4.1 T is a
semiprime ideal and by Corollary 4.2 P[x]/T is a right invertible prime ideal of the
semiprime Noetherian PI ring R[x]/T. Now P[x]/T extends to a right invertible maximal
ideal in the localisation of R[x]/T at the Ore set (#" + T)/T. So by Corollary 3.2, this
extension of P[x]/T is a localisable maximal ideal. It follows that P[x]/T is localisable in
R[x]/T. Hence P[x] is localisable in R[x]. Thus the clique of P[x] is a singleton. Therefore
the clique of P in R is a singleton and so by [5, Theorem 12.21] P is localisable in R.

REMARK. An elementary proof along the lines of [7, Theorem 3.5] can be given to
show directly that P is right localisable. Then one approach to deduce left localisation is
to generalise [2, Theorem A] to the semiprime case. This can be done by using the
methods of this paper to obtain a version of the Artin-Rees property on the left.

https://doi.org/10.1017/S0017089500030330 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030330


ONE SIDED INVERTIBILITY AND LOCALISATION II 19

An immediate application of the above is the following theorem on unique
factorisation rings. Recall that R is a right unique factorisation ring (right UFR) if every
height 1 prime ideal of R is principal as a right ideal.

THEOREM 4.4. Let R be a semiprime Noetherian PI ring which is a left UFR. Then R is
a maximal order and hence a direct sum of prime rings.

Proof. We shall merely sketch the modification's required to the proof of [7, Lemma
3.3]. Without loss of generality, we may assume that R is an indecomposable ring. By [3,
Theorem 1.23] we may also assume that A(R) = 0. Then no minimal prime of R is
maximal. Let P be a height 1 prime. Then P is generated by a regular element. Let
Pi , . . . , Pn be the minimal primes of R numbered so that exactly Pi,.. . , Pk lie in P, k s n.
Let Sf= <g(P) n <g(P*+i) n . . . n <g(Pn). By Theorem 4.3, <g(P) is an Ore set and hence by
Proposition 3.4 so is if. As in [7, Lemma 3.3] we can show that R = {~\Ry where Sf is
constructed as above for each height 1 prime ideal of R. Lemma 3.3 and the proof of
Proposition 3.4 now show that Ry is a direct sum of a semisimple Artinian ring and a pri
and pli ring. In particular Ry is a maximal order. It follows that R is a maximal order.

The last part of the theorem follows from [8, Lemma 5.2].

COROLLARY 4.5. Let R be a semiprime Noetherian PI ring. Then R is right UFR&R is
left UFR.

Proof This now follows from the above and [7, Theorem 4.4].

Finally the ring of 2 X 2 upper triangular matrices over the integers shows that the
results of this paper such as Theorem 3.5 do not generalise to the non-semiprime case
even when the ring has an Artinian quotient ring.
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