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Abstract

Let G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated
kG-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point
set X & and the multiplicities of indecomposable summands of M considered as a k C,-module are related
via a localization theorem in equivariant cohomology, where C, is a cyclic subgroup of G of order n.
Explicit formulas are given forn = 2andn = 4.
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0. Introduction

Throughout the paper G denotes a finite group of order divisible by a prime p, A a
subgroup of G, k a field of characteristic p, J the Jacobson radical of the group algebra
kG, M a finitely generated k G-module, X a G-space, and X4 the fixed point set of A
in X. Topological spaces with a G-action give rise to G-modules; for example, the
cohomology group H'(X; k) with k-coefficients is a finitely generated k G-module for
i > 0 provided that X is a compact G-space. Equivariant cohomology H;(X; k) of X
is defined as the cohomology H*(X g; k) of the Borel construction X = (X X EG)/ G
of X. When X is a point, we simply write Hf for H}(X; k) which is the same as
H*(G; k). The constant map from X to a one-point space induces an Hj-module
structure on HE(X;k). When G is an elementary abelian p-group and X is finite-
dimensional, the inclusion map j : (X ¢, xp) <> (X, xo) induces an isomorphism in
the localized equivariant cohomology of Hg-modules ([Qu]). A simply connected
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G-space X is called a G-Moore space if H (X, xo;k) = O for all i except for some
fixed n > 2. A kG-module M is called realizable (in dimension n) if there exists a
G-Moore space X whose cohomology in dimension n is M for some n > 2.

Suppose that M is a kG-module realized by X in dimension n. Then M|,,,
M considered as a kA-module, is also realized by X, and H*(A; M) is isomorphic
to the equivariant cohomology ring H;*"(X, xo; k). Combining this with the above
isomorphism obtained by localization, of course for a ‘nice’ A or a ‘nice’ A-action
(for example A acting semi-freely on X, that is, the isotropy subgroups being either A
or {1}), we observe that the multiplicities of the indecomposable modules appearing
in the decomposition of M |, have a geometric interpretation in terms of the total
Betti number 8 of the fixed point set X4.

THEOREM. Let G be afinite group of order divisible by 2, and C be a cyclic subgroup
of G. Suppose that M is realized in dimension n by a compact space X. Then the
following can be stated for the total Betti number 8 and the Euler characteristic x of
the fixed point set X € of C:

@) IfC=1Z,, then B(XC) =n, + |, where M |, = (k)" & (kC)™.
(b) If C = Z4 and C acts semi-freely on X, then
(i) BXXE) is ny or n3 if n is odd or if n is even, respectively, and B(XC) =
m+n+1l

(i) x(X)=(D"(m—n)+1,

where M|, = (k)" & (JH™ & (J)" & (kO)™.

The restriction on the order of the cyclic subgroup C to be 2 or 4 in the theorem
is due to the fact that for large orders that are powers of a prime p > 2, one could
still obtain an isomorphism HE(XC, xo:k)[1/t] = H*(C;M{,0)[1/t]. However,
interpreting the right hand side of the isomorphism to obtain a similar formula is not
possible without such restrictions.

A corollary of the theorem is given in the discussion section.

1. Proof of Theorem

DEFINITION. Let S be a multiplicative subset of the polynomial part of H}, contain-
ing 1 € H}, and G, be the isotropy subgroup consisting of all g € G with gx = x.
Define X5 = {x € X : ker{res : H} — Hg } N S = @} following [Hs].

In some cases X S turns out to be the same as the fixed point set X A forsome A < G;
see [DW].

https://doi.org/10.1017/51446788700003220 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003220

(3] Betti numbers and multiplicities 167

PROPOSITION 1. Let G be a compact Lie group, X be a compact G-space, and
Y C X be a G-invariant subspace. Let S C H} be a multiplicative system. Then the
localized homomorphism

p~t =871 STTHAX, Y) — STTHL(XS, Y5)

is an isomorphism, where i* is the induced map in G-equivariant cohomology by the
inclusionmap i : (X5, Y5) — (X, Y).

PROOF. Recall that localization is an exact functor, and p = S7'i% : ST'THA(X) —
S~'HX(XS) is an isomorphism, where i, is the map induced by the inclusion i :
X5 <> X in G-equivariant cohomology. Apply [Hs, Theorem III.1] to the long exact
sequence of a pair in cohomology. The result then follows by the Five-Lemma. [

PROPOSITION 2. Let M be a kG-module realized by X in dimension n. Then
HEM™(X, x03k) = H*(G; M).

PROOF. Consider the Serre spectral sequence for the fibration (X, x¢)¢ = ((X, x¢) X
EG)/G - EG/G = BG with fiber (X, xo). Here EG is a contractible space on
which G acts (fixed-point) freely. The spectral sequence has EZ'Y-term equal to
HP(G; Hi(X, x¢;k)). For ¢ # n, we have H1(X, xo;k) = 0; then E}? = 0 for
g # n. Hence the sequence contains only one line and collapses. It follows that E}" =
H?(G; H™(X, xo;k)) = H?(G; M). Therefore H}"™" (X, xo) := H*™"((X, x0); k) =
H*(G; M). O

PROOF OF THEOREM. Without loss of generality we may assume that X ¢ is non-
empty; so let xo be in X¢ C XX for K < G. Also X is a K-Moore space with
H*(X;x0) = M|, for K < G. Hence Hg""(X, x0) = H*(K; M |,x) by Proposi-
tion 2.

(a) Let HX = H*(C;k) = k[t]. By Proposition 1, localization with respect
to S = {r :i > 0} gives HA(X, xo)[1/1] = HE(XC,xo)[l/t]. Since res_ (1) =
0, we have k[1/t] = 0. Hence 7, disappears after localization and we obtain
dimg H*(X €, xo;k) = B(X€) — 1 = ny, thatis, B(XC) = n; + L.

(b) It is sufficient to prove only (i) since x (X €) = B&"(X€) — B*4(X ). Let G, <
Cand G, = Z,; letalso HE = k[T']® A(V') and HE, = k[z]. Thus resC.CZ(r’) = 1*. We
have H*(C; M |,c) = (HHO" @ (HE)m @ (H*(C; J))™ & (k)™ since JEZK[C/Gl=
kT:gl and Shapiro’s Lemma implies H = H*(C; J?). Applying Proposition 1 with
the multiplicative set § = {(t')" : i > 0} gives HX(X G xp)1/T] = HEX, xo)[1/1'].
The term with n, disappears after localization as in part (a). Hence

* G 1 ~ * 1 " * 1 " * . 1 "
Ho(X 2. Xp) 7 = H¢ -'C—' D HC2 t_2 ® | H* (C,J) ;/' .
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The hypothesis that C acts semi-freely on X implies X € = X &, Write H &= HY1/ ']
and I-?(‘;Z [1/t]. Then

. . 17\"” .
(*) (HE™ @ (HE™™ & (H*"'(C; J) [;]) = H*(XC, xp) ® H}.
Since HI(C;J) = H"'Y(C;k) = H{' for i > 2 and H® = v HE™, we get
H(C;J)-v' = 0forieven. Also Hf, -v' = H{, -res. . (V) = HE, -0 = 0. Then (x)
becomes

!
(HE" -y @ (AE™ ) = 3 HYXC x) @ HE v
i>0,i even
In particular,
()™, if l—n isodd;

{
H'(XC xo) @ HL. - v =
2 (X", x0) ® He ()™, if I —n is even.

j=20.j even

Choose an integer [ > Homdim(X ©). For [ even and ! odd, we respectively obtain

that
even ny+ 1, if n isodd;
o) =1" e
m+1, if n iseven;
and
o (X €y = M, lf n i.s odd;
ns, 1if n iseven.
This completes the proof of the theorem. 0

2. Discussion

The theorem of the paper is more meaningful when put in the context of the
realization problem referred to in the literature as Steenrod’s Problem, and/or in
the classification problem of some category of k G-modules when G contains cyclic
subgroups of order 2 and/or 4. (See the corollary below.) When G is a cyclic p-
group of order p”, all indecomposable k G-modules (up to isomorphism) are given
by the powers of the Jacobson radical, namely, the ideals J?"~' of k-dimension i
for i = 1,...,p". However, when G contains Z, x Z, there are infinitely many
indecomposable kG-modules ([Hi]). Due to the lack of a classification for kG-
modules when G 2 Z, xZ, except for G = Z, x Z,, considering the restrictions M |, ,
for various subgroups A in G to obtain information on M is a fundamental technique
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n modular representation theory. For example, the complexity of a kG-module,
n particular, the cohomology H*(G;k) of the trivial kG-module k is ‘detected’
»n maximal elementary abelian subgroups of G by theorems due to Quillen [Qul},
Chouinard [Ch], and Alperin-Evens [AlEv]. See [Ka] for another detection theorem
vhen G = Z, x Z,. Furthermore, it is possible to obtain information on a-k E-module
M by considering M |, ,,,, for x € J\J? of kE, where E is an elementary abelian
n-group [Ca]. See also [W]. ‘

Some partial results on Steenrod’s Problem are as follows. All kZ,~-modules are
:ealizable (see [Ar]) and all realizable kZ; x Z,-modules are described in [BeHal.
When Z, x Z, is a normal Sylow subgroup of a finite group G, a k G-module M is
-ealizable if and only if M |7, 7, is realizable ([Cn]). When G contains Z, x Z,,, there
are k G-modules that are not realizable (see [Vo, Cs, Asl, As2, BeHa]). Compare our
‘heorem with [As3, Theorem 2.2], which states that the total Betti number 8(X4) of a
‘nice’ Moore space X realizing a k E-module M is equal to the rank (%, ), where %, is
the characteristic sheaf of X and A is a subgroup of the elementary abelian p-group E.

The simplest group for which one can attack the classification problem or the
realization problem for kG-modules is G = Z, x Z, due to the fact that it contains
Z, x Z; as its unique maximal elementary abelian subgroup and that the classification of
kZ, x Z,-modules is known. As mentioned above, a ‘detection’ theorem supporting
the first expectation is given in [Ka]. For the latter, we can only give a necessary
condition for a kZ, x Z4-module M to be realizable by combining [Cs, Proposition
[I] and [Se, Proposition 1]: Let M be a kZ, x Z;-module. If M |,z,,4, is realizable
by X, then the rank variety V7 ., (M |,z,.2,) (see [Ca]) is a union of F,-rational lines
in k2. Therefore for a realizable kZ, x Z,-module M, we obtain that M | is free for
every shifted cyclic subgroup S of kZ, x Z, except possibly for cyclic subgroups of
Z, x Z4. This can be used to construct non-realizable modules. Consider the induced
kZ, x Zs~-module M, = k®y,,) kZ, x Z, fora € k*. It can be seen easily by Mackey’s
formula that V7, ; (Mo liz,42,) = kfa} fora € k%. Therefore, M, is not realizable if
o is not an [F,-rational point.

The Theorem of this paper and the necessary condition mentioned above gives the
following.

COROLLARY. Let G = (e, f : € = f* = efef> =1) D E = (e, f?. If M
is a non-free indecomposable k G-module realized by X, then M is a periodic kG-
module, and M}, 1o, (e-1ysays -1y iS @ free k(1 +a1(e — 1) + o (f 2 — 1))-module for
(a1, &3) € k? except possibly for (o), a3) € k{(1, 0)}UK{(0, 1)}Uk{(1, 1)}. Moreover,
if M |y is afree k(g)-module for g € {e, f?, ef *}, then X' is homotopic to a point.

PROOF. The necessary condition given above for the realizability of a module M
implies that V = VI(M|,;) € k{(1,0)} Uk{(0, 1)} U k{(1, 1)}. This forces M to
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be periodic as it is indecomposable and non-free. In addition, since k(1 + a;(e —
D+ ay(f?— 1)) fora € {(1,0)} Uk{(0, 1D} Uk{(1, 1)} corresponds to k(g) for some
g € {e,f?% e %}, it follows that M |, is not free for at most one g € {e, f?, ef ?}.
Suppose M |, is a free k(g)-module with g € {e, f?, ¢f ?}. Then it has no trivial
summands, that is, 7; = 0. Hence (X)) = 1 by the theorem, and this implies that
X{# is homotopic to a point. O

CONJECTURE. If M is a finitely generated periodic kZ, x Zs-module, then M is
realizable.

Acknowledgement

I am indebted to Professor A. Assadi for introducing this subject and sharing ideas
with me.

References

[AIEv] J. L. Alperin and L. Evens, ‘Representations, resolutions, and Quillen’s dimension theorem’,
J. Pure Appl. Algebra 144 (1981), 1-9.

[Ar] J. E. Arnold, ‘On Steenrod’s problem for cyclic p-groups’, Canad. J. Math. 29 (1977),421-428.

[Asl] A. H. Assadi, ‘Varieties in finite transformation groups’, Bull. Amer. Math. Soc. 19 (1998),
459—463.

[As2] , Homotopy actions and cohomology of finite transformation groups, Lecture Notes in
Math. 1217 (Springer, Berlin, 1986), pp. 26-57.

, ‘Algebraic geometric invariants for homotopy actions’, in: Prospects in topology
(Princeton, 1994), Ann. of Math. Stud. 138 (Princeton Univ. Press, Princeton, 1995) pp.
13-27.

[BeHa] D. Benson and N. Habbager, ‘Varieties for modules and a problem of Steenrod’, J. Pure Appl.
Algebra 44 (1987), 13-34.

[Ca] J. F. Carlson, ‘The variety and the cohomology ring of a module’, J. Algebra 85 (1983),
104-143.

{Ch] L. Chouinard, ‘Projectivity and relative projectivity for group rings’, J. Pure Appl. Algebra7
(1976), 287-302.

{Cn] M. Chen, ‘The Postnikov tower and the Steenrod problem’, Proc. Amer. Math. Soc. 129 (2001),

[As3]

1825-1831.

[Cs]) G. Carlsson, ‘A counterexample to a conjecture of Steenrod’, Invent. Math. 64 (1981), 171-174.

[DW] W. G. Dwyer and C. W. Wilkerson, ‘Smith theory revisited’, Ann. of Math. (2) 127 (1988),
191-198.

[Hi] D. G. Higman, ‘Indecomposable representations at characteristic p’, Duke Math. J. 21 (1954),
377-381.

[Hs] W. Y. Hsiang, Cohomology theory of topological transformation groups (Springer, Berlin,
1975).

https://doi.org/10.1017/51446788700003220 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003220

M

[Ka]
{Qu]
(Se]
[Vo]

W]

Betti numbers and multiplicities 171

S. 0. Kaptanoglu, ‘A detection theorem for kZ, x Z4-modules via shifted cyclic subgroups’,
(preprint).

D. Quillen, ‘The spectrum of an equivariant cohomology ring 1, II’, Ann. of Math. (2) 94
(1971), 549-602.

J. P. Serre, ‘Sur la dimension cohomologique des groupes profinis’, Topology 3 (1965), 413—
420. )

P. Vogel, ‘A solution to the Steenrod problem for G-Moore spaces’, K-Theory 1 (1987),
325-335.

W. W. Wheeler, ‘“The generic module theory’, J. Algebra 183 (1996), 205-228.

Mathematics Department
Middle East Technical University
Ankara 06531

Turkey

e-mail: semra@arf.math.metu.edu.tr

https://doi.org/10.1017/51446788700003220 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003220

172 J. Aust. Math. Soc. 74 (2003)

https://doi.org/10.1017/51446788700003220 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003220

