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Discontinuous shear-thickening (DST) fluids exhibit unique instability properties in a wide
range of flow conditions. We present numerical simulations of a scalar model for DST
fluids in a planar simple shear using the smoothed particle hydrodynamics approach.
The model reproduces the spatially homogeneous instability mechanism based on the
competition between the inertial and microstructural time scales, with good congruence
to the theoretical predictions. Spatial inhomogeneities arising from a stress-splitting
instability are rationalised within the context of local components of the microstructure
evolution. Using this effect, the addition of non-locality in the model is found to produce
an alternative mechanism of temporal instabilities, driven by the inhomogeneous pattern
formation. The reported arrangement of the microstructure is generally in agreement with
the experimental data on gradient pattern formation in DST. Simulations in a parameter
space representative of realistic DST materials resulted in aperiodic oscillations in
measured shear rate and stress, driven by formation of gap-spanning frictional structures.
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1. Introduction

Discontinuous shear-thickening (DST) dense suspensions of non-Brownian particles
are characterised by a rapid increase in viscosity, attributed to a transition from a
frictionless state to a frictional state facilitated by a shear stress sufficient to overcome
the characteristic stress scale o*, inherent to the particular nature of the suspension
particles and solvent (Seto et al. 2013; Mari et al. 2014; Wyart & Cates 2014; Comtet
et al. 2017). The distinguishing feature of DST as opposed to continuous shear-thickening
is the presence of a negative gradient of the flow curve (dy /do < 0), due to the increase
in viscosity spanning multiple orders of magnitude (Han, James & Jaeger 2019). Recently,
the stability properties of DST materials have been a subject of extensive research
(Sedes, Singh & Morris 2020), partly because of their potential for understanding the
role of internal microstructure in flows applicable to rheometric conditions and large-scale
free-surface flows.

Instabilities in rheometric flows are of particular interest due to their role in the
difficulties associated with the characterisation of DST materials (Han et al. 2019)
under typical simple shear conditions. In stress-controlled conditions, DST fluids exhibit
aperiodic or almost periodic oscillations in the measured shear rate and normal stress
(Hermes et al. 2016) — a phenomenon often referred to as ‘rtheochaos’. The onset of the
instability occurs at a critical stress and grows in strength up to a point, after which further
increases in stress reduce the amplitude.

A plausible explanation for the observed temporal instability is the existence of an
accompanying spatial instability. Dense frictional suspensions are understood to form con-
tact force networks (Seto et al. 2013; Sedes et al. 2022), facilitating stress transmission. As
such, it is reasonable to expect that large-magnitude temporal fluctuations in normal stress
are associated with formation, destruction and rearrangement of the internal microstruc-
ture. Based on the multivariate nature of the flow curve, DST materials could be expected
to undergo formation of bands along the vorticity direction (Olmsted 2008); however,
the existence of stable vorticity bands can be ruled out on the basis of particle pressure
balance at the band interface (Hermes et al. 2016). In fact, instead of stable vorticity bands,
transient vorticity banding has been reported (Herle, Fischer & Windhab 2005).

A further connection between spatial and temporal instabilities comes from recent
literature utilising direct online measurements of the internal fluid state. Force and pressure
sensors have been used to detect localised regions of high and low normal pressure
travelling in the direction of flow (Nagahiro & Nakanishi 2016). Ultrasonic echography
has yielded direct imaging of bands propagating in the vorticity direction during temporal
oscillations (Saint-Michel, Gibaud & Manneville 2018). Perhaps the most illuminating
direct imaging comes from recent work (Rathee er al. 2017, 2020, 2022; Hu et al. 2024)
using boundary stress microscopy (BSM), in which the stress exerted on the bottom plate
in a parallel plate set-up can be imaged in real time along with the movement of individual
particles via particle image velocimetry. Boundary stress microscopy imaging revealed
regions of localised high stress (a peak magnitude of an order larger than the bulk) in
simple and oscillatory shear. Tracking these solid-like phases (SLPs) over time allowed
for inference of the existence of SLPs at the upper and lower plate boundaries moving
with the velocity close to their proximate solid boundaries.

Continuum modelling of DST fluids ubiquitously begins with the definition of the
characteristic S-shaped flow curve, primarily through the Wyart—Cates (WC) model
(Wyart & Cates 2014), with some exceptions (Nakanishi, Nagahiro & Mitarai 2012; Bossis
et al. 2017). The WC model is a phenomenological approach, with solid microscopic
evidence (Sedes et al. 2022), that proposes that particles are held apart by a characteristic
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repulsive force F which sets the characteristic stress scale o*. Below the characteristic
stress scale, the particles are held apart in a low-viscosity, frictionless state. When a stress
is applied above the onset stress, the particles enter frictional contact and rapidly increase
the viscosity. The key parameter in the WC model, f(o), represents the fraction of particles
in a frictional contact at a given stress. Most works on continuum modelling use this scalar
parameter (Nagahiro & Nakanishi 2016; Chacko et al. 2018; Baumgarten & Kamrin 2019;
Darbois Texier et al. 2020), along with a microstructural evolution equation, which seeks
to describe the dynamics of the frictionless-to-frictional transition. Typically, the rate of
evolution is a rate-dependent approach of f towards the WC-prescribed steady-state value

f(a) at a given stress.

One potential mechanism of temporal instabilities identified in the literature comes from
competition between the time scales of system inertia (#;) and microstructure formation (#7)
(Richards et al. 2019). Stability analysis of the coupled dynamics of a stress-controlled
plate and the commonly used local form of the microstructure evolution equation reveal
that such a system can undergo a Hopf bifurcation. When the rate of formation is much
higher than the rate of boundary deceleration (z; > ), an overshoot in the shear rate will
induce rapid shear thickening, which in turn will further increase the material stress since
the plate cannot decelerate sufficiently quickly, resulting in a feedback loop. In addition to
the required ratio of time scales, negative gradients of the flow curve are also necessary,
indicating that this mechanism is unique to DST materials. The primary limitation in the
analysis associated with this mechanism is the inherent assumption of homogeneous space,
which clearly does not account for the spatial pattern formation observed in real systems.
Furthermore, because of the two-dimensional aspect of the system in phase space, only
periodic oscillatory solutions are possible, which limits the applicability to a narrow region
in which periodicity is observed in experiments.

Alternatively, coupling of the simple evolution of the scalar microstructure with the
dynamic migration of particles through the suspension balance model (Chacko et al.
2018) has been shown to produce transient vorticity banding, uniquely for DST conditions.
The observed pattern formation was shown to be in good agreement with direct particle
simulations; however, the continuum modelling was limited to a gradient—vorticity space,
with assumption of spatial homogeneity in both flow and gradient directions.

In this work, we present a systematic study of the possible interactions between the
microstructural, inertial and stress-diffusive time scales, by framing pattern formation
in the context of a competition between local and non-local contributions to the
microstructure evolution, in the presence of DST rheology. In §2, we outline the
continuum model and numerical implementation. In §3.1, we consider the case
of dominant non-locality for the purpose of validation of our smoothed particle
hydrodynamics (SPH) model against a temporal instability mechanism proposed in the
literature. In § 3.2 we demonstrate the stress-splitting instability inherent in the topology of
DST flow curves. Finally, in § 3.3 we consider regimes of mixed non-locality where spatial
pattern formation is possible and present an alternative mode of temporal instability, driven
by variations in microstructural spatial patterns within the geometry.

2. Method
2.1. Discontinuous shear-thickening: continuum scalar model

The governing equations, written in the Lagrangian frame, are

dp v @.1)
DL -, .
a P
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o=—pl+n(Vv+ Vo), (2.3)

where d/dt = (9/0dt) + v - V is the material derivative, p(x, ¢) is the density field, v(x, 1)
is the velocity field, o (x, t) is the stress field, p is the pressure and F is a body force
acting on the fluid.

The viscosity of the suspension is defined by the Maron—Pierce relation (Maron & Pierce
1956):

y AN
where 1(¢, ¢’, t) and 1, are, respectively, the suspension and constant solvent viscosities.
The divergence volume fraction, ¢”, is used to introduce shear-thickening by interpolating
its value between the frictionless state (¢°) and the frictional state (¢™):

¢’ (flx, 1) =™ flx, 1) + ¢°{1 — f(x, 1)} (2.5)

Here, the interpolating state parameter, f(x, t), is interpreted as the fraction of particles in
frictional contact at a given position in space, as defined in the WC model. The dynamics
of the state parameter is defined via the microstructure evolution equation:

df (x, 1)
dr

=kpy(fx, ) — flx, D) +aV2fx, 1), (2.6)

% 2
f(x, t) =exp (— |:U(i t)i| ) , 2.7

which consists of a local term modelling the approach of the system towards a stress-
prescribed WC steady state, f(x, t), and a non-local term modelling stress-diffusive
components of microstructure formation in space. The local contributions are tuned
with a microstructural rate constant, k s, whereas the non-local dynamics is set by the
microstructure diffusivity parameter, «. The fluid stress is calculated as o = ny, where
y(x,t) =+/y :y/2 is the local shear rate calculated as the second invariant of the strain
rate tensor p(x, 1) = (Vv + VvT)/Z.

The local term in (2.6) is identical to the microstructure evolution equation employed by
Nakanishi et al. (2012). This form has been used since Richards et al. (2019), with some
authors introducing additional features such as a rate-independent loss term (Chacko et al.
2018; Baumgarten & Kamrin 2019). We opt to keep the local dynamics in its simplest
form and instead introduce a non-local term in microstructural dynamics. The inclusion
of this term is meant to represent the spatial diffusion of microstructure. In a sense, it is
similar to the role played by the particle migration dynamics in the work of Chacko et al.
(2018), as both equations will result in diffusion of high-stress regions, since both f and
¢ are positively correlated with stress, even though our implementation does not allow for
particle migration and might result in different pattern details.

2.2. Simulation set-up

We simulate simple shear in stress-controlled mode by setting the velocity on the upper
wall (vy,) and evolving it over time:
dvy,

F:kp(GE—O’), (28)
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where o is the target stress set-point, o is the shear stress measure at the upper wall and
kp is a tuning parameter in the control scheme, reflecting the influence of inertia (i.e. it is
inversely proportional to the density of the wall). This implantation corresponds to typical
operation of a combined motor—transducer rtheometer in stress-controlled mode, where
the constant stress applied to the geometry (o) is produced by a constant torque from the
motor. This stress is balanced by the variable shear stress acting on the geometry due to the
fluid (o). Any stress imbalances result in changes in geometry velocity, mediated by the
system (or instrument) inertia (k). A small value for k, corresponds to slow adjustment
of velocity in response to rheological changes (high system inertia). A large value for k),
corresponds to fast adjustment (low system inertia).

2.3. Numerical implementation

The method of solution in all cases (unless otherwise specified) is weakly compressible
SPH (Gingold & Monaghan 1977; Lucy 1977), which has already been used to
successfully model complex microstructural fluids (Vazquez-Quesada et al. 2009,
Vizquez-Quesada et al. 2019; Rossi et al. 2022). In all simulations, unless otherwise
noted, we use the WC parameters ¢ = 0.54, ¢’ =0.693 and ¢, = 0.562, resulting in a
well-defined ‘S’-shaped flow curve (Angerman et al. 2024). In § 3.1 and § 3.2, we simulate
a square box with a gap height of # = 0.01 m, while in § 3.3 we use a wide box [ = 3/ with
the same gap height to fully capture the resulting spatial pattern. In all simulations, the
numerical resolution is kept constant at Ax = A /50. Each simulation consists of a planar
flow—gradient simple shear, with periodic boundary conditions along the flow direction,
and no-slip conditions are enforced at the upper and lower solid boundaries (Angerman
et al. 2024). The flow and gradient directions were chosen on the basis of the experimental
observations of Rathee, Blair & Urbach (2020), where regions of localised stress are
reported to exist on the upper and lower geometry boundaries, and their relative motion in
the flow direction appears to coincide with stress and shear rate fluctuations. To capture
such phenomenology, gradient and flow directions are required. At the same time, we
exclude the vorticity direction because, while one might expect vorticity banding to occur
in DST fluids (Olmsted 2008), vorticity bands are unlikely to exist in a stable arrangement
(Hermes et al. 2016). Furthermore, the experiments of Rathee et al. (2022) note vorticity
direction effects (such as particle migrations), but these are minor relative to the flow and
gradient effects, with no clear vorticity banding.

The microstructural field, f(x), and the shear rate, y, are initialised, in most cases,
from a steady state of the WC flow curve corresponding to the stress set-point, with
f(x) uniform, with a small perturbation in the shear rate (6y ~ £1.0 x 10~*s~1) and
the microstructural field (§f ~ 1 x 107%).

2.4. Dimensional analysis
The dynamics of our model is captured by three characteristic time scales:
h N h?

t = , tf=——, tg =—, 2.9
= f ko 4= (2.9)

where 7; is the system-inertia time scale, 7/ represents the local microstructure evolution
time scale and ¢#; is the microstructure diffusive (or non-local) time scale. It is important
to distinguish the system-inertial time scale #;, which arises as a consequence of the non-
zero upper-plate mass and the internal rtheometer construction, from the fluid inertia.
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We proceed by defining the dimensionless parameters

Y t t
T B R 1))
1 1 N

o .
Y =—, I =
o* o*

where X is the dimensionless stress, I" is the dimensionless shear rate and ¢ and
are local and non-local microstructural time scales, respectively, normalised with the
(instrument) inertial time scale. To classify relative magnitudes of local and non-local
contributions to the evolution of microstructure, we define a characteristic stress-diffusive

length scale,
o
le= |—, (2.11)
kry

which determines the spatial scale of potential pattern formation.
The corresponding non-dimensional forms of the microstructural evolution equation
(2.6) and the stress control equation (2.8) are given by

df(x‘:a 1) _ E(f(i, 1) — f(f’ t)) + lvzf(i, 1), (2.12)
dt € w
dr
D 5 S (2.13)
dt

where X =x/L and T =t/1;.

3. Numerical results
3.1. Dominant non-locality

In this section, we consider the extreme case of dominant non-locality by allowing the
characteristic length scale to span the entire domain height (/. &~ k). Under such conditions,
we can expect an entirely homogeneous state, and due to the vanishing gradients of f(x),
we can simplify the dynamic model equations by neglecting the effects of the stress-
diffusive term (last term in (2.12)) on the stability of the dynamics. Doing so simplifies the
equations to a system directly equivalent to that studied by Richards ez al. (2019), allowing
a comparison with their stability analysis. Following their analysis, the stability criterion
for the mechanism based on the competition of the system-inertia time scale (#;) and the
microstructural formation time scale (¢5) can be written as
L dr
€< —I"——, 3.1
dXg
which, if satisfied, indicates unstable dynamics and the existence of periodic solutions. The
condition can be rewritten into a more convenient formulation with the overall stability
parameter

+fdﬁ (3.2)
=—|€ — . .
a dxp
The system has all bifurcation points at u = . =0, with stable solutions for p < 0 and
periodic solutions for u > 0. The stable solutions consist of an inward spiral towards the
exact solution on the WC model, resulting in a steady state where the system lies exactly
on the flow curve for any stress applied, regardless of the presence of DST (Angerman
et al. 2024). The bifurcation occurs when the response of the stress control mechanism is
no longer fast enough to deal with the overshoots in the shear rate, leading to an increasing
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Figure 1. (a) A typical trajectory (black line) of an unstable solution exhibits periodic cycling between entirely
frictionless and frictional domains. The trajectory is based on the spatially averaged stress and shear rate, and is
plotted over a WC model flow curve where blue and red segments indicate frictionless and frictional branches,
respectively. The region of negative flow curve gradient is indicated in grey. The inset shows simulation frames
of typical microstructural states f during the minima (A) and maxima (B) of stress along the trajectory, where
(A) is uniformly frictionless (blue) and (B) is uniformly frictional (red). () Comparison of limit cycle size
AT as a function of X along the range of the flow curve shows an increase in peak and broadening of the
bifurcation points with increasing gap height. Stability diagrams AI"(u) for (¢) h = 0.01 m and (d) h = 0.02 m.
Blue lines indicate solutions obtained by direct numerical integration (DNI) and red points are measurements
from SPH simulations.

shear rate at the point of a large DST viscosity jump, which further increases the stress and
thus drives the particles into an even more frictional state, initiating a positive feedback
cycle of increasing viscosity and stress. Eventually, the direction of stress control will
invert, initiating a similar feedback loop in the opposite direction, and completing the
limit cycle as shown in figure 1(a). To evaluate the capability of the SPH model to handle
instabilities, we varied k, (see table 1) to obtain unstable solutions and measured the
amplitude of the apparent oscillations (figure 10) in spatially averaged dimensionless shear
rate, AT, in both our SPH results and the results obtained via alternative direct numerical
integration of the ordinary differential equations ((2.12) and (2.13)). Direct integration
was carried out with the ODE45 Matlab algorithm with a relative tolerance of 1 x 10710
and smoothed with the Savitzky—Golay algorithm with a window size of five subsequent
points (fewer than 0.5 % of points) to correct the random numerical errors introduced
by the solver. Comparison between SPH simulations and the direct integration of the
dynamics equations (2.12) and (2.13) shows clear congruence between the two. The plots
of the shear rate amplitude measured in SPH for both gap heights (figure 15-d) show clear
bifurcation in line with the predicted bifurcation condition, marked by a sudden increase
in amplitude at w = 0. Furthermore, the SPH model is capable of accurate predictions of
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Parameter Value Units
Particle volume fraction, ¢ 0.540 —
Frictional divergence volume fraction, ¢ 0.562 —
Frictionless divergence volume fraction, qbo 0.692 —
Solvent viscosity, 1 0.001 Pas
Characteristic stress scale, o* 0.005 Pa
Microstructural rate parameter, ¢ 1 —
System inertia parameter, K, 0.01-1 ms~2 Pa~!
Microstructural diffusion parameter, o 1075 m2 s~!
Gap height, 1 0.01 or 0.02 m
Domain length, / 0.01 m
Fluid density, p 1000 kgm™3
Stress set-point, X'g 0.0025-0.002875 Pa

Table 1. Dominant non-locality parameters.

Parameter Value Units
Particle volume fraction, ¢ 0.540 —
Frictional divergence volume fraction, ¢ 0.562 —
Frictionless divergence volume fraction, ¢° 0.692 —
Solvent viscosity, 1y 0.001 Pas
Characteristic stress scale, o* 0.005 Pa
Microstructural rate parameter, ¢ 0.1-10 —
System inertia parameter, k 0 ms~2 Pa~!
Microstructural diffusion parameter, o 0 m2s~!
Gap height, h 0.01 m
Domain length, / 0.01 m
Fluid density, p 1000 kgm™3
Stress set-point, X'g 0.00625 Pa

Table 2. Vanishing non-locality parameters.

exact limit cycle sizes (figure 1b) along the shear rate dimension for a range of imposed
stress values (X g) spanning the entire frictionless-to-frictional transition of the flow curve.
This agreement is illustrated in figure 1() for two different geometry gap heights.

3.2. Vanishing non-locality

Having validated our implementation in the regime of homogeneous state, we can now
consider instabilities with spatial heterogeneity. Here we consider the limit of vanishing
non-locality. Strictly, we set /. = 0 and thus exclude non-locality entirely (see table 2), but
we can expect the following analysis to hold for sufficiently low values /. < Ax, as any
patterns with characteristic length below the resolution scale will not be resolved. In this
and the following sections, we consider the regime of u < 0 to investigate primarily spatial
effects while excluding the temporal 1nstab1hty discussed in the previous section.

We start by considering two points in I'-X phase space with coordinates A(I™, X%)
and B(I'* + 81", X*), respectively, where point A lies exactly on the flow curve predicted
by the WC model for a given input stress set-point (indicated by the superscript X*) and
the point B receives a small positive perturbation in shear rate. Since the perturbation is
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(b)

20 ¢

15

Figure 2. (a) The field visualisation of f in steady state under shear rate exhibits non-differentiable
microstructure (and stress) fields. (b) Individual SPH particles plotted on top of the theoretical WC curve.
The particles split onto the two stable segments. Green diamond indicates initialisation state.

horizontal, point B preserves the stress such that
T4=Xp, (3.3)
which can be rewritten as
Nral™ = nrp (I +81). (3.4)

This implies that the viscosity at B must be less than the viscosity at A, from which we
can infer that

A

f—fp>0 (3.5)

for any point B to the right of the flow curve. Here f is the steady-state WC value at a given
stress X, and f* indicates the steady-state value corresponding to the applied stress X'g.
Notice that this is part of the local term in the microstructure evolution equation (2.6);
hence, we can deduce that for any point to the right of the flow curve, the vector fields of
the microstructure evolution must point directly upward in phase space, as the evolution
of f is positively correlated with the evolution of stress. By the same argument, we can
also show that the vector fields to the left of the flow curve must always point downwards.
For flow curves with monotonic positive gradient (d/"/d X > 0), the resulting vector fields
will always return any perturbed points to the flow curve. However, whenever negative
gradients of the flow curve are present (dI"/dX < 0), the vector field acting on the point
will move it away from the flow curve. On the basis of this analysis, we can expect a
spatial instability unique to the DST regime, where individual SPH particles receiving
random numerical perturbations will ‘split’ along the stress axis.

To confirm this behaviour, we performed rate-controlled simulations, in which the shear
rate was maintained by a constant upper wall velocity. All particles were initialised with
the same state in the unstable region with small perturbations. The resulting field of f
(figure 2a) becomes discontinuous at the resolution level, with a lack of correlation in
space between frictional and frictionless particles. In the I'-X' space, individual particles
(figure 2b) are attracted to the stable Newtonian branches of the flow curve, where the
vector fields act as a restoring force. The number of particles that split ‘upwards’ and

1016 A33-9


https://doi.org/10.1017/jfm.2025.10178

https://doi.org/10.1017/jfm.2025.10178 Published online by Cambridge University Press

P. Angerman, B. Sandnes, R. Seto and M. Ellero

0 5 10 15 20 25 0 0.4 0.8 12
yt key

Figure 3. (a) Transient in average stress induced by the splitting of SPH particles for k y = 1. (b) Plot of the
rate of stress equilibration against the prefactor k ry of local contributions to the microstructure evolution.

‘downwards’ is approximately equal because of the randomness in the numerical noise
that initially places particles arbitrarily on either side of the WC flow curve.

Note that while so far we have considered /. = 0, the result of discontinuous stress fields
is present in all simulations with sufficiently small (but non-zero) value of /..

The dynamics of the stress-splitting instability was probed by varying ky in (2.6).
The typical transient response during the instability (figure 3a) consists of a significant
increase in the average stress within the domain, the lower stress plateau indicating the
homogeneous initial state and the upper stress corresponding to the entirely split state.
The increase in stress is a result of an even-number split in SPH particles along an
asymmetric flow curve, with a much higher jump upward towards the frictional branch
than the downward jump to the frictionless branch. In this case, the dynamics of stress
evolution can be used as a proxy for the dynamics of the instability. For each value of k,
we define and measure a splitting equilibration time, #;, which corresponds to the time
required to attain 95 % of the upper stress value. The plot of inverse equilibration time (or
the rate of equilibration) against the prefactor of the local term in the evolution (figure 3b)
reveals a direct relation between the dynamics of stress splitting and the dynamics of the
local microstructure evolution, in line with the argument above based on (3.5).

3.3. Moderate non-locality

We can expect the extent of inhomogeneity in the microstructural fields to be governed
by the balance of local and non-local dynamics captured by the characteristic length
scale I, = \/a/kyy. When [ is small, microstructural fields are strongly inhomogeneous
(and discontinuous) due to the dominant stress-splitting effects. When [, is is large,
diffusion dynamics dominates resulting in entirely homogeneous fields. It is noteworthy
that the definition of /. includes y which can vary in time (and space), which implies
possible variations of microstructural field ‘smoothness’ in time. It is plausible that some
intermediate region exists when the characteristic length falls below the domain size,
but above the resolution, to produce inhomogeneous but continuous spatial flow fields.
To explore the parameter space we carry out stress-controlled simulations for a range of
values of « (see table 3), at a constant stress set-point (X = 1.25). At the extremes of the
range, previously discussed scenarios associated with vanishing and dominant non-locality
were present. However, for intermediate values of /. new patterns arise, characterised

1016 A33-10


https://doi.org/10.1017/jfm.2025.10178

https://doi.org/10.1017/jfm.2025.10178 Published online by Cambridge University Press

Journal of Fluid Mechanics

Parameter Value Units
Particle volume fraction, ¢ 0.540 —
Frictional divergence volume fraction, ¢ 0.562 —
Frictionless divergence volume fraction, ¢>0 0.692 —
Solvent viscosity, g 0.001 Pas
Characteristic stress scale, o* 0.005 Pa
Microstructural rate parameter, k 7 20 —
System inertia parameter, k, 1 ms~2Pa~!
Microstructural diffusion parameter, o 10~10_10-5 m? s~ !
Gap height, h 0.01 m
Domain length, / 0.03 m
Fluid density, p 1000 kgm™3
Stress set-point, X'g 0.00625 Pa

Table 3. Moderate non-locality parameters.

by significant spatial inhomogeneity combined with smooth, continuous microstructural
gradients.

The typical fields associated with this regime are visualised in figure 4, including fields
of viscosity (figure 4a,d,g), local (figure 4b,e,h) and non-local (figure 4c,f,i) contributions
to the rate of microstructure formation. The fields shown correspond to a simulation with
typical characteristic length /. = 0.0316A, and for a stable parameter configuration for
the boundary-driven instability (1 = —1.96 x 10~2). With the addition of moderate non-
locality, the stress splitting acts as a seeding instability, which after an induction period
results in microstructure organised in clumps of high viscosity (or SLPs) material attached
to the wall boundaries. Both clumps travel in the direction of the flow with velocities
approximately equal to the flow near their respective boundaries, resulting in a periodic
scenario in which the upper SLP passes over the lower SLP, due to the periodic boundary in
the flow direction, where the period of the passing is in part determined by the geometry
length. Figure 4(a) shows a situation where two previously formed SLPs on the upper
and lower plate are approaching each other as the upper plate moves from left to right.
The two SLPs are connected by a long band of high-viscosity (frictional state) material
which formed in the previous cycle, the last time the SLPs passed each other. During the
approach (figure 4a), SLPs begin forming a constriction thereby deforming the flow fields
between them. This produces a region of elevated high shear in the constriction space
(compressive direction) where the local term in the microstructure evolution equation
(figure 4b) pushes f towards the frictional branch, beginning the formation of a new high-
viscosity connecting band as can be seen clearly in figure 4(d). Once the SLPs have passed
each other and the constriction is resolved (figure 4g), the newly formed connecting band
continues to increase in viscosity, while the previous old band is stretched thin allowing
for diffusion to overcome the microstructure-building contributions localised within the
band, and the band dissipates.

During each pass, the average shear rate and stress oscillate (figure 5a,b) as a result
of flow-field deformation, and formation and dissipation of the connecting high-viscosity
band. During each cycle, the shear rate between the snapshots shown in figure 4(a,d,g)
decreases, before again increasing. Looking at the initial field of local contributions to the
microstructure formation (figure 4b), we observe that the formation of the connecting band
begins during the approach (compressive direction) and is driven by the local elements
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Figure 4. Simulation time series showing SLPs (red) at the top and bottom wall connected by a thin band.
(a,d,g) Viscosity fields. (b,e,h) Local and (c,f,i) non-local contributions to microstructure formation as per
(2.6). The snapshots capture the process of a typical oscillation: just before constriction (a), during constriction
(b) and after constriction (c). Simulation parameters: /. = 0.0316i and X'r = 1.25.

of the model. During the cycle, the viscous band appears in a subsequent time step,
where the formation rate is not at its maximum (figure 4e), due to the delayed nature
of microstructure formation. In general, as the shear rate decreases, the local contributions
to the microstructure evolution decrease in magnitude (figure 4b,e,h), while the non-local
effects are enhanced (figure 4c,f,i). This behaviour is in accordance with the definition of
l., where the extent of splitting is mediated by the shear rate due to the varying balance of
local and non-local forces.

The present view of spatial patterns is broadly consistent with that proposed by Rathee
et al. (2022) on the basis of BSM, wherein they infer the existence of high-stress SLPs
at wall boundaries. Their SLP formation can occur on both boundaries (Rathee, Blair
& Urbach 2017) or a single boundary, whereas in our simulations, with the particular
parameter values described here, two SLPs — one on each wall — are always formed. Our
model also does not display the rich dynamics of pattern formation in the wake of the SLP
interaction (Rathee et al. 2020). Regardless, our simulations capture the broad picture
of the spatial pattern and demonstrate a mode of temporal instabilities induced by the
formation and evolution of a distinct spatial arrangement of the microstructure. Our result
can also be viewed in congruence with the work of Nakanishi ef al. (2012), where similar
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Figure 5. Typical average shear (a) and stress (b) measured during oscillations driven by relative motions of
SLPs, including an induction period of 100 s. (¢) Spatial profiles of the upper SLP at varying strengths of
non-locality. (d) Scaling of the SLP width on the strength of non-locality.

geometry-spanning bands of microstructure were reported, and a mode of inhomogeneous
oscillatory flow was presented.

The spatial pattern was further characterised by measuring the stress distribution along
a line going through the SLP a small distance away from, and parallel to, the upper wall
(5 x 10~*m). As the non-locality () is increased at constant local parameters, the SLPs
become broader, while the peak stress inside the SLP decreases (figure 5c). Measured
stress profiles were fitted to a normal distribution, measuring their standard deviation, A,
as a proxy measurement for the characteristic length. The resulting fit (figure 5d) confirms
SLPs grow in width with the square root of the diffusion coefficient, /o, or in other words,
linearly with the characteristic length scale (2.11).

3.4. Viscosity ratio

A major difference between the present results and the experimental work on a stress-
controlled system lies in the permanence of the SLPs. During BSM measurements in a
shear-rate-controlled system, the SLPs are persistent in time (Rathee et al. 2020, 2022),
but in a stress-controlled mode the SLPs are observed to dissipate during the oscillatory
behaviour of the system. The proposed mechanism for this relies on the large stress
fluctuations measured via BSM, which act through the stress-control scheme to sharply
reduce the shear rate below the critical value, y,, allowing SLPs to erode. The dissipation
of SLPs will cause the total stress acting on the plate to diminish and the shear rate to
increase, starting a new oscillatory cycle.
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Parameter Value Units
Particle volume fraction, ¢ 0.540 —
Frictional divergence volume fraction, ¢ 0.562 —
Frictionless divergence volume fraction, qbo 10 —
Solvent viscosity, 1 0.00158 Pas
Characteristic stress scale, o* 0.0005 Pa
Microstructural rate parameter, s 20 —
System inertia parameter, k 0.01 or 1 ms~2Pa~!
Microstructural diffusion parameter, o 2 x 1077 m2 s~!
Gap height, i 0.01 m
Domain length, / 0.03 m
Fluid density, p 1000 kgm™3
Stress set-point, X'g 0.0005-0.025 Pa

Table 4. High-viscosity-ratio parameters.

Our model should have all the components required to capture this proposed
phenomenology. In figure 3(a) we demonstrated that the stress-splitting instability will
act to increase the total average stress in the domain. A similar effect is expected to
occur in the spatial pattern-forming regime: the appearance of SLPs is accompanied by
a large increase in the average stress acting on the upper plate. The stress control will
react to formation of SLPs by decreasing the shear rate, with the extent of shear rate
reduction being proportional to the additional stress produced by the formation of the SLP.
In accordance with the definition of /., the decrease in shear rate will favour the non-local
elements of the model, pushing the fields towards a homogeneous state and eroding the
SLPs. The dissipation of SLPs will then in turn reduce total stress, potentially below the
target stress set-point, resulting in an increase in shear rate. Increasing shear rate will
drive the characteristic length scale from the homogeneous regime to a continuous spatial
pattern regime initiating a new cycle.

This phenomenology is not observed in figure 4 likely due to the small amplitude of the
oscillation in the shear rate, where a single cycle does not span a range of characteristic
length scale wide enough to capture both the SLP-forming and homogeneous regimes.
The underlying issue is the choice to artificially restrict the viscosity ratio in the rheology
with the chosen parameters. In a real system, the viscosity ratio (H =n(f = 1)/n(f =0))
defined as the ratio of the completely frictional state and the frictionless state is observed
to span up to three orders of magnitude. In the simulations so far, we have chosen to limit
the viscosity ratio to a moderate value (H = 31.77) for numerical purposes. Extending this
parameter to a more realistic value should result in higher ‘excess’ stress production as a
result of SLP formation, and a higher range of shear rates during oscillations.

To test this, we carried out simulations with a modified flow curve shape (see table 4
for details). Due to the change in the rheology we also adjusted relevant dynamic
parameters to maintain equivalent time scales. For a choice of input stress set-point of
XYk =10, we obtain nearly equivalent characteristic length scale (I, =0.0316%) to that
of the simulations in figure 4, and we can exclude the inertia-driven instability by setting
= —8.87 x 1073, The main differences in the new rheology are a significantly increased
viscosity ratio (H = 583.51) and a reduced diffusive time scale (w = 0.79).

The results of this high-viscosity-ratio (high-H) simulation (figure 6) are in stark
contrast to those of the previous low-H simulations. Both shear rate and stress oscillate
in an aperiodic high-frequency mode, with a significantly increased amplitude of
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Figure 6. Normalised stress (black) and shear rate (red) signals with the modified rheology for (a.,c.e) k, =1
and (b,d,f) kp =0.01. Solutions for three different stress set-point values are shown for both cases: (a.,b)
Yr=3,(c,d) Xg =10 and (e,f) g =20.

both signals. Despite the chaotic nature of the signals, a clear trend can be observed
in which an increase in the shear rate induces a sharp increase in stress, followed by
a sudden drop in the shear rate. Similarly, the fields no longer display persistent, well-
defined SLPs attached to the boundaries (as seen for the low-H case in figure 4), but rather
the microstructural patterns consist of geometry-spanning structures, which nucleate and
dissipate accordingly with oscillations in shear and stress. The highly aperiodic nature
of the oscillations in this case is a result of rapid increases in the shear rate during the
SLP dissipation phase. As the plate accelerates, a thin layer of high shear rate forms near
the upper wall resulting in a microstructure nucleation and propagation in pulses from
the top to the bottom of the geometry. Comparing these results with the experimental
dynamics in Rathee et al. (2020), it is clear that the simulated dynamics do not display
a clean distinction between pattern-forming and homogeneous regimes such as observed
experimentally. To more closely reproduce the experimental observations, we increase
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Figure 7. Visualisation of the viscosity field for a modified high-viscosity-ratio rheology with high system
inertia (k, =0.01). Three subsequent time steps of nucleation (a,b) and dissipation (c) of high-viscosity
structures.

the inertia of the system by setting k, = 0.01. Increasing the inertial time scale by two
orders of magnitude should ensure ample time for microstructure dissipation. Note that
now u > 0 and we admit the possibility of a boundary-driven instability as in § 3.1.

Figure 6 shows a comparison between low system inertia (figure 6a,c,e) and high inertia
(figure 6b.d,f) stress and shear rate oscillations for three set-point stresses. In both high-
and low-inertia cases, the signal retains significant aperiodic features and a comparable
range of shear rate oscillations, but the pattern of increasing shear rate inducing a stress
spike becomes even clearer for high inertia (figure 6b,d,f). Due to the slow action of the
stress control scheme, the microstructure is allowed to form more extensive SLPs resulting
in significantly higher and sharper increases in stress. In the same vein, oscillations in
shear rate proceed by qualitatively regular (but quantitatively aperiodic) slow increases in
shear, followed by sharp decreases in shear rate due to massive spikes in stress. This result
shows remarkable congruence with the oscillatory patterns reported for a stress-controlled
system (Rathee et al. 2020), where the oscillations were accompanied by the formation and
disappearance of high-stress events acting on the lower plate. Microstructural fields now
feature clear separation between regimes, with the existence of spatial patterns confined
to short periods of time associated with spikes in stress; periods of increasing shear
rate (and low stress) are associated with entirely homogeneous fields of microstructure.
Typical fields of viscosity during a microstructure nucleation and dissipation cycle are
shown in figure 7 for a simple shear in a wide geometry with / = 15k. No clear structures
isolated to the boundaries can be observed. The microstructure spans the entire width of
the gap with no clear alignment with either the extensional or compressive axes. Further
simulations with an extended geometry (I = 15k) were carried out to test the robustness
of this phenomenology, with similar patterns being observed, i.e. the observed patterns
of microstructure displayed in figure 7 are independent of system width size. Further
simulations with double resolution (N = 100) for [ = 3k yielded close agreement with
the results obtained at N = 50.

3.5. Fluid inertia

In figure 6, we present simulations for the depth-averaged Reynolds number 0.015 < Re <
8.1, with the range corresponding to the span of the oscillations. In cases of high system
inertia (k, =0.01), slow dynamics of wall velocity dominates resulting in clear linear
velocity profiles throughout the oscillations, with no noticeable effects of fluid inertia.
However, in the case of low system inertia (k, = 1), the effects of fluid inertia become
apparent with the high-stress regions initiating near the upper wall and propagating in
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Parameter Value Units
Particle volume fraction, ¢ 0.54 —
Frictional divergence volume fraction, ¢ 0.55 —
Frictionless divergence volume fraction, ¢>0 0.90 —
Solvent viscosity, g 0.00158 Pas
Characteristic stress scale, o* 0.0005 Pa
Microstructural rate parameter, k 7 20 —
System inertia parameter, k, 0.0l or1 ms~2Pa~!
Microstructural diffusion parameter, o 2 x 1077 m? s~ !
Gap height, h 0.01 m
Domain length, / 0.03 m
Fluid density, p 1000 kgm™3
Stress set-point, X'g 0.0007 or 0.001275 Pa

Table 5. Low-fluid-inertia parameters.

short bursts, accompanied with consistently nonlinear velocity profiles. To investigate the
influence of fluid inertia on our results, we repeated both low- and high-system-inertia
simulations in the range 0.0002 < Re < 0.13 (see table 5). In the case of high system
inertia, reductions in fluid inertia yielded little difference, with qualitatively identical
phenomenology. On the other hand, the oscillations in the low-system-inertia case differ
significantly. Microstructure no longer propagates in bursts; rather, semi-stable bands are
formed. These bands propagate in the flow direction and occasionally interact with each
other or the domain boundaries to undergo rearrangement. This results in signals where
the microstructure rearrangements drive aperiodic fluctuations in stress and shear rate. The
resulting signals have significantly lower relative amplitude of the oscillations (note that
p < 0 for both high and low fluid inertia).

Varying the stress set-point (X'g) revealed a significant positive correlation between
applied stress and the frequency of oscillations (figure 6b,d,f), a feature reported in
experimental work (Rathee er al. 2020) — with no substantial alterations to the oscillation
pattern in the case of high inertia, but clear progression from near-periodic (figure 6a) to
strongly chaotic (figure 6¢) back to near-periodic solutions (figure 6¢) in the case of low
inertia.

4. Conclusion

We have presented the application of an SPH scalar DST continuum model to the problem
of instabilities in simple shear. We checked the accuracy of the model using a previously
reported (instrument) inertia instability mechanism and found excellent agreement with
the relevant stability properties. Validation of our model at the extreme of dominant
locality compared with the model of Richards et al. (2019) resulted in accurate predictions
of both bifurcation points and limit cycle sizes in simulations, across a range of stress
set-points that span the entire flow curve, for two different gap-height geometries.

To overcome shortcomings of an entirely homogeneous view of the instability, we
considered a spatial instability in the form of stress splitting. We demonstrated that such an
instability is unique for the DST regime and documented its origin in local contributions to
the commonly used microstructural evolution equation. Although stress splitting reliably
produced inhomogeneous flow fields in the region of negative flow-curve gradients, it
also yielded non-differentiable stress and microstructure fields. Inclusion of non-locality
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allowed the formation of continuous spatial patterns in microstructure. The form of non-
locality in the present work was based on the formulation proposed by Kamrin & Henann
(2015), but the analysis is expected to be general enough to anticipate alternative inclusions
of non-locality. For example, particle migration as per suspension balance models should
fulfil a similar stress-diffusive role, with the added benefit of producing compaction fronts.
With intermediate non-locality in the model, the obtained fields of microstructure showed
the formation of high-viscosity phases — or SLPs — near the solid geometry boundaries,
connected by a band material in a highly frictional state. The simulated DST rheology in
this case was characterised by a relatively low viscosity contrast which severely limited
the range of the amplitude of the shear rate oscillations. This produced long-lived SLPs,
more akin to the experimentally observed SLPs for shear-rate-controlled systems (Rathee
et al. 2020).

Simulations with high viscosity contrast (similar to realistic DST fluids) were able to
capture the oscillatory phenomenology observed in the BSM measurements of Rathee
et al. (2020), along with commonly reported aperiodic solutions (Hermes et al. 2016).
Here, aperiodicity was found to be driven by the nucleation and dissipation of the
microstructural patterns within the geometry, which were broadly similar but different
in detail in each cycle. The role of inertia was probed, and while it did not appear to
have a determinitive role in the presence of instabilities in the range of parameters used
in this work, it had a significant influence on the oscillatory patterns. It is noteworthy
that this suggests that measurements of identical materials should have significantly
different patterns based on the parameters such as the inertia of the geometry used or
the rheometer itself. Across the range of input stresses in the entire multivariate region
of the flow curve, high-inertia simulations maintained their near-periodic (but still strictly
aperiodic) oscillation patterns with significant increases in frequency as stress increased.
In the case of low inertia, high-stress events increase in frequency, but now the oscillatory
pattern transitions from near-periodic to chaotic and back to near-periodic oscillations with
increasing stress.

The primary limitation of our implementation is the lack of vorticity direction. Much of
the instabilities in DST have an aspect along the vorticity direction, both in experiments
(Herle et al. 2005; Rathee et al. 2022) and in simulations (Chacko et al. 2018). The
inclusion of both gradient and vorticity instabilities is likely a key next step in future work
towards a complete picture of rheochaos. In addition, the transition away from scalar mi-
crostructure representation towards tensorial microstructure orientation implementations
could pose a significant advantage, allowing for distinguishing compressive and extension-
al shear effects in formation and destruction of the microstructure (Gillissen et al. 2019).

As a last remark, it should be noted that the microscopic DEM-based method with
explicit solvent model and resolved hydrodynamics at a particle level (Orsi et al. 2024)
would allow us to describe the problem of heterogeneous flows. However, in order to reach
the macroscopic scales of flow instabilities (due to scale separation), a prohibitively large
number of degrees of freedom would be needed for these direct numerical simulations.
In the present approach , we are proposing a continuum-based microstructural model
allowing one to reach a larger scale and address the possibility of rheochaos.
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Figure 8. Dimensionless shear rate (red) and stress (black) for (a,c) X = 1.40 and (b,d) X =2.55;
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Appendix A. Fluid inertia

To investigate effects of fluid inertia we alter the flow curve by reducing ¢° : 10 — 0.90
and ¢™ : 0.562 — 0.55, effectively increasing both frictionless and frictional viscosities.
This results in a reduction of H : 583 — 483, to facilitate higher computational cost while
remaining in large-viscosity-contrast parameter space. Finally, the value of the diffusion
coefficient & : 2 x 1077 — 1078 is reduced to compensate for reduction in shear rate and
maintain a similar balance of local and non-local effects. The resulting range of Re here
is2 x 107* < Re < 0.13.

The results for high system inertia (k,, = 0.01) are presented in figure 8. For both applied
stresses, oscillations retain the pattern of high shear rate inducing formation of spatially
heterogeneous microstructure, which in turn facilitates spikes in stress and deceleration
of the upper plate. The main difference consists of ‘softer’ deceleration phase and less
pronounced (but still present) aperiodicity of the signals. For low system inertia (k,, = 1)
in figure 9 significant differences due to reduced inertia include vastly reduced relative
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Figure 9. Dimensionless shear rate (red) and stress (black) for (a,c) g =1.40 and (b,d) ¥ =2.55, k), = 1.

amplitude of oscillations. Interestingly, apparent oscillations retain their aperiodic ‘noisy’
appearance.

The values of ¢, ¢ and ¢° were chosen according to the values obtained by
Baumgarten & Kamrin (2019) by fitting the WC model to the data available in the literature
for various experimental samples. The solvent parameters were matched with water, with
increases in viscosity in some cases being comparable to using water—glycerol mixtures.
The dynamic properties of microstructural formation, diffusion and system inertia for
experimental system are less readily available. Theses parameters were the subject of this
study, with the resulting flow fields being compared with the experimental measurements
across a range of the dynamic parameter space.
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