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TOPOLOGICAL DUALITY IN HUMANOID ROBOT DYNAMICS
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Abstract

A humanoid robot system may be viewed as a collection of segments coupled at rotational
joints which geometrically represent constrained rotational Lie groups. This allows a study
of the dynamics of the motion of a humanoid robot. Several formulations are possible.
In this paper, dual invariant topological structures are constructed and analyzed on the
finite-dimensional manifolds associated with the humanoid motion. Both cohomology and
homology structures are examined on the tangent (Lagrangian) as well as on the cotangent
(Hamiltonian) bundles on the manifold of the humanoid motion configuration, represented
by the toral Lie group. It is established all four topological structures give in essence the
same description of humanoid dynamics. Practically this means that whichever of these
approaches we use, ultimately we obtain the same mathematical results.

• 1. Introduction

Since the early papers of Vukobratovic [30,31,33-35], a vast body of research has
evolved relating to the kinematics, dynamics and control of biped, anthropomorphic
and humanoid robots [5,10, 12,13,16,23,27-29,32]. Some biped models admitted
the ability of passive dynamic walking [19] and others powered walking [20]. The
decade before last was dominated by work on solutions to the kinematic problems of
redundancy and singularities [26,36]. The last decade has been characterized mostly
by the extensive use of intelligent, neuro-fuzzy-evolutionary control of humanoid
dynamics [6,9,11,21,24,25] and computer-graphics animation [15].

The purpose of the present study is to establish and analyze dual invariant algebraic-
topological structures (homology and cohomology groups) on dual invariant differen-
tial-topological structures (tangent and cotangent bundles) of the finite-dimensional
manifolds (Lie groups) arising in connection with humanoid dynamics [14]. The
construction of the n-dimensional configuration manifold of humanoid motion makes
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use of the formalism of constrained rotational Lie groups [4,14]. For the construction
of momentum and velocity phase-spaces for humanoid dynamics we employ the dif-
ferential topology of vector bundles [1,7,18]. The construction of the Lagrangian and
Hamiltonian vector fields for humanoid dynamics is based on Riemannian and sym-
plectic geometry [1,2,4,7,18,22]. For the construction of invariant (co)homology
structures involved in humanoid dynamics we use the basic structures of algebraic
topology (see [3,17] for details).

In this paper, we show that both cohomology and homology groups, operating on
momentum—as well as on velocity-phase-space manifolds of humanoid motion (and
therefore applying to both Hamiltonian and Lagrangian formalisms), give in essence
the same mathematical description of humanoid dynamics.

2. Configuration, velocity and momentum manifolds

The kinematics of an ^-segment humanoid chain are usually defined as a map
between external (usually, end-effector) coordinates xr(r = 1,... ,n) and internal
(joint) coordinates q'(i = I, ..., N). The forward kinematics are defined as a nonlin-
ear map xr = xr(q') with corresponding linear vector functions dxr = dxr/dq' dq' of
differentials and Jtr = dxr/dq' q' of velocities. Here and subsequently the summation
convention is understood with repeated indices. When the rank of the configuration-
dependent Jacobian matrix J = dxr/dq' is less than n kinematic singularities oc-
cur; the onset of this condition could be detected by the manipulability measure
[24]. Inverse kinematics are defined conversely by a nonlinear map q' = q'(xr)
with corresponding linear vector functions dq' = dq'/dxr dxr of differentials and
q' = dq'/dxr xr of velocities. Again, in the case n < N of redundancy, the inverse
kinematic problem admits infinite solutions. Often pseudo-inverse configuration-
control q' = J* xr is used instead (see [15]), where J* = JT(JJT)~l denotes the
Moore-Penrose pseudo-inverse of the Jacobian matrix J.

Humanoid joints, that is, internal coordinates q' (i = l,...,N), constitute a
smooth configuration manifold QN. Uniaxial 'hinge' joints represent constrained,
classical, rotational Lie groups SO(2)'cmu, parameterized by constrained angles q^su =
q' € [<7min, qinaxi- Three-axial 'ball-and-socket' joints represent constrained rotational
groups SO(3)'cnsu, parameterized by constrained Euler angles q' = q^su. In the sequel
the subscript 'cnstr' will be omitted, for the sake of simplicity, and always assumed
in relation to internal coordinates q'.

The functor L ie applied to the category j7"[SO(n)'] (for n = 2, 3 and i =
l,...,N) of rotational Lie groups SO(n)' (and their homomorphisms) gives the
category «^.[JO(/Z),] of corresponding tangent Lie algebras 5o(«), (and their homo-
morphisms). (A homomorphism of Lie groups is their homomorphism as abstract
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groups and their smooth map as manifolds, while a homomorphism of Lie algebras
is a linear map of one Lie algebra into another that sends a product (Lie bracket) into
a product.) Further applying the functor Dualc to the category S*.[so(n)i] provides
the category y*[so(n)*] of cotangent or canonical Lie algebras so(n)* (and their ho-
momorphisms). To go directly from y[SO(n)'] to y*[so(n)*], we use the canonical
functor Can. Therefore we have the following commutative triangle.

y:[so(n)*]

Both the tangent algebras so(n), and the cotangent algebras so(n)* contain infinites-
imal group generators, angular velocities q' = q4" in the first case and canonical angu-
lar momenta p, = p^ in the second [18]. As Lie group generators, angular velocities
and angular momenta satisfy the respective commutation relations [q4", q^'] = e^'q9i

and [p,j,., p$.] = e^pg,, where the structure constants e^ and e ^ constitute totally
antisymmetric third-order tensors.

In this way, the functor Dualc : Lie = Can establishes a geometrical duality
between kinematics of angular velocities q' (involved in Lagrangian formalism on
the tangent bundle of QN) and that of angular momenta p, (involved in Hamiltonian
formalism on the cotangent bundle of QN). This is analyzed below. In other words, we
have two functors L ie and Can from a category of Lie groups (of which J?"[SO(n)']
is a subcategory) into a category of their Lie algebras (of which y.[so(n)i\ and
y*[so(n)*] are subcategories), and a natural equivalence (functor isomorphism) be-
tween them defined by the functor Dualc- (As angular momenta p, are in a bijective
correspondence with angular velocities q', every component of the functor Dualc is
invertible.)

If G\ and G2 are two Lie groups, their tensor product G\ ® G2 is also a Lie group
f 18]. The configuration manifold QN can be constructed as a constrained Lie group
'product-tree' depicted in Figure 1.

Here a line segment'-' corresponds to the tensor product operation '®'. Naturally-
distributed spine kinematics are represented by the lumped 'lumbo-sacral' 5O(3)-joint.
Finger and toe motions are not included.

For the sake of the cerebellum-like motor control [21], the humanoid configuration
manifold QN could be reduced to an JV-torus as follows. Denote by S[ the constrained
unit circle in the complex plane. This is an Abelian Lie group [16]. We have the
homeomorphisms SO(3) % 50(2) <g> S0(2) ® 50(2) and 50(2) % 5'. Let IN be the
unit cube [0, l]w in RN and '~ ' an equivalence relation on RN obtained by 'glueing'
together the opposite sides of 1N and preserving their orientation. The manifold
of humanoid configurations depicted in Figure 1 can be represented as the quotient
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FIGURE 1. A constrained Lie group 'product-tree' as a configuration manifold of humanoid robot
dynamics.

space of RN by the space of the integral lattice points in RN, that is, a constrained
N -dimensional torus

N

\&N/ZN = I N / ~ = W S] = l(q', i = l , . . . , N ) : m o d 2TT} = TN.
i=i

Since 51 is an Abelian Lie group, its N-fold tensor product TN is also an Abelian
Lie group, the toral group, of all nondegenerate diagonal N x N matrices. As a Lie
group, the configuration space QN = TN of humanoid dynamics has a natural Banach
manifold structure with local internal coordinates q' e U, U being an open set (chart)
in TN [1,17].

Conversely by 'unglueing' the configuration space we obtain the primary unit
cube. Let '~*' denote an equivalent decomposition or 'unglueing' relation. By the
Tychonoff product-topology theorem, for every such quotient space there exists a
selector such that their quotient models are homeomorphic, that is, r /v/~* R» AAr/~*
[1,17]. Therefore IN represents a selector for the configuration torus TN and can be
used as an N-directional 'command-space' for the topological control of humanoid
motion. Any subset of degrees of freedom on the configuration torus TN representing
the joints included in humanoid motion has its simple, rectangular image in the
command-space selector IN. Operationally, this resembles what the brain-motor
controller, the cerebellum, actually performs on the highest level of human motor
control [14,21].

We refer to the tangent bundle T QN of the humanoid configuration manifold QN

(Figure 1) as the velocity phase-space manifold, and to its cotangent bundle T*QN
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[5] Humanoid robot dynamics 187

as the momentum phase-space manifold. We shall prove that humanoid dynamics
can be described equivalently in terms of two topologically dual functors Lagr and
Hamr. from Di f f, the category of smooth manifolds (and their smooth maps) of
class C, into Bund, the category of vector bundles (and vector-bundle maps) of class
Cp~', with p > 1. The functor Lagr is represented physically by the second-order
Lagrangian formalism on 7"Q" 6 Bund, while Ham .̂ is represented by a first-order
Hamiltonian formalism on T* QN e Bund. We shall prove the existence of the
topological functor isomorphism Dual T : Lagr = Hamr..

The Riemannian metric g = (, > on the configuration manifold QN is a positive-
definite quadratic form g : TQN —> K, given in local coordinates q' e U ([/open in

8ti ^ gij{q,m)dq'dq>

(see [8]). Here

" dx'dx*
ij (q,m)= > m^Sr,r — • — -

~ aq' dqJaq' dqJ

is the covariant material metric tensor [8] defining a relation between internal and
external coordinates and including n segmental masses m^. The quantities xr are
external coordinates (r, s = 1 , . . . , 6n) and i,j = 1 , . . . , N = 6n — h, where h
denotes the number of holonomic constraints.

The Lagrangian of the system is a quadratic form L : T QN —> K dependent on the
velocity v and such that L(v) = (v, v)/2. It is given by

in local coordinates^', v' = q' e UV(UV open in TQN)(see [2,18]). The Hamiltonian
of the system is a quadratic form H : T* QN —>• R dependent on momentum p and
such that H(p) = (p, p)/2. It is given by

H(p) = -g'j(q,m)PiPj

in local canonical coordinates q',p> e Up (Up open in T*QN) (see [2,18]). The
inverse (contravariant) material metric tensor is defined as (see [8])

dq'dqi
llSn — —.

For any smooth function L on TQN, the fibre derivative or Legendre transformation
is a diffeomorphism FL : TQN —*• T* QN with F(w)-v = (w, v) from the momentum
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phase-space manifold to the velocity phase-space manifold associated with the metric
g = (,). In local coordinates q', vl = ql € Uv (Uv open in TQN), FL is given by
(q',v')» (q\Pi) [18].

For the momentum phase-space manifold T* QN we have the following (see
[22]):

(i) There exists a unique canonical one-form 9H with the property that, for any
one-form fi on the configuration manifold QN, we have fi*9H = ft. In local canonical
coordinates q', p, e Up (Up open in T* QN) it is given by 9H = Ptdq'.

(ii) There exists a unique nondegenerate symplectic (or Hamiltonian) two-form
coH, which is closed (dcoH — 0) and exact (coH = d$H = dp,; A dq'). Each body
segment has, in the general 50(3) case, a sub-phase-space manifold 7*50(3) with

ft^ub> = dpt A d(p + dpt A d\js + dpe A dO.

Analogously, for the velocity phase-space manifold T QN we have the following
(see [18]):

(i) There exists a unique one-form 6L, defined by the pull-back 6L = (FL) * 6H

of6H by FL. In local coordinates q', v' = q' e Uv (£/„ open in TQN) it is given by
9L = Lvidql, where Lv> = dL/dvl.

(ii) There exists a unique Lagrangian two-form coL, defined by the pull-back
coL = (FL) * a>H of coH by FL, which is closed (dcoL = 0) and exact (u>L = d9L =
dLv, A dq1).

Both T* QN and T QN are orientable manifolds, admitting the standard volumes
given respectively by

( 0 N o
WH = W\ ""' WL = AM

in local coordinates q', pt € Up (Up open in T* QN), (resp. q', v' = ql e (/„([/„ open
in TQN)). They are given by

QH = dqx A • • • A rfg^ A dp\ A • • • A c?pw,

fiL = dq1 A • • • A dqN A dvl A • • • A dvN.

On the velocity phase-space manifold T QN we can define also the action A :
TQN -*• R by A(v) = FL(v) • v and the energy E = A - L. In local coordinates
q', v' = q' 6 (/„ (Uv open in TQN) we have A = u'L,,., so E = v'Lvi — L. The
Lagrangian vector field XL on TQN is determined by the condition ixL(oL = dE.
Classically it is given by the second-order Lagrange equations (see [2,18])

±*±=*± (2.1)
dtdv' dq1 K }
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[7] Humanoid robot dynamics 189

The Hamiltonian vector field XH is defined on the momentum phase-space manifold
T* QN by the condition iXHco = dH. The condition may be expressed equivalently as
XH = JVH, where

J = > -/ o

In local canonical coordinates q', pt e Up (Up open in T* QN) the vector field XH is
classically given by the first-order Hamilton canonical equations (see [2,18,22])

q = , pi = : . (2.2)
dpi dq'

As a toral Lie group, the configuration manifold QN is Hausdorff. Therefore for
x = (q', p^ € Up (Up open in T* QN), there exists a unique one-parameter group of
diffeomorphisms0r : T*QN ->• T* QN such that j-t \t=o<f>,x = JVH(x). This is termed
Hamiltonian phase flow and represents the maximal integral curve / h-> (q'(t), /?,(?))
of the Hamiltonian vector field XH passing through the point x for t — 0.

The flow <t>, is symplectic if coH is constant along it (that is, cp*coH = coH) if and
only if its Lie derivative vanishes (that is, LXHCOH = 0). A symplectic flow consists
of canonical transformations on T* QN, that is, local diffeomorphisms that leave coH

invariant. By Liouville's theorem, a symplectic flow 4>, preserves the phase volume
on T* QN. Also, the total energy H = E of the system is conserved along 4>,, that is,
H o <p, = </>,.

Lagrangian flow can be defined analogously (see [18]).
For a Lagrangian (resp. a Hamiltonian) vector field XL (resp. XH) on QN, there is

a base integral curve co(t) = (q'(t), v'(t)) (resp. co(t) — (q'(t), pi(t))) if and only if
co(t) is a geodesic. This is given by the contravariant velocity equation

q' = v', vi + ri
Jtv

ivk=0 (2.3)

in the former case and by the covariant momentum equation

qk = 8kiPi, Pi + ^jkg
ilgkmPiPm - 0 (2.4)

in the latter [18]. Here r'jk denote the Christoffel symbols of an affine connection in
an open chart U on QN, defined on the Riemannian metric g = ( , ) by

r'jk = g''rjki, r = ' (dgkl d8il d8ik\
Jkl 2 \dqJ dqk dq1 ) '

The left-hand sides d' = vl + Ti
jkv'vk (resp. p, = p't + r'jkg

jlgkmp,pm) in the
second parts of (2.3) and (2.4) represent the intrinsic or Bianchi covariant derivative of
the velocity (resp. momentum) with respect to t. Parallel transport on QN is defined
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190 V. Ivancevic and C. E. M. Pearce [8]

by v' — 0, (resp. p, = 0). When this applies XL (resp. XH) is called the geodesic
spray and its flow the geodesic flow [2].

For the dynamics in the gravitational potential field V : QN -> K, the Lagrangian
L : TQN -*• OS (resp. the Hamiltonian H : T*QN -* K) has an extended form
(see [18])

L(v, q) = gijv^/l - V(q), (resp. H(p, q) = guPiPj/2 + V(q)).

A Lagrangian vector field XL (resp. Hamiltonian vector field XH) is still defined by
the second-order Lagrangian equations (2.3) (resp. first-order Hamiltonian equations
(2.4)) [2,18].

The Legendre transformation or fibre derivative FL : TQN -> T*QN thus maps
Lagrange's equations (2.1) and (2.3) into Hamilton's equations (2.2) and (2.4) (see
[28,30]). Clearly there exists a diffeomorphism FH : T*QN -+ TQN such that
FL = (FH)~l. In local canonical coordinates q', p, e Up (Up open in T* QN) this is
given by (q1, pt) H-> (q1, v') and thus maps Hamilton's equations (2.4) into Lagrange's
equations (2.3).

A general form of the forced, non-conservative Hamilton's equations (resp. La-
grange's equations) is given as

.,. _ dH . _ dH ,. / d dL dL _
dpi' ' 3<7' ' \ dt dv' dq'

(see [14,18]). Here the Ft(t, q', pt) (resp. F,(r, q', v')) represent any kind of covariant
forces, including dissipative and elastic joint forces, as well as actuator drives and
control forces, as a function of time, coordinates and momenta. In covariant form we
have

qk = gkiPi, Pi + r)kg
ilgkmplPm = F,(t, q\ Pi),

(resp. q' = v\ v' + r j y vk = gij Fj (t, q\ v')).

3. (Co)Homologies of velocity and momentum manifolds

We now search for invariant topological duality in the humanoid dynamics on the
configuration manifold M = QN (Figure 1) in the form of (co)homology structures
[3,8] on the momentum T*M and velocity TM phase-space manifolds.

A. Cohomology If # = jVJZ (resp. ^ = X'Jt) represents the Abelian cate-
gory of cochains on the momentum phase-space manifold T*M (resp. the velocity
phase-space manifold TM), we have the category y\3%"Jt) (resp. ym(£"J?)) of
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generalized cochain complexes A' in 3tf%jfl (resp. S£'M) and if A'n = 0 for n < 0
we have a subcategory Sf^gijti* Ji) (resp. y^t?'Jt)) of De Rham differential
complexes in S^WJt) (resp. 3

A'DR: o -* n°(r*Af) 4- n'(rAf) 4- n2(r*A/) 4 ... 4 Q"(rw) 4

(resp. A*DR : 0 ^ fi°(7M) 4 Q'(TM) 4 £22(rM) 4 i S2N(TM) 4

where A'w = QN(T*M) (resp. A'w = £lN(TM)) is the vector space of all N-forms on
T*M (resp. TM) over K.

Let Z/V(7*M) = Ker(rf) (resp. ZN(TM) = Ker(rf)) and BN(T*M) = lm(cl)
(resp. BN(TM) = lm(d)) denote respectively the real vector spaces of cocycles and
coboundaries of degree N. Since dN+tdN = d2 = 0, it follows that BN(T*M) c
ZN{T*M) (resp. BN(TM) c ZN{TM)). The quotient vector space

H%R(T*M) = Ker(d)/lm(d) = ZN(T*M)/BN (T*M)

(resp. H%R(TM) = Ker(rf)/ Im(rf) = ZN(TM)/BN (TM)),

we refer to as the De Rham cohomology group (vector space) of humanoid dynamics
on 7"*M (resp. TM). The elements of H%R(T*M) (resp. H%R(TM)) are equivalence
sets of cocycles. Two cocycles <Wi and co2 are cohomologous, or belong to the
same equivalence set (written <w, ~ CD2) if and only if they differ by a coboundary
CDI-(O2 = d9. Any form u>H e QN(T*M) (resp. coL e QN(T*M)) has a De Rham
cohomology class [ioH] e H%R(T*M) (resp. [o;L] e H%R(TM)) [3,8].

The symplectic form a>w on 7*M (resp. the Lagrangian form coL on TM) is by
definition both a closed two-form or two-cocycle and an exact two-form or two-
coboundary. Therefore the two-dimensional De Rham cohomology group of hu-
manoid motion is defined as a quotient vector space

H2
DR(T*M) = Z2(T*M)/B2(T*M) (resp. H2

DR(TM) = Z2(TM)/B2(TM)).

As T*M (resp. TM) is a compact symplectic (resp. Lagrangian) manifold of
dimension 2N, it follows that coN

H (resp. a>N
L) is a volume element on T*M (resp.

TM) and the 2/V-dimensional De Rham cohomology class [a>%] € HlN
R(T*M) (resp.

[coN
L] e H2

D
N

R(TM)) is nonzero. Since [a)%] = [coH]N (resp. [co^] = [coL]N), then
[o)H] € HlR(T*M) (resp. [coH] e H2

DR(TM)) and all of its powers up to the Nth must
be zero as well [5]. The existence of such an element is a necessary condition for
T*M (resp. TM) to admit a symplectic structure coH = dp, f\ dq{ (resp. Lagrangian
structure u>L — dLv, A dq').

A De Rham complex A*DR on T*M (resp. TM) can be considered as a system
of second-order differential equations d26H — 0, 8H e QN(T*M) (resp. d2dL =
0.6L e QN(TM)) having a solution represented by ZN(T*M) (resp. ZN(TM)). In
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local coordinates q',pi e Up (Up open in T*M) (resp. q',v' e Uv (£/„ open in
TM)) we have d2dH = d2(Pidq') = d(dPi A dql) = 0, (resp. d26L = d\Lv>dq') =
d(dLv, A dq') = 0).

B. Homology If *& = Jif.^ (resp. # = ££.Jt) represents an Abelian category of
chains on T*M (resp. TM), we have a category y.fjP.Jt) (resp. S*.(Jf.j?)) of
generalized chain complexes &/. in Jtf.Ji (resp. jSf.^#), and if A = 0 for n < 0 we
have a sub-category y^{H.M) (resp. y^{L,M)) of chain complexes in JP.jtf (resp.

A. : 0 <- C°(T*M) I- C\T*M) I- C2(T*M) I L C(T*M) I

(resp. A. :0 <- C°(TM) t- C\TM) t- C2(TM) I 4- C(TM) I )

(see [3,7]). Here AN = CN(T*M) (resp. AN = CN(TM)) is the vector space of all
finite chains C on T*M (resp. TM) over R, and dN = d : CN+l(T*M) -> CN(T*M)
(resp. 9W = d : CN+l(TM) -> CN(TM)). A finite chain C such that dC = 0 is an N-
cycle. A finite chain C such that C — dB is an N-boundary. Let ZN(T*M) — Ker(d)
(resp. ZN(TM) = Ker(d)) and BN(T*M) = Im(d) (resp. BN{TM) = Im(d))
denote respectively real vector spaces of cycles and boundaries of degree N. Since
dN_idN = d2 = 0, then BN(T*M) c ZN(T*M) (resp. BN(TM) c ZA,(7M)). The
quotient vector space

H%(T*M) = ZN(T*M)/BN(T*M) (resp. H%{TM) = ZN(TM)/BN(TM))

represents an N-dimensional homology group (vector space) of humanoid dynamics.
The elements of Hfi(T*M) (resp. Hfi(TM)) are equivalence sets of cycles. Two
cycles Ci and C2 are homologous, or belong to the same equivalence set (written
C\ ~ C2), if and only if they differ by a boundary C\ — C2 = dB. The homology
class of a finite chain C e CN(T*M) (resp. C € CN(TM)) is [C] 6 H<j(T*M) (resp.
[C] € H<j(TM)).

In case of an A'-torus (M = QN = TN), the Betti numbers [3,7] of the humanoid
motion are given by

b° = 1, bl = N, ... , W = ( J, . . . , bN~{ = N, bN = 1 (0 < p < N). (3.1)

From the homotopy axiom for De Rham cohomologies [3], it follows that H*DR{M) %
H'DR{.TM) % H'DR(J*M). Also from the De Rham theorem it follows that H'DR(X) =
H.{X) for any smooth manifold X. Therefore bN = bN are given by (3.1) for all three
manifolds X = TN, TTN, T*TN of the humanoid dynamics.

Thus we conclude that both the De Rham A'-cohomology groups HpR(T*M) (resp.
H%R(TM)) and the //-homology groups H^(T*M) (resp. Hfi(TM)) of Hamiltonian
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[11] Humanoid robot dynamics 193

(resp. Lagrangian) formalism give in essence the same description of humanoid dy-
namics. This proves the existence of a topological functor isomorphism, that is,
a natural equivalence Dualr : Lagr = Hamr., between the Lagrangian and the
Hamiltonian dynamics on the humanoid configuration manifold M = QN (Figure 1).

4. Conclusion

In this article the four invariant topological structures founded on the configuration
manifold of the humanoid robot dynamics are analyzed. Both the cohomology and
the homology groups, complexes and categories are established and examined on the
tangent bundle (humanoid velocity-phase-space) as well as on the cotangent bundle
(humanoid momentum-phase-space). It is proved that all four analyzed topologi-
cal structures give in essence equivalent mathematical description of the humanoid
dynamics. In other words, there is a topological natural equivalence or functor isomor-
phism Dual7- : LagT = HamT., between Lagrangian and Hamiltonian formalisms
as pictured in Figure 1. Whichever of the four approaches to humanoid dynamics we
employ, the system we obtain ultimately will therefore be essentially the same.
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