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Abstract

Some recent results on the optimal choice of quadrature rules for the finite element solution
of eigenvalue problems are discussed in the light of some results of the author and J. Paine.

Finite element solution of eigenvalue problems for differential equations leads to the
matrix eigenvalue problem Ax = ABx, where the elements of the matrices A and B
are integrals which are usually evaluated numerically. Quadrature errors in evaluating
these integrals can significantly affect the accuracy of the computed solutions. This
paper considers the implications of some earlier results of the author and J. Paine for
some recent results on the optimal choice of quadrature rules for these problems.
The effect of quadrature errors onrather general variational methods was considered
in [14]. That analysis explains why finite element methods, and indeed most variational
methods in common use today, perform better than some classical variational methods,
which used “nearly” linearly dependent coordinate functions. Some early results on the
effect of quadrature errors in several finite element calculations are given in [12]. For
eigenvalue problems involving self-adjoint second-order linear differential operators
acting on functions defined on a polygonal domain in n-dimensional space, these
results were significantly strengthened by Banerjee and Osborn [7]. They considered
simplicial finite elements (line segments for n = 1, triangles for n = 2, etc.) of
maximal diameter 4. They established sufficient conditions for the finite element
approximations, obtained when numerical quadrature is used, to be optimal in the
sense that if, for some p, the error in the finite element approximation is O(h?) when
there are no quadrature errors, then the error obtained when there are quadrature errors
is also O(h?). Roughly, these conditions are that the eigenfunctions be sufficiently
smooth and that the order of the quadrature rule used be sufficiently high. In particular
they showed that, for sufficiently smooth eigenfunctions, if the error in the finite
element eigenvalue approximations is O(h?) in the absence of quadrature errors,
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then these errors will still be O(h%) when numerical quadrature is used, provided
the quadrature rule is exact for all polynomials of degree 2p — 1. Analogous results,
with optimality criteria appropriate for the p-version of the finite element method,
are proved in [8]. In [6], it is shown that the results of [7] are sharp for eigenvalues
but not for eigenvectors. Stronger results for eigenvectors are proved in [6] and [13].
For two-dimensional problems, using rectangular piecewise linear finite elements,
some results analogous to those of [7] are proved in [20] for non-polygonal regions.
Some key results of [7] are extended in [19] to more general problems on composite
structures, and some of these are further strengthened in [18].

A major limitation of the above results is that they are “optimal” only in the sense
that they give the optimal power of h. Proving that the error is bounded above by
an expression of the form Ch? says nothing about the effect of quadrature errors on
the coefficient C. Earlier results of the author and Paine [2, 5] show that quadrature
errors can increase this coefficient (and hence the total error) considerably, so that it is
still worthwhile to use more accurate quadrature schemes. In [5] we considered finite
element solution of the Sturm-Liouville problem

-y +qy =1y, y(0) = y(m) =0,

using linear hat coordinate functions with a uniform mesh. The results of [7] show that,
with this method, results obtained when the integrals are evaluated by the trapezoidal
rule will be “optimal” in the sense that the “exact” finite element approximations to the
eigenvalues have error O(h?) and the additional error introduced by this quadrature is
also O(h?). However, results of [5] show that this numerical quadrature nevertheless
significantly reduces accuracy.

It is well known that the error in the approximation to the kth eigenvalue of
regular Sturm-Liouville problems obtained by the finite element method with linear
hat coordinate functions and uniform mesh length # is O(k*A?). In [5] we showed that
the additional error introduced by the trapezoidal rule was O(k2h?), this result being
sharp. It might be thought that this would be subsumed in the larger O(k*h?) error
so that the trapezoidal rule would seem quite satisfactory. However, the main result
of [5] is that the O(k*h?) error of the finite element eigenvalues can be reduced, at
negligible extra cost, to O(k2h*/ sin(kh)) — effectively O(kh?) forkh < m/2—bya
simple correction technique, first studied in connection with the classical second-order
finite difference method in [15]. The idea is that, for both this finite difference method
and the finite element method with linear hat coordinate functions, the error in the
computed solution (in the absence of quadrature and round off errors) is known in
closed form, in the special case of constant g, and that this known error for constant
q provides a good estimate of the error for sufficiently smooth nonconstant q. This
makes it easy to calculate a more accurate “corrected” solution. Following [1], we
call this correction technique “asymptotic correction”, as it is based on the different
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asymptotic behaviour of the eigenvalues of the differential equation and its discrete
approximations. This name has been used in some other papers, but other names have
also been used in the literature, including “algebraic correction” [9] and “the AAdHP
correction” [16]. When this correction is used, the O(k%h?) error produced by the use
of the trapezoidal rule becomes the dominant error and a more accurate quadrature is
clearly required. Moreover, numerical results in {5] with g(x) = ¢* show that, even
without this correction, use of the trapezoidal rule more than doubles the error in the
finite element approximation to the fundamental eigenvalue. Numerical results also
showed that the corrected results are often considerably more accurate than shown by
the theoretical bounds proved in [5], so that the effect of quadrature errors becomes
even more important. '

One way of dealing with these errors is to use a higher-order quadrature rule. It
is shown in [5] that, if Simpson’s rule is used, then the O(k*h3/ sin(kh)) accuracy of
the corrected linear hat finite element estimates is preserved. Indeed it is shown in {3]
that, subject to the same smoothness assumptions as were made in the proofs in [12],
the additional error produced by using Simpson’s rule instead of exact quadrature is
O(k*h*), as had been conjectured in 5] on the basis of numerical results. Perhaps a
better strategy is to use product integration. There has been a great deal of research on
the use of product integration to evaluate difficult integrals, some of it by Australian
mathematicians [10, 11, 17], but very little attention appears to have been given to its
potential use in the finite element method. Yet integrands arising in the finite element
method are typically of the form gf , where g does not vary rapidly over the individual
elements and f is a polynomial which varies rapidly but can be integrated in closed
form. Product integration rules should be able to take advantage of this special product
form of the integrand. This is discussed in more detail in [5] and [3]. Numerical results
in [2, 3] using the product midpoint rule, and substantial unpublished numerical results
of John Paine, support the usefulness of this approach.

Most papers on the effect of quadrature errors in finite element eigenvalue com-
putations do not consider how the error grows with the order, k, of the eigenvalue.
Presumably this is because, even with exact quadrature, the errors in the uncorrected
finite element estimates grow rapidly with k, and it was thought that this was more
important than the increase with & in the effect of quadrature errors. However, this
argument is not valid if asymptotic correction proves as effective as for the problem
studied in [5]. The theory of asymptotic correction has advanced considerably since
the publication of [5]. Most of the theoretical results of [5] are extended to problems
with natural or periodic boundary conditions in [2] and, as in [5], numerical results
show that in practice the method often performs considerably better than has yet been
proved. Numerical results (but not yet proofs) are also available which show that
asymptotic correction can produce similar improvement to the results obtained by
higher-order finite element methods. Still more accurate quadrature methods will be
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required to take advantage of this, and this may provide still stronger reasons for using
some product integration scheme. A survey of results on asymptotic correction up to
1993 is given in [4] and there have been further developments since then, especially
in its application to inverse eigenvalue problems [9].

Recent work on quadrature errors in finite element calculations has been mainly
concerned with partial differential equations, which present a greater challenge than
ordinary differential equations, and the theory is not restricted to uniform meshes.
However, results proved so far for asymptotic correction almost all concern only
ordinary differential equations with uniform mesh. Nevertheless numerical results in
{1, 9] indicate that asymptotic correction can often be just as successful with partial
differential equations. A major difficulty with extending asymptotic correction to
partial differential equations is that there are not many problems with known closed
form solution to be used for the correction. For this reason, [1] and [9] considered
only the problem —V2u + qu = Au, with u vanishing on the boundary of a rectangle.
Some difficulties arising with this particular problem are discussed in more detail in
[9]. However, although more work is.required before asymptotic correction can be
used as easily with partial differential equations as it can now be used with Sturm-
Liouville problems, any development with the potential for increasing the accuracy
of finite element estimates obtained in the absence of quadrature errors provides an
additional reason why it is worth increasing the accuracy of the numerical quadrature
used in the process.
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