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Abstract

In this paper the Toeplitz determinant of order s ^ 1 generated by the rational function

with «„(.!) r̂ O for |«| ^ n ,

and vm (z) =£ 0 for |*| g ri,

is evaluated exactly for all values of s ^ m, as
oo

D,{fm,n) = exp [sko+ 2 pkm,vkn,-p],
v-1

where

ln/m(nM = S *,(».»)"
p=_0O

with
( km,, ip> 0)

kp(m, n) = 1 k0 {p = 0) and ri < |*| < f% {n ^ 1 ̂  ts).

UB,-i. (/><°)
thus proving Szegd's formula for the function /mjB(«)-

By forming the rational approximation of the generating function the formula is then
extended to

00

Urn Dm(f) • #-»»*o = exp [ 2 £*»*-»].
l

enabling the evaluation of the limit of Toeplitz determinants generated by certain classes of
complex valued functions.

1. Introduction

In the literature the term Toeplitz determinant [1] is generally used
to indicate determinants of the form

* I am grateful to Professor R. B. Potts for initially suggesting this problem, and to
Professor G. Szekeres for pointing out some of the literature on resultants. I would also like to
thank Professor D. B. Sears for his advice and for many stimulating and informative discus-
sions.
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[2] Toeplitz determinants and SzegS's formula 63

(1-1) \cj = \c^\ or IVPI .

in which the entries depend only upon the difference of their subscripts.
Since the two determinants are of equal value we will for convenience
assume the former notation.

A Toeplitz determinant is said to be generated by the XMntegrable
complex valued function F(d) if the entries cv are the Fourier coefficients
of F(6). It is given and denoted by

(1.2) D,(F) = \cPQ\^ = I c ^ l - 1 — f
where s is the order x of the determinant and 0 5S p, q ^ s—1. In general
the Fourier coefficients c9 are complex numbers and cp ̂  c_p, implying
that the associated Toeplitz matrix and form C,(F) = [Cj,_a] and
K, = x*Cj, are non-Hermitian [2]. From the definition (1.2) we note the
following important relations for Toeplitz determinants:

(1.3) (i) D,(l-F) = \I-C.(F)\,

(1.4) (ii) D,(OL • F) = a" • D,(F) (any contant a),

which follows on taking a factor of a out of each row.
If the function f(z) admits a Laurent expansion 2JL_<»CJ>Z1> for all

z e Q = {z; rx < \z\ < r2}, then we can associate with this particular expan-
sion and its corresponding region of convergence the determinant \c^Q\,
which when Q contains the unit circle Co becomes the Toeplitz determinant
D,(f) generated by the function F(6) = f(eie). When Q does not contain
the unit circle we can still define the determinant |c,,_a|, but we will not
refer to it as the Toeplitz determinant generated by f\z), but merely as an
associated 'improper' Toeplitz determinant of /(z).2 We note that the
Toeplitz matrix generated by /(1/z) is the transpose of the Toeplitz matrix
generated by f(z), since both functions have an expansion on Co and c9 is
interchanged with c_v. When the generating function f(z) has real singular-
ities and zeros then the coefficients cp are in general also real and hence
D,(f) is real even though f(z) may be complex valued.

In 1952, after hearing about the problem of evaluating the limit of a
Toeplitz determinant generated by a function F,3 Szego [3] proved the
formula ^

for the limit of Hermitian Toeplitz determinants generated by a certain

i Often i3,(/) denotes | S _ B | J .
• Note that it has the same value.
» See Ref. 14.
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class of real valued positive generating functions F(d). In this case use
could be made of the theorems on Fourier representation of positive
functions, together with the extremal properties of the Hermitian forms
and matrices, with cp = c_p, and their real eigenvalues.4

In the literature this formula has extensively been used and quoted
for complex valued generating functions, however without satisfactory
justification having been given, apart from certain notes and remarks
indicating that it could probably be extended.5 When the Toeplitz matrix
[Cj,_J is non-Hermitian, stronger assumptions have to be made about the
generating function before the formula can be applied, in particular when
f(z) is not analytic on Co, but merely has a Fourier series. The formula
essentially aims at expressing the limiting behaviour of a Toeplitz deter-
minant, generated by the Laurent expansion or the Fourier series of f{z),
in terms of the singularities and zeros (if any) of the function f(z), which
in turn determine the coefficients and the properties of the expansion. We
will be mainly concerned with the case where both f(z) and In f(z) have a
Laurent expansion in Q or a Fourier series on Co.

2. An outline of this paper

The Toeplitz determinant of order s will be investigated on the basis
of its eigenvalue equation, which can be written with the aid of the gener-
ating function as a homogeneous integral equation. The integral equation
will be solved exactly for the product of its eigenvalues using a rational
function of the form fm>n{z) = un(llz)lvm(z), with vm(z) =£ 0 for |z| ^ 1
and s ^ m, and which serves later as a rational approximation (referred
to as rational approximant) of the generating function, which is similar to
the Pad6 approximation.

The Toeplitz determinant Ds(fmn) will be shown to equal a multiple
of a new (n+s) X (n+s) determinant which for s ^ m can be identified
with the resultant of the polynomials znun(\\z) and vm(z), and hence can be
evaluated using the algebraic theory of resultants [4].

The method of finding the product of the eigenvalues of the integral
equation is essentially a variation of the Wiener-Hopf technique of separat-
ing the kernel, as used by Green [5], when the annulus about infinity, i.e.
an infinite strip, is replaced by an annulus about the origin. The results
confirm those obtained by Kaufman and Onsager by different means [6].

4 I t was shortly afterwards shown by Kac, Ref. 15—-16, that (1.5) is equivalent to a
combinatorial identity in probability theory.

6 We wish to thank Dr. J. Nagle for drawing our attention to the papers by Baxter,
Ref. 17—19, who derives the formula using a different approach. For an up-to-date review
of the field of finite Toeplitz operators and their application to the Ising model, see Ref.
20—27.
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From these results Szego's formula

(2.1) D,(fm>n) = exp [sko+ | pkm_ vkn>_,] (s ^ m)

will be developed, using the residue theorem. This will be extended, on
taking the limit as n -> oo, to

(2.2) D,(fm) = exp [sko+ | pkm> ,k_ J (s ^ m),

where fm(z) = «(l/z)/wm(z), after which it will be generalized to a larger
class of functions by forming this rational approximant of the generating
function. Under certain conditions it will be shown that the Toeplitz deter-
minant generated by fm(z) does in fact approximate the Toeplitz deter-
minant generated by the original function f(z), i.e. as m -> oo

(i) [Dm(fm)-D
(2.3)

(ii) Dm(fn) - e-™** -> exp
D - l

For the former the Landsberg-P61ya representation of a Toeplitz deter-
minant generated by F(0), will be used. As a special application of the for-
mula a real valued positive generating function will be considered, verifying
the results obtained by Szego.

3. The integral equation of a Toeplitz matrix

The eigenvalue equation of a Toeplitz matrix C,(f) generated by a
complex valued function f(z), which admits a Laurent expansion 2 ^ » C P Z P

for z e Q = {z; rx < \z\ < r2, rx < 1 < r2}, can be written as

(3.1) C,(f)x = te, (s ^ 1)

where A is a general eigenvalue and x* = [x0, • • •, a^x] is the corresponding
transposed eigenvector. This gives that

(3-2) 2W*. = 2

since c_ = — — dz
9 2jc»+1

= — —
2mjcz»+1

and where C is a contour in Q about 0. And so

(3.3)
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where X^^z) = a;0+a;12+ ' ' " -{•xt_-lz*~1. Multiplying this through by f
and summing over r gives

1 r »~1 / £ \r dz
(3-4) —. M 2 (j) X^(z) - = AXrt(f).

We note that in this equation we may replace 1 and /(z) by 1—A and 1—f(z)
respectively. When the contour C is the unit circle this reduces to

(3.5)
•

where £ = «'* and 2 = e'e. This integral equation clearly also holds for the
eigenvalue equation of the Toeplitz matrix generated by a function F(8)
which merely has a Fourier series. Hence we have here the general homo-
geneous integral equation with a kernel f(ei0)L(<f>, 6), corresponding to the
Toeplitz determinant Ds(f), and which may be considered as the eigenvalue
equation of the projection operator

where

(3.6)

A similar result holds for the eigenvalue equation of a general Hankel ma-
trix [cP+a]. The equation (3.5) can unfortunately not be solved in general
for the eigenvalues Xit however in certain cases, such as with rational func-
tions, the product of the eigenvalues can be found exactly. In a similar way
the integral equation of the transposed matrix C\{j) can be constructed as

where the A = Xs (1 ^ / ^ s ) are the common eigenvalues of Ct and C\.
The two alternative forms are particularly useful because sometimes the
rational approximant fm>n(z) of f(z) does not satisfy certain necessary
conditions to ensure that Dg(fmn) does approximate Ds(f), whereas the
rational approximant of /(1/z) may satisfy these conditions, depending on
the expansion of f(z).

The structure of the integral equation (3.5) is an inherent property of
the Toeplitz determinant. It also appears in the expression for the trace of

since

https://doi.org/10.1017/S1446788700005668 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005668


[6] Toeplitz determinants and Szego's formula 67

(3-8)

(0=0

I (•«*) Jo Jo
1 /«2ff /•2JT

= _ - • • • i
(27l)9J0 Jo

This is similar to what (3.5) would give on repeated substitution. The latter
however is not a closed summation like (3.8). Combining (1.3) with the fact
that for any non-singular square matrix M

(3.9) l

yields that

(3.10) lnZ>i(/) = Tr ln [ / -C . ( l - / ) ] ,
which may be expanded, provided that |1—A|max < 1, giving with aid of
(3.8) that

(3.11)

D.(/) = - f iTr[C.(l-/)]»
»=i P

= - I T ' 7TT, C'" * r ^ i -
which can be used to investigate the approximations of a Toeplitz deter-
minant. From (3.11) a plausible result similar to that given by Kadanoff
[7] can be obtained [8], on breaking the closed summation by introducing
a delta function, followed by taking the total derivative.

4. The solution of the integral equation with a rational function

Consider the complex rational function

with vm(z) =£ 0 for \z\ ^ 1. Then l/vTO(z) is analytic for |z| rsS 1 and can be
expanded as

where
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«„ =
(-1)'

0

Multiplication by un(l/z) shows that fm>n(z) has a Laurent expansion

(4-2) /„,„(*) = 1 c,(m, n)z» (0 < |z| ^ 1),

with c9(m, n) = 0 for p < «, and which on the unit circle equals the Fourier
series of fm,n{e{0).

When n = 0, it follows that c_p(m, n) = 0, so that

(4.3)

Hence we can assume from now on that n 2: 1.
Consider now the integral equation (3.4) with the function f(z) replaced

by the rational function fmyn{z). Then we have that

(4.4)

where C is a contour in Q = {z; 0 < \z\ ^ 1}, and which will now be solved
exactly for the product of its eigenvalues. To solve (4.4) the ratio
^M-i(z)lvm(z) is expanded as a power series

u ( )
i f " W ^ / C \ ' (2\

dz-
2jr*jc wm(«) r-o \zl z

(4.5)
»-0

(M£

which is permitted by (4.1). On multiplying this by un(l/z) and integrating
term by term it can be seen that the polynomial AX^^f) equals the sum
of the first s powers of z, taken at z = £ in the expansion of

(4.6) luo-\ 1 f- -^1 (yo+y1z-\ l-yn^H )•

Equating coefficients gives a set of s equations

(4.7) 2 ««yr+« = A*r (0 ^ r < s).

There are now two cases which have to be considered, viz. when
n+s 2g m+1 or n+s ^ m+1.
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CASE (a), n+s ^ m+\.

The set of equations (4.7) may now be written in the augmented
matrix form

~ x0

( 4 . 8 ) M 0 • • • • « „ • = X x t

0 0 }n

i.e.

(4.9)

where the submatrices Ux and U2 are of order sxs and sxn respectively.
The identity vm(z) • y(z) = X^^z) gives on equating powers of z another
set of {n+s) equations

(4.11)

and

2 V
t-0

(4.13)

xr (0 ^r < m) (tn 5S s)

0 (0 <; r < n+s—w)

r+m ( 0 ^ r < s -
0 (s

(w ^ s)
)^r < s-m) \
—m ^ r < n+s—>« J (w S s)

which in matrix form becomes

(4.14)

"0 J

}n

i.e.

(4.15) ' H -
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where the submatrices Vlt Vz and V3 are of order nxn, nxs and sxs
respectively, so that their structures depend on the relative values of m
and s.

Subtracting A times (4.10) and (4.11) from (4.7), combined with (4.12)
and (4.13) respectively, gives in matrix form that

(4.16)

which has a non-trivial solution if and only if

(4.17)
(n+s) X (n+s)

= 0.

This may be regarded as a polynomial of degree s in (—A) which has exactly
the eigenvalues A, of C,(fmn) as roots. The coefficient of A' is (—v0)' • v%
and hence the constant term is (—vo)

s • v% JI*=1 (—A,), giving

(4.18)

which has the following structure:

(4.19)

un

0

0

or

}n

ua

0 }n

The latter determinant may be expanded by the first (s—m) columns to
give for m fg s:

(4.20)

Un

Un

} m

}n

(m+n) x (W+M).
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This expression can be identified exactly with the resultant of the poly-
nomials [4]

z"Mn ( T ) = u°zn+

(4.21) and

+vo.

and will be denoted by Rm+n = R[znun{\\z); vm(z)]. Hence we obtain for
m 5S s the identity

(4.22)

(4.23) n {^j u0; (u0 ^ 0 ^ »0).

It is clear that D, becomes infinite if v0 = 0, and that it vanishes if
m < s and «0 = 0.

It is noteworthy that on repeating this derivation with the normalized
rational function

we get that

(4.24) Ds(gm,n) = R \znun ( 7 ) A o : »»(*)/»„]

which is what would be expected since (1.4) shows that

(4.25) D$(L,n) =

CASE (b). n+s ^ w + 1 .

In this case s ^m and the set of equations in (4.7) can be expressed
in the new ( m + l ) x (w+1) augmented matrix form:

(4.26)
0 0

0 0

2/0

.ym.

where £/j and f/2 are as in (4.9). The identity (4.5) reduces now to
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•
•

X

0

[11]

(4.27)

which may be written in the same form as (4.15). After a similar manipula-
tion as in case (a), and on expanding by the last (m—n—s) columns, we
arrive at exactly the same expression as in (4.19) with m Si s, except that
this time there are no zero diagonals in the bottom left hand corner, since
the coefficients v0, • • •, vn+t_1 are all non-zero. These determinants have the
structure of a perturbed resultant and can in general not be evaluated.

In the special case where m = s and u0 = 0, the determinant in (4.20)
can be expanded by the (w+l) s t row giving

(4.28) v^nDm(inJ = (-l)«vmR

And so if we put uT = —wr (1 ^ r ^ n), then

(4.29) Dm\--
z

Consider now the case where the generating function has the form

vm(z)

then we get in exactly similar manner that

(4.30) n/

«o 0

0 «„

0

0

}n

where the structure of the last n rows depends as before on the relative
values of m, n and s. The only case that is tractable is when m = n = s,

https://doi.org/10.1017/S1446788700005668 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005668


[12] Toeplitz determinants and Szego's formula

and this gives on expanding by the last column that

73

(4.31) v\

u.

u0

}n

Performing now the row operations:

(4.32)

one obtains

row («—r)— — • row (2»—r— 1) (0 <: r ^ n—2),

(4.33) • * • ?»

}n

where

This clearly has the structure of a resultant with a perturbed row and will
be investigated as such. If the complete unperturbed matrix is denoted
by M, and the perturbation matrix by tj, then

\M\ =

where

(4.34)
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Whence

(4.35) v\n-lDn{hn<n) = \M\ \I+yM-*\,

where the matrix r\ has all its entries equal to zero, except those in the first
row, which equals \y\x, • • -,r\n, 0, • • •, 0] with

If M~l = B = [bti], then

(4.36) \I+yM~i\ = 1+ ^ • i 6r>1^_r,

which when substituted in (4.35) gives an expression for Dn. We note that
in the case where m = n = s + 1 , equation (4.19) yields a similar structure
to that exhibited in (4.31), except that this time the last n rows have an
additional non-zero diagonal.

Before we can proceed with the evaluation of these expressions we have
to find the first column in the inverse B, which will be done in the next
section.

5. The resultant

The resultant of two polynomials is a rational integral form in the
coefficients of the two polynomials, which vanishes if the two polynomials
have a non-constant common factor, or if the leading coefficient vanishes
in both of them, and conversely. It is closely related to Euclid's algorithm
and occurs frequently in the theory of polynomials, rational functions and
continued fractions [9] [10]. Its usefulness lies in the fact that it can be
expressed in terms of the zeros of the polynomials which generate it.

The resultant of the two polynomials

n m

(5.1) PniZ) = « o l l (Z~Pi) a n ( l 1m{z) = 0̂ IT {Z~~1k)

with a0 y£ 0 =£ b0, is obtained by considering the equation

Pn{Z)K-l{z) = qm(Z)kn-l(Z)>

which on equating powers of z gives the set of (m-\-n) equations M*y = 0,
in the unknown coefficients of hm_1(z) and —&B-i(*)» where

y* = [*o. • • •. K-i, - h , • • \ - * » - i ] ,
and
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(5.2) \M\ =

} m

}n

This set of equations will have a non-trivial solution if and only if the
determinant vanishes implying after factorization into prime factors, that
pn(z) and qm(z) must have a common factor. This determinant is the usual
way of representing the resultant, and is clearly homogeneous of degree m
in at and homogeneous of degree n in bjt and has a leading term of «"&£.

It can be shown that the resultant may be expressed in terms of the
zeros of the polynomials concerned [4]. In fact

(5.3) R[p.(*);?«(*)] = <KU ft iPi-

(5.4)

Furthermore we have that:

which can be verified directly on forming JMJ, where

J = [<Wm+«+i]

In particular if the polynomials

^ i. 1 ^ m+n).

/ 1 \ "
P»(*) = znun - = uoz

n+ulZ
n-H Yun = u0 TJ (*-

\Zj 3=1

and

9m(*) = v
m(z) = v,

are considered then

(5-6) Rm+n = R\z»un

where use was made of the fact that
m

vm Y[ (—/3fc) = v0.

»„(«,) = ôn ft «.
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An alternative expression for this resultant, which is rather useful,
is that

m+n m+n i \ \

(5.7) Rm+n = I I vjpi) = IT «« ( - '

where the p, (1 5g / ;S m+n), are the (m+n) roots of the equation

(5-8) « . ( j ) =»•(*)•

This can be shown either by using the determinantal expression for Rm+n

or by analytical means. The most direct way however is to make use of
the eigenvalue equation and to substitute a trial eigenvector whose transpose
has the form:

(5.9) x* = [1, p-1, p-2,

This gives that Mx = Xx becomes

(5.10)

"o _i i_
_1—m—n

= X

1

LP ,1—m-n

in which the first m equations may be written as

(5.11) P~r[«o+**iP~1+ ' ' ' +**nP~"] = ^P~r (0 ^ r < JM)

and the last n equations become

(5.12) P~~m~r[vmPm+ - ' * +ViP+v0] = Xp~m~r (0 ^ r < «).

These equations are identically satisfied if and only if

= «* £J =(5.13)

from which the identity (5.7) follows. It is clear that the eigenvalues and
eigenvectors of the matrix M in (5.10) are given by (5.13) and (5.9)
respectively. It follows immediately that M can be diagonalized by the
similarity transformation P~1MP, where
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and Xj is the eigenvector corresponding to Xjt as can be seen from

(5.15) M[xlt • • •, xm+n] = [x1, • • •, xm + B][^4- • •

Hence

(5.16) , • • •, xm+Jkm+n\P-\

The matrix P is now a simple Van der Monde matrix whose inverse A can
be calculated since the p} are distinct in general. Especially the first column
of A, which is useful in perturbation theory, can simply be evaluated 8.

From the determinantal representation (5.2) it is clear that if m ^ n,
we may subtract the last m rows from the first m rows and conversely if
m ^ w w e may subtract the first n rows from the last n rows, showing that

n{z)><im{ Pn(z)] (m^n).

This simply restates the fact that if pr(z) and qm(z) have a common zero,
then so do •±.\j>n{z)—qm{z)~\, pn{z) and qm{z). When m = n we get equality
in both parts of (5.17). If now the resultant is considered of the polynomials

(5.18)

then

and
pn(z) = znun (jj = uoz»-{ \-un

«(*) = *"»•(*) = w

(5.19)

0

0

0 vm

which on expanding by the last n columns gives

} m-\-n

}n

I O ' C - I ) " 1 * ^ , . (7) ;»«(*)](5.20)

However on subtracting the second-last n rows from the last n rows it can
also be seen to equal

• For non-simple Van der Monde determinants see Ref. 10, Sec. 337.
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Expressing this now in terms of the zeros of the polynomials using (5.4),
and equating it to (5.20) gives that

z"un ( - J ; Wm(*)J = (_i)(™+»)«-»a ^ j XI
Since

it is clear that

(5.22)
i - i

which when substituted in (5.21) gives the identity between (5.6) and (5.7),
and where the pt are again the roots of (5.8). It is noteworthy that the
identity may also be proved using complex variable theory, such as the
residue theorem and a contour C which separates the zeros of un(l\z) and
vm(z). A modified version of the maximum — minimum modulus theorem
applied to an annulus about 0 is also needed.

From (5.13) it follows now that the eigenvalues of the matrix M
defined as in (4.35) are

(5.23) Xt = qn_

and that the corresponding transposed eigenvectors are

(5.24) x) = [1, pj1, • • •, p2"2"].

It is clear from (4.36) that only the first column in the inverse matrix
M'1 is wanted, and so by (5.16) only the first column of A is needed. We
thus obtain that

(5-25)
3 - 1

Substituting this in (4.36) yields after interchanging the summations and
using the definition of vn(z), that

(5.26) v^Dn(hnJ = \M\ \l + I Y ^ ) 1 - - Y 77^
L vn i = i i = i wn(p,

The resultant \M\ can now^be evaluated by (5.6) as
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(5-27) q» ff «„(«,) = v^1 I I qn-i
3 = 1 » = 1

whereas the first sum vanishes exactly by the relation

(5.28) AP= I=PA or £ (Pi)1~n>ai i = *«.i (1 ^ » < 2w).
j=i

The second term however, does not permit a simpler exact evaluation even
though the entries aiX can be computed exactly, since the cofactors are
again Van der Monde determinants.

6. The contour integral and Szego's formula

THEOREM 1. If

where un(\jz) and vm(z) are non-zero for \z\ 2: rx and \z\ 5g r2 respectively,
and where rx< 1 < r 2 and uo^O^vo, and if Infm>n{z) =
for z e Q = {z;r1 < [«| < r.

, n) = lk0 (p = 0 ) ,

and s ^mt then
oo

(6-0) Ds(fmJ = exp [sko+ lpkm>vkn^vl
J>=I

PROOF. It is clear that fm>n{z) is analytic for 0 < |z| ^ r% and hence
its Laurent expansion on Co coincides with the Fourier series of fm>n{eie).
From equations (4.22) and (5.6) it follows that

3 = 1

(6-2) =

where Mn(l/ai) = fm(/Sfc) = 0. Since un{\\z) and wm(z) are polynomials
which are non-zero for \z\ ^ rx and |z| ^ r2 respectively, it can be deduced
that the principal branches of In un{\jz) and In vm(z) are analytic in the
corresponding regions and may be expanded as
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In («„ (}) Ao) = liK-,*-» {\z\ > rj
(6.3) and "~1

v ' oo

In (vm{z)lv0) = - 2 kmtPz» {\z\ < r2)

giving

(6.4) In /m>n(z) = f *„(»», «)2" («ei3),

where

*,(*». ») = { *o (# = 0)

and
u l r2"

(6.5) — = e*» = — In /m>n

This constant factor is often referred to as the geometric mean G{fmn) of
fm.n{et0)- We can now apply the residue theorem to (6.2), which yields:

(6-6) D,(fm,n) = exp [sk0 + 1-. [ In (vm(z)K) - In «„ ( i

where C is any contour in i2 about 0. Alternatively this may be written as

(6.7) exp [sko+ ^ J_cln («. (!)/«.) | In „.(,,

Substituting the expansions of (6.3) gives

#.(/«,„) = exp \sko+ ±- f | ^ A - /
(6.8) L a B J o * - *

= exp Isko+ 2#*«.»*•.-»! « (s ^ !)

which is exact for all finite m, n and s with s Sg m. Termwise integration is
permitted since rx < 1 < r2, which causes the convergence to be uniform
on Q and hence on the contour C. From (6.8) we can deduce for s Si m
the following product rule:

(6.9)
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for the polynomials un, vm, pn and qm which satisfy the conditions of
theorem 1. We further note that if, as n -> oo,

(1) un I —I -»- u I —I dominatedly for \z\ > rx {rx ^ 1)

(6.10) (2) knt_v -> k_p

(3) ^p\km>v\ converges for all m,

then we may take the limit as n -> oo on both sides of the equation in (6.8)
giving

* • • © •

COROLLARY. The theorem can be extended to the case where un(e~ie) ^ 0
and vm(z) ^ 0 for \z\ ^ 1.

PROOF. Since un(e~ie) and vm(eie) are non-zero polynomials which are
continuous and bounded and ljvm(z) is analytic for |^| sS 1, it follows that

Both functions are in L2(0, 2n) and hence by Parseval's theorem the product
of their (uniformly convergent) Fourier series may be integrated term by
term giving the required result.

Consider now as a special application equation (4.29) and suppose that
the functions wn_1(l/z) and vm(z) satisfy the conditions of theorem 1. Then
we obtain from (5.6), (6.8) and (6.0), on replacing un(ljz) by te»n_1(l/2), that

= ^ • exp

where wn_1(ll«.j) = 0. If (6.10) is satisfied we may again take the limit as
n tends to infinity on both sides of the equation.
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7. The Laurent expansion

Theorem 1 can now be used to extend the formula to generating
functions which admit a Laurent expansion.

THEOREM 2. / / the function f(z) admits a Laurent expansion ^,%L-aoci>zV

which is convergent and non-zero for z eQ = {z; rx < |z| < r2, rx < 1 < r2},
and if ln/(z) = ^ ^ z ' for zeQ and \f(ei0)\ ^ r0 = min (ljrlt r2), then

u (I

(7.0) Vun.Dm{f)erJat1t* = exp
fn->oo

PROOF. Since f(z) is analytic and non-zero for z e Q it follows that the
principal branch of In f(z) is analytic in the same region and can be expanded
in a Laurent series ^?ookJ)z

1'. Hence ^L\k_vz-V and 25^i^»*p a r e anatytic
functions for \z\ > rx and \z\ < r2 respectively. The function f(z) can now
be written in the form

(7.1) m _ _W _ >

by defining

u ( | ) / « 0 =
(7.2) and V '

»(z)/i>0 = exp ^—

together with

(7.3) ^? = e*. K # 0 ̂  v0),

from which it is clear that u{Vjz) and v(z) are analytic for |^| > rt and
f;ar| < r2 respectively. It is sometimes more convenient to take the form of
f(z) in (7.1), rather than the existence of the Laurent expansion of ln/(z),
as the starting point of the investigation. Expanding the series in then-
respective regions of convergence gives

/ X \ tC-t 14
4 / I — I - W - I . i I • • • -I— ___ - 1 — • • • i \z\ j>- Y•• 1

I I ^ ^ 0 I i I _ 1 V I I X/
\ Z / 9 Z

(7.4) and

From (7.1) and (1.4) it is clear that without loss of generality we may
assume that u0 = vQ = 1. For sufficiently large m and n, i.e. for all
m, n > No, the partial sums un(l/z) and vm{z) will, by Hurwitz's theorem
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[12], be non-zero for \z\ > rx and |z| < r2 respectively, and hence on forming
the rational approximant

/„.„<*> -

theorem 1 can be applied to give for s ^ m

(7-5) D.(fmJ = Dm{fmJ = exp [ J ^ m . A,-*] •

The condition that f{z) and hi f(z) are analytic inside Q is a very strong
assumption which ensures that all the convergence that will be dealt with
in this section is uniform and in fact exponentially fast. I t should be noted
that only the singularities and/or zeros of f(z) on the boundaries of Q do
determine the behaviour of Dm(f), in particular if u(l/z) and v(z) have a
common zero on Co, then Dm(f) vanishes as m -> oo.

The conditions of (6.10) are clearly satisfied since u(ljz) is analytic for
\z\ > rx and the coefficients km>v and k9 are the Laurent coefficients of
functions analytic inside Q with rx < 1 < r2 and r0 > 1. We have in fact
that

(7-7) (ii) * , , , = * ,

(7-8) (iii) \km,v-k,\ =

The second relation is a direct consequence of the definition

(7.9) In vm(z) = f {—±)l (VlZ+ ... +Vmz^y = - f *„,,*»,
8=1 ? J)=l

and the third relation follows from the fact that

(7.10) K,, K - ^ J c ̂  q [-j^-J ^ i -

where ^ro+1(^) = »(«)— wm(«) and CisvaQ. After interchanging the summa-
tion and integration it is seen that km9~kv equals, to the first order, the
coefficient of zp in

g.+i(«)
v(z) •

i.e.
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(7.11) \kn,v-K (

Because rx < 1 it is easily seen that (7.6), (7.7) and (7.8) also hold for
K,-, and £_„.

Whence by (6.11) we arrive at

(7.12) Dm(fm) = exp F | M»,

which clearly converges by (7.6) and where

Taking the limit as tn -> oo gives with aid of (7.8) the required result

(7.13) limZ>m(/J=exPr5i
TO-•OO L j > = l

*_„ | = eA

which also converges by (7.6).
Alternatively we can employ the integral in (6.6) and show, using the

uniformity of the convergence, that the double limit l im^.^ lim,,̂ .,,,, may
be taken under the integral sign, and that the series expansion of the
integrand may be integrated term by term to give (7.13).

There remains to be shown that [Dm{fJ—Dm(J)] -+0 as m -+ oo,
and for this use will be made of the Landsberg-P61ya representation which
enables a Toeplitz determinant of order n to be written as an »-fold multiple
integral. The Toeplitz determinant Dn(j) generated by the function
F(6) = f(eie), which has a Fourier series, may be written [13] as

(7.14) j
On putting F(0) = 1, i.e. c0 = 1 and cr = c_r = 0, this gives that

!••!. I T *

where J J ' stands for the product ranging over (i, v = 1, • • •, n with fi < v.
Hence it is clear that

(7-16) \Dn(f)\ < DM) ^ [max|F(9)|]-,

where Ix is the closed interval [0, 2n]. Since
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2"(»—l) / 2 B \ n

~^\ \n~) ~* °°
this rules out any inequality using

— f *|F(e)|ie,

mainly because no suitable upperbound, apart from unity, can be found
for the product of sine terms. It is also obvious that if jjp(0)| < 1 then
Dn(f) decays exponentially to zero. The consequences of these results are
that all the functions which will be dealt with in the remaining part of this
paper will be assumed to satisfy either: (i) |.F(0)| ^ r0 or (ii) F(6) is real
and positive.7

Application of (7.14) to the function

and its rational approximant

F (6) - U{e~i6)

both with M0 = v0 = 1, and putting

,„,„, . tm = Dm(fm)-Dm(f)
(7.17) and

Cm,n = Dm(fmJ-Dm(f)
gives that

Jo Jo Lr=l r=l J

x j j ' s i n 2 [ 6 - J ^ l i \ d e 1 - - - don

(7.18)
m

max
r - l

0re I1 r=l

(7.19) Sm-Mm-1max\Fn(e)

2»»(m-l)
where k'm = — — - and M = max {\Fm{B)\, \F(0)\}.

(2ji)mm\ eeJl

To obtain an estimate of (7.19) the following equality (omitting the argu-
ment z) will be used:

7 An alternative method is to use the fact that cv(m) = cv+O(r^m), and that the
entries in C—1 are bounded. This allows one to omit the last condition of theorem 2.
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(7.20)

Now since

R. E. Hartwig [25]

IA.-/I =
U U

= 1/1 = 1/1

zeQ

Qm+1

and .F(0) is bounded, say |F(0)| <^a, then it is clear from (7.20) that

(7.21) \Fm(d)-F(d)\^0(-^j and M ^a [l+O ( ^

Substituting this in (7.19) gives that

(7.22) US

which tends to zero provided that |F(0)| ^ a < r0 (r0 > 1).
Alternatively it may be written as

ICJ ^ max n
r»=l

rl_ j Dn(\f\)

max
Fm(6)
F(d)

— 1

(7.23)

Since

it follows that

(7.24)

which tends to zero provided that jDm(|/|) remains bounded or increases
slower than r^jm.

When the determinants are real it can be deduced that

(7.25) Dn(f) = DJJm) [l±O i^)] •

From (7.12), (7.13) and (7.8) we see that

(7.26) \e^-e*\ < O(\Am-A\) ^ 0

This combined with (7.22) shows that Dm(f) tends to eA at a far slower rate
than Dm{fm) does, and hence brings out the rather crude estimate of (7.22).
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In general when uQ\vQ ^ 1 it follows directly that

(7.27) lim Dm{f) • «-•»*• = eA.

8. A generalization of SzegS's formula

Using theorem 1 the formula can now be extended to a restricted class
of functions which have a Fourier series. The approach is similar to that
used in the previous section except that now the region of overlap of con-
vergence of the functions «(l/z) and v(z) is reduced to just the unit circle.

More stringent conditions are necessary to ensure that

[Dn(fm)-Dn{f)]
and that

lim £>„,(/„,).

exists. Rather than assume the existence of the Fourier series of In F(6),
it will directly be assumed that f{eie) is of the required structure as given
in (7.1).

DEFINITION. Let class E be the class of all complex valued functions
f(z) satisfying the following conditions:

„ ( ! )

(b) «(*) = 2«,«• (|*| < 1), • (i) = f »„*• (1*1 S I ) ,

(c) u(z) and v(z) are non-zero for \z\ ^ 1,

(d) u'(ei$) rexists and u'(reie) -> u'(eie) point-wise as r -»• 1,

(e) \u'(reid)\ ^K{6) for 0 ^ r < 1, where K{B) eL2(0, 2n),

(f) m- ^ vve
ivB -> 0 uniformly in 6 as w -> oo,

D-m+l

(8-0) (g) l.

THEOREM 3. / / f{z) e E, then the Toeplitz determinant Dm(f) satisfies
Szego's formula

(8.1) HmDm(/) • <r-*» = exp f f pkpk_p] .
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PROOF. Without loss of generality we can assume that u0 = v0 = 1.
If this is not the case we simply have to replace Dm(f) by Dm(f) • e~mk»

in the final result.
Conditions (b) and (c) imply that In u(z) and In v{z) are analytic for

\z\ < 1 and hence can be expanded in power series as:

(8.2) In u(z) = 2 k_vz* and In v(z) = — 2 kvz*.
P=I j>=i

where the principal branch of the logarithm is taken to ensure single
valuedness. By assumption (/) the partial sums vm{z) converge uniformly
for \z\ ^ 1 to v(z) and hence

(8 V\ v^ *s u m^o r m^y continuous, bounded and non-zero for \z\ 5S 1.
' " ' In particular, there exists 6 > 0, such that \v(eie)\ ^ d > 0 for all 0.

Furthermore we have that lnv(z) is also uniformly continuous and
bounded for \z\ ^ 1. This follows from the inequality

(8.4) |ln ^ - l n z2\ ^ L + -) \Zl-zt\,
\ 111

where zlt z2 ^ -0, |̂ x—2r2l < ^i a n ( i /* = n^11 {lzil» I22l}- F° r sufficiently large
m the partial sums vm(z) are non-zero for \z\ ^ 1. For \z\ < 1 this follows
immediately from Hurwitz's theorem [12], whereas for \z\ = 1 it can easily
be deduced from (c) and (8.3).

Thus, for all m > Nt

(8.5) vje«) * 0.

It will now be shown that the above three results also hold for u(z)
and its partial sums un(z). From the existence of u'(eie) and the assumption
(b) it follows that u(z) and ln«(z) are uniformly continuous and hence
bounded for |z| ^ 1. Since both u(e~ie) and \jv{eie) are bounded it follows
that the Fourier coefficients cp of

u(e~ie)
F{6) =

v{eie)

exist and are finite. In order to show that the partial sums un(e
iB) are

non-zero for sufficiently large n, we first have to prove the uniformity of
their convergence. To do this we will make use of the following Lemmas.

LEMMA 1. / / g(z) = ^=oavz
p converges and is analytic for \z\ < 1, g{ew)

exists and g(reie) ->g(eie) pointwise as r -> 1, and \g(reid)\ ^K(B), for
0 ^ r < 1, where K(6) e L2(0, 2n), then
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oo

(8.6) (i) 2 ave
ivB is the Fourier series of g(eie),

(8.7) (ii) g(e«>)eL*(0,2n),

(8.8) (iii) — f " \g(reie)\*d6 = f |aJ,|
2r2p for 0 ̂  r ^ 1.

PROOF, (i) From the power series expansion it is clear that

(8.9) avr» = — f g{reie)e-iJ>edB for 0 < r < 1.

Now g(reie)e~ivS is dominated by i£(0) 6 L2(0, 2?r), which by Schwarz's
inequality is also in L1 (0, In). Lebesgue's theorem on dominated convergence
shows that it is permitted to take the limit as r -> 1 inside the integral,
which indicates that av is the Fourier coefficient of g(eie), since
g(rei0) -> g(ei0) pointwise as r -> 1.

(ii) For \z\ < 1 it follows directly on multiplication of g(z) by its
complex conjugate, and by the uniformity of the convergence, that (8.8)
holds for r < 1. Again applying the theorem on dominated convergence,
but this time to Ig^e'")!2, which is dominated by K2(0), gives that

1 /»2ff oo J f>2n

(8.10) lim — \g{reP)\*d@ - lim 2 K\*r** = — \g{ei6)\H6 < oo,
r-^-l "ttJo r-t-1 p=0 2^jJ0

which shows that g(eie) is square integrable.
(iii) Using Fatou's Lemma it can be seen that

(8.11) | la,!2 ^ lim | |a,|»r* = ~ C" \g(eie)\*d0 < oo,
i>=o ^-»-i p=o *nJo

and hence by Abel's theorem it is clear that

(8.12) lim f |a,|«r» = f \av\\
T-*l V=0 J)=0

and so (8.8) also holds for r = 1.

COROLLARY 1. The assumptions on g(z) may be replaced by

(i) analytic for \z\ < 1
(ii) continuous for \z\ ̂  1

COROLLARY 2. The results (8.6), (8.7) and (8.8) with r = 1 also hold
forg(e-<°).

https://doi.org/10.1017/S1446788700005668 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005668


90 R- E. Hartwig [29]

LEMMA 2. / /

satisfy the conditions of Lemma 1, 2/sen

(8.13) 1 f " ^ M * " " ) * = I «•*-..

PROOF. By Lemma 1 we have that

(8.14) g(O !
-0

oo

(8.15) h{e~ie) =

and that both functions are in L2(0, 2n).
By Parseval's theorem the product of the Fourier series may be

integrated term by term, giving (8.13).
Application of Lemma 1 to the function u'(z) shows that u'(eie) is

square integrable and has Fourier series

(8.16)

with partial sums

and which may be integrated to give

(8.17) u{e<°) = 2**,ei">-
p_0

Moreover 2a^o Pa\up\a converges and hence by Schwarz's inequality
2^.o \uv\ ^so converges, implying that un{z) converges uniformly to u(z)
for all \z\ ̂  1. Hence we deduce, as in (8.5), that 3NZ, such that ujz) ^ 0
for all n> N2 and \z\ ^ 1.

These results are obviously also true for «„ (e~ie). Let No = max {N-^, N2),
then for all m, n > No, we can form the rational approximant un(llz)/vm(z),
and use theorem 1, which gives that

(S.1S) D.^.) - exp [ i_ [ ' in

Under the assumptions made and with aid of the Lemmas we can now show
that the double limit limn^^ lim,^.^, may be taken under the integral sign

https://doi.org/10.1017/S1446788700005668 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005668


[30] Toeplitz determinants and Szego's formula 91

in (8.18), and that it gives the required result. By the completeness theorem
of Fourier series it follows that the partial sums in (8.16) converge in mean
square to u'(eie). The same trivially holds for u'n[e~i0) and so

(8.19) — f * \u'n(e-ie)-u'(e-i6)\2dd ->Oas«
2JTJ0

Similarly we have for m > No that

oo.

2

dd -> 0 as « -> oo.

Using the continuity of the inner product in the L2 space8, and the fact
that u'(e~ie) and In vm{eie)ju(e~ie) are in L2, we obtain that as n -*• oo

(8.21) 1 £ " In vm{e«) ~ In um{er") dd -> i - j ^ l n vjf) jQ In «(«-"

It is a simple matter to verify from (8.3) and the assumptions (d) and (e),
that for \z\ < 1 and m> No, the functions

(8.22) In vm(z) = — T km vz
v and

J > = 1 ' 1*\Z) p_i

satisfy the conditions of Lemma 1. Whence by Lemma 2 it immediately
follows from (8.18) and (8.21) that

(8.23) lim Dm(fm>n) = Dm(fm) = exp \ f ^ra> , *_ , ] < oo.
n-x» Up—1 J

Since u'{eri6)\u(eri6) is in U and lnwm(ew) (m >iV0) converges boundedly
(and in fact uniformly) and hence in mean square to hi v(eie), we can again
apply the continuity of the inner product, (or the theorem on dominated
convergence), which shows that the limit as m -*• oo may be taken inside
the integral (8.21) giving:

lim Dm(fn) = lim -L f i n vm(e«>) A m «(*-<«)
(8.24)

As in (8.22) we have that ]nv(z) and «'(z)/w(z) satisfy the conditions of
Lemma 1 and so by Lemma 2 we arrive at

(8.25) lim Dm(fm) = exp [ | p k , k _ , ] < oo.

8 See Ref. 12, p. 390, ex. iv.
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It is noteworthy that Lemma 1 not only gives that k_p is the Fourier coeffi-
cient of In u(e<e) and that

(8.26) I*- , I = ° T '

but also that the series for In u(z) in (8.2) converges for all \z\ ^ 1. We note
that this cannot be deduced for the series for In v(z), and hence the Fourier
series ^,^oocpe

ipe need not converge to F(6).
There remains to be shown that the determinant Dm(fm) does in fact

approximate Dm(f) as m -> oo. To do this we make use of (7.19), (7.20)
and assumption (g). Since \F(0)\ S 1 and \vm(eie)\ ^ d > 0 for all m > No,
it is clear from (7.20) that

(8.27) m\Fm(0)-F(6)[ =
F(6)

vm(eie)
ei9\

which by (/) tends to zero uniformly in 0. Furthermore we can deduce that
for fixed 0 either \Fm{6)\ ^ |F(0)| ^ 1 or

(8.28) \F

so that M sS l-f-o(l/w). From (7.19) we now arrive at

(8.29) |CJ ^ \l+o (-)T 1 • m • max \Fm(6)-F(6)\,
L \W j eei1

which by (8.27) tends to zero a s » s ^ oo.
Alternatively (7.23) can be used on exponentiating the product together

with (8.4) and the facts that

(8.30) \e*-\\ £ |*|«W and Z>m(|/|) ^ 1.

COROLLARY, (i) Conditions (d), (e) and (/) may be replaced by the stronger
but simpler conditions that on [0, 2n]

(1) u'(eie) exists and is continuous
(8.31) (2) v'(ei8) exists and satisfies a Lipschitz condition of order a with

0 < a < 1.

These conditions give rise to uniformity on the unit circle. The first
assumption implies that u{z) and u'(z) are uniformly continuous and
bounded for all \z\ ^ 1, and hence (d) and (e) are satisfied. The second
assumption, together with the fact that v(eie) is non-zero, shows that
(8.2) holds and also that
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v'{eid)
(8.32) v(eie) and - ~ are in Lip a (0 < a < 1).

From Lemma 1 it can be seen that «„, vv,pk_v and pkp are the Fourier
coefficients of their respective functions. This allows the application of
two theorems (generalised to complex Fourier series) from the general
theory of approximations [15], to the functions v'{eie)jv(eiB) and v(ei0),
giving that

(8.33) |*,| = 0 ^ L ) and |0,+1(««)| = 0 (~^j (p > 0).

Whence assumption (/) is now also satisfied. Moreover it follows that
(8.2) holds for all \z\ ^ 1 and so

(8.34) In F(6) = f kve
ipS with - = «*•,

-oo v0

and furthermore F(0) = '^ooc9e
i'$.

(ii) We note that the existence and finiteness of v'(eie) does not necessarily
imply that mQm+1(e

ie) -> 0 or vice versa.

9. The Hermitian case

Suppose that F(0) eL1(0, 2n) and that F(0) is contained in class A,
where class A is the class of all functions satisfying:

(1) F(0) is real and positive
(9.1) (2) F(6) is periodic with period 2n

(3) F'(6) exists for all 6 and is in Lip a with 0 < a < 1 [3].

It will now be shown that under these conditions theorem 3 may be
applied. This is possible since now the functions u{e~i6) and v(ei$) are
closely related such that the representation of F(6) in the form u(e~i0)lv(eiO)
reduces to the positive function representation \h(eie)\*. Since F(6) is
positive and periodic we have that

(a) In F(6) is real and periodic
(b) In

K ' ; (c) Dm(\F\) = Dm(F) > 0
(d) F(d) and In F(0) are bounded and have Fourier series

2,-oocPei"a and S-oo^j.6'"9 w i t n CJ> = £-i» k* = &-v a n d ko r e a l respectively.
Condition (3) implies, since F(d) is bounded and positive, that
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F'(6)
(9.3) F{6) and -=7^ are both in Lip a (0 < a < 1).

F{0)

Application of (8.33) shows that

(9.4) cp and k are of order 0 I 1 •
\p1+a/

Hence the Fourier series in (9.2) converge uniformly to their continuous
limit functions. As before F{6) can be written in the form u(e~i9)lv{eie)
by defining

« (j)|/«o = exp [ f *-,**] =«o+7 + -" + ^ + -" (1*1 ̂  1).

(9.5) v(x)/v0 = exp T - f kvz*\ = vo+v1z+- • • +»„*•+• • • (|z| ^ 1)

and

From the

(9.6)

and hence

(9.7)

fact that K

F(d)- = 1^(0)1

, we obtain

e-i6)lu0 =

v{eie)

that

1

v(e«>)lv0

Thus the two representations are equivalent if h{z) = wo/w(z). Using the
notation of [3], the function k{z) is defined by

(9.8) \k{z) = - In (»(*)K) = | A^z" (|x| ^ 1),

from which it is seen that v(z) ^ 0 for \z\ ^ 1 and that

(9.9) In F(0) = * , - 2 Re [In (»(c<9)/t;0)] = A0+Re [*(««)]•

Consequently ^(z) and v(z)lvo= exp [—$k(z)] are continuous for \z\ ^ 1.
It was shown in [3] that the functions k'(z), v'(z)lv(z) and v'{z)\va are all
continuous for \z\ 5S 1 and satisfy the same Lipschitz condition on Co.
Whence in view of the general theorems on approximation, it follows as in
(8.33) that
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Direct application of theorem 3 Cor. (i) shows that

It is clear that the condition (g) of theorem 3 may be removed in this case
since F(0) is positive. Thus

Dm(Fm)

which tends to zero as tn tends to infinity, and hence

(9.13) Dm(F) - e~™*' -> exp

which converges by (9.4) to a positive limit. It was shown by Szego that
in addition the sequences {Dm_1(F)/Dm(F)} and {Dm(F)} are positive and
increasing, the former being bounded above by e~*°. The corresponding
sequences with F replaced by Fmn or Fm, do not have these properties
since km v need not equal &„,,_„ for p > tn, i.e. the rational approximant
Fmm is not real in general.

10. Unimodular generating functions

In the special case where |F(0)| = 1, the Theorems 1, 2 and 3 can be
simplified somewhat since now F(6) may be represented as eiSi8), where
.5(0) is real valued. If In F(0) = J^K6**6 = id{6) converges for all 0,
and kQ = 0, then kp = —k_o, both of which are real, and further
6(6) = 2 2^.ikv sinpd is an odd function of 0. Defining

v(z) = exp — X kvz
v = l+vxz+ • - • +vnz

n+ - • •

which converges and is non-zero for \z\ ^ 1, shows that

Alternatively it may be assumed that f(z) has this form, with
v(z) = 1+1^2+ • • • being convergent and non-zero for \z\ ^ rQ (r0 > 1),
e.g. v(z) == (1—Az)i, with A < 1. On defining

(10.1) In vm(x) = -IK,,*' (1*1 ^ fo).

with kmp = kP for p ^ tn, the rational approximant
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can be written as «**•»<*', where dm(6) = 2 2^,1&m j,sin^0, which is an
odd function of 0 and which is real if and only if the coefficients vv are real.
From (7.14) it follows that

(10.2) Cm,m = * ; £ • • • J ^ V ^ ' - l ] IT sin* i^~) ddx--- dBn,

where A = <5(01)+ • • • +WJ, Am = «m(fl1)+ • ' ' +<U<U and

(10.3) J m - ^ = 2 1 (kmw,-k9){saip01+-'-+sinfi0m).
j>=m+l

The exponential can now be expanded as

(10.4)

in which the first term may be taken as the principal term provided that
\kmv—kv\ = OQIrfi*"1). If this is the case then termwise integration is
permitted showing that

(10.5) \Cm,J = O(m\kmim+1-km+1\) = 0

The same result is obtained on using Fm(0) = (v(e~i0)lvm(ei8)) and Cm.
The second term in the expansion is of order O(tn2lr%n+Z) and is much closer
to the expected rate of (7.26). To obtain this it would thus be necessary
to show that the first term in (10.4) vanishes after integration, i.e.

(10.6)

• 2 (*».,-*,)
J-m+l

must vanish. Since 6(6) is an odd function of 6 and the product of sine terms
is even, it follows that (10.6) reduces to the sum of integrals of the form

J" j s i n A

Unfortunately, this integral is rather intractable, even in very special
cases, and hence brings out clearly the shortcomings of the Landsberg-
Polya representation.
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11. Non uniform approximations

Because of the large number of applications of Szego's formula, it
would be desirable to extend it to the non-uniform case in which the
generating function f(z) = (u(llz)fv(z)) is not approximated uniformly on
the unit circle Co by its rational approximant fm(z) = (w(l/z)/wm(z)),
which satisfies the conditions of theorem 1. One would expect that if
F(d) = f(eie) is in Lx{d, 2n), then a discontinuity on Co, causing the non-
uniformity of convergence, would not affect the individual integrals in
the Landsberg-Polya representation. However it appears not possible to
extend it since the range of integration in (7.14) would have to be split up
in order to isolate the behaviour near the discontinuity.

Suppose for example that

(11.1)

then

(11.2)

(0 < a < 1),

t=o
and

Using Abel's method of summation we obtain that

(H.3) |0«+i(Ol = K O - f J O l ^ 0

and hence by (7.20)

(1*1 ^ 1).

2n-e),

(all«),
since

for all 0. To cope with this non uniformity we have to consider for every
dummy variable 0r in (7.18) the intervals (0, e), (e, 2n—s) and (2TC—e, 2n),
where e is any positive number, giving altogether 3m integrals. The principal
contribution J comes from the integral with the range (e, 2n—e) w-fold
repeated. Taking moduli gives that
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which tends to zero for suitable e = e(»), say e = n~3 with d < a / ( l + a ) .
Using (7.15), (11.4) and the fact that the product of sine terms is a positive
function in each of the variables 6r, it is easily shown that the sum of the
remaining 3m—1 integrals of (7.18), will tend to zero if e = 0(12~"), which
is far too small for (11.5) to be possible.

12. Conclusions

In this paper we have shown how the resultant approach, consisting of
(i) the theory of the resultant itself, and

(ii) the study of the approximating ability of the resultant,

can be used to evaluate the limit of certain Toeplitz determinants. The
approach is satisfactory in so far that it gives us in (i) a powerful tool which
not only permits an exact evaluation, but also gives an asymptotic expansion
from which certain correct limits can be calculated. The theory of resultant
has not been investigated a great deal in this particular context and its
applications have by no means been exhausted. In the study of the approx-
imations of a Toeplitz determinant it is an essential requirement that it
must be shown that the approximation taken does in fact approximate the
original determinent, a requirement that only too often conveniently is
neglected, and it is here that the shortcomings of the second part (ii) of the
approach become evident, since no tractable representation has yet been
developed. We have seen that the Landsberg-Polya representation of a
Toeplitz determinant can be used to derive some useful results such as the
exact limit of the determinants, however due to analytical difficulties
associated with the multiple integral it neither gives an adequate insight
into the exact rate at which the determinant tends to its limit, nor can it
handle the non uniform approximations of the generating function. It is
clear that to overcome these obstacles either a far more refined approach
using the Landsberg-Polya representation has to be developed, or an alter-
native more powerful representation has to be derived.

In a later publication it is hoped to show how the resultant approach
can be applied to the Toeplitz determinants representing the Ising model
spin-spin correlations, and how the results agree with numerical and physical
evidence obtained so far.
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