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1. Introduction

Let X be a topological space, E a real or complex topological vector space, and
C(X, E) the vector space of all bounded continuous E-valued functions on X. The notion
of the strict topology on C(X, E) was first introduced by Buck (1) in 1958 in the case of X
locally compact and E a locally convex space. In recent years a large number of papers
have appeared in the literature concerned with extending the results contained in Buck's
paper (1); see, for example, (14), (15), (3), (4), (12), (2), and (6). Most of these
investigations have been concerned with generalising the space X and taking E to be the
scalar field or a locally convex space.

In this paper we define the strict topology /3 on C(X, E), where X is now any
Hausdorff topological space and E an arbitrary Hausdorff topological vector space. In
Section 3 we consider the properties of (C(X, E), fi) as a topological vector space and
show that it has almost all the properties of the 'strict topology' studied by the above
authors. In Section 4 we establish an analogue of the Stone-Weierstrass theorem in the
/3-topology setting.

This paper forms part of the author's Ph.D. thesis. The author wishes to express his
sincere gratitude to his research supervisor, Dr. K. Rowlands, for his advice and
encouragement during three years of supervision at the University College of Wales,
Aberystwyth, and to the Government of Pakistan for a research grant. I am also grateful
to the referee for several helpful comments.

2. Notation and terminology

Throughout this paper we shall assume, unless stated otherwise, that X is a Hausdorff
topological space, and E a non-trivial Hausdorff topological vector space and we let W
denote a base of closed balanced neighbourhoods of 0 in E.

Let B(X, E) be the vector space of all bounded fi-valued functions on X and
B0(X, E) (resp. Boo(X, E)) the subspace of B(X, E) consisting of those functions which
vanish at infinity (have compact support). The subspaces consisting of continuous
functions in B(X, E)(B0(X, E), Boo(X, £)) will be denoted by C(X, E)(C0(X, E),
Coo(X, E)). When E is the real or complex field, these spaces will be denoted
by B(X), B0(X), Boo(A'), C{X), C0(X), and Coo(X). We shall denote by B(X) ® E the
vector space spanned by the set of all functions of the form <j> 0 a, where <f> G B(X),
aGE, and {<j> ® a){x) = <f>(x)a(x G X).
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Let <f>, <f>t €E B(X). Then <f>i is said to dominate <f> if there exists a A > 0 such that
\4>(x)\ =s A|<^,(JC)| for all x G X.

3. The strict topology on C(X, E)

We begin by describing a general method of defining linear topologies on C(X, E).

Definition 3.1. Let S be any subset of B(X). We define the S-topology on C(X, E) to
be the linear topology which has a sub-base of neighbourhoods of 0 consisting of all sets
of the form

U(<f>, W) = {f G C(X, E): <f>(x)f(x) G W for all x G X},

where <f> G S and W G W.

Lemma 3.2. (cf. (3), Lemma 2.1). Let S and S, be subsets of B(X). If each element of
S is dominated by an element of Si, then the S-topology on C(X, E) is weaker than the
Si-topology.

Proof. Let [/, be any 5-neighbourhood of 0 in C(X, E), and suppose Ut D
n?=, U(<f>i, Wi), where </>,,..., <f>a G S and Wu ...,WneW. For each fr (i = 1, . . . , n),
choose a A, > 0 and a i/f, G S, such that |<£,(x)| == A,|iM*)| for all x G X. Let U2 =
D"=1 £/(t/»,, (l/A)Wi), where A = max{At,. . . , An}. Then U2 is an Si-neighbourhood of 0 in
C(X, E) and U2C Uu as required.

Using the notion of an S-topology, we now introduce the strict topology and other
related topologies on C(X, E), as follows.

The B0(-^)-topology on C{X, E) is called the strict topology and is denoted by p. The
S(X)-topology is called the uniform topology and is denoted by o. It easily follows from
Lemma 3.2 that the u-topology is the same as the {l}-topology, where 1 G B(X) is the
function identically 1 on X. The Boo(-V)-topology is called the compact-open topology
and is denoted by »c. It is evident that the K-topology is the linear topology which has a
sub-base of neighbourhoods of 0 consisting of all sets of the form U(x«, W), where x* is
the characteristic function of any compact set K in X and W G.W. Let BP(X) be the
subspace of B(X) consisting of functions with finite support. Then the Bp(X)-topology is
called the point-wise topology and is denoted by p. It is easily seen that p « K « v; if X is
compact, then K and u coincide, and if X is discrete, then p and K coincide.

The following lemma gives us a convenient form for the base of neighbourhoods of 0
in C(X, E) for each of the topologies defined above.

Lemma 3.3. Let S denote any one of the sets B(X), B0(X), Boo(X), or BP(X). Then
the S-topology on C(X, E) has a base of neighbourhoods of 0 consisting of all sets of the
form U(<f>, W), where <f> e S with 0^<f>^l and We. W.

Proof. Let [/, be any S-neighbourhood of 0, and suppose l / | D C\?=i U(<ph W{),
where </>,,..., <̂ m G S and Wu ..., Wm G W. Let A = max{||</>,||}. If A > 0, choose a
W G W with \WQ 0™=, W^ Define lsi=Sm
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Then <f> G S, 0 « < £ « l , and it is easy to show that U(<f>, W)C U,. If A = 0, then
[/, = C(X, E), and so, if we take <f>0 = 0, we have £/, D £/(<fo, W) for any W in W. Thus
the S-neighbourhoods of 0 have a base of the required form.

The properties of (C(X, E), fi) are given in the following two theorems which extend
results proved by Buck ((1), Theorem 1), Giles ((3), Theorem 2.4), and other authors ((4),
(5), (12)).

Theorem 3.4. (i) p =s K =S /3 « u.
(ii) / / X is completely regular, then

(a) v and /3 coincide if and only if X is compact;
(b) )3 and K coincide if and only if every a-compact subset of X is relatively

compact.
(iii) o and /3 have the same bounded sets in C(X, E).
(iv) p and K coincide on v-bounded subsets of C(X, E).
(v) A sequence {/„} in C(X, E) is ft-convergent if and only if it is v-bounded and

K-convergent.

Proof, (i) This follows immediately from Lemma 3.2.
(ii) (a) Suppose o =s /3. Then, by Lemma 3.3, for any W E.W, there exist a <j> G B0(X)

with 0 =£ <£ « 1 and a VG W such that U(<f>, V)C 1/(1, W). \f E\W* <f>, let c G E\W and
choose A > 0 such that c G A V. If X is not compact, then X\F¥ <f> for every compact set
F in X. Since <f> G B0(X), the set {x G X: <f>(x) s= I/A} has a compact closure, K say, in X.
Let jco G X\K, and choose a ^ G C(X) such that 0 « ifi « 1, «/»(x0) = 1, and tp(K) = 0. Let
g = «/»® c. Then g G [/(<£, V) but g& 1/(1, W), which is a contradiction. If W = E,
choose a Wo in W such that Wo C £ and then argue as above with Wo replacing W. On the
other hand, if X is compact, then K = v and so, from (i), /3 = o, as required.

(b) If every a--compact subset of X is relatively compact, then it is easy to show that
/3 =£ K. Conversely, let /3 =s K, and suppose that there is a set G = U"=i Kn (Kn compact in
X) which is not relatively compact. Then, for each compact set F in X, G\F^ 4>. Let
<f> = 2^=, 2~nxKn. Then <f> G B0(X) and <f> = 0 outside of G. For any W E.W, there exist a
compact set K in X and a V £ T such that £/(**, V)C */(<£, W). If E\W* <j>, let
d G £ \ W , and y0GG\X. Choose a r̂, G C(X) with 0 « </r, «(l/^(y0)), </'.(yo)= l/*(yo),
and il/,(K) = 0. Let h = \fi\®d. Then /i G C/(^K, V) but h& U(<f>, W), a contradiction. If
W = E, choose a Wo in W such that W0C E and then argue as above with Wo replacing
W.

(iii) Suppose there is a set A C C(X, E) which is /3-bounded but not o-bounded. Then
there exist sequences {fn}QA, {xn}CX, and a WeW such that /„(*„)£ «2W. Let
<£(*)= 1/n if x = ^n, and <£(*) = 0 if JC^ xn (« = 1,2,...). Then <̂> G B0(X) but
4>(xn)fn(Xn) & nW; that is, {/„}, and hence A, is not /3-bounded. This contradiction proves
the result.

(iv) The proof follows from standard arguments (see (3, Theorem 2.4(iv)) and is
omitted.

(v) This follows immediately from (iii) and (iv).
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Theorem 3.5. (i) CW(.X, E) is /3 -dense in C(X, E) if and only if X is locally compact.
(ii) / / X is a k-space and E is complete, then C(X, E) is ^-complete.

(iii) / / (C(X, E), p) is metrizable, then /? and v coincide.

Proof, (i) Suppose X is locally compact, and let / £ C(X, E). Let <f> £ B0(X),

Let K C X be a compact set such that <f>(x)f(x) £ W for x£ K. Choose a </» £ CM(X)
such that 0 « i ^ « l and 4>(K) = 1. Let g = ^/. Then g G Coo(X, E) and

4>(xXg(x) - f(x)) = <t>{x){Hx) - l)/(x) '

(since W is balanced).

Thus g-fE U(<f>, W), and so / belongs to the /3-closure of Cm(X, E); that is,
Coo(X, E) is /3-dense in C(X, E), as required.

Conversely, suppose Coo(X, E) is /3-dense in C(X, E) but that X is not locally
compact. Then there exists ay E X which has no compact neighbourhood. Consequently
/(y) = 0 for all / £ Coo(AT, E). It follows that, if h is any non-zero constant function in
C(X, E), then h does not belong to the p-closure, and hence to the /3-closure of CW(X, E);
that is, Coo(X, E) is not 0-dense in C(X, E).

(ii) The proof may be carried out by using an argument similar to the one used in (3,
Theorem 2.4(v)).

(iii) Suppose (C(X, E), /3) is metrizable. By Theorem 3.4(iii), the identity mapping
i:(C(X, E), )3)-»(C(X, E), u) takes bounded sets into bounded sets. Hence, by (11,
Theorem 1.32), i is continuous; that is, u s/3.

A subset A of C(X, E) is said to be equicontinuous at x £ X if, for each W E W, there
exists a neighbourhood N(x)ofx such that f(y) - f(x) £ W for all y G N(x) and f E A. A
is said to be equicontinuous on X if it is equicontinuous at each point of X.

We now give an analogue of the Arzela-Ascoli theorem.

Theorem 3.6. Let X be a k-space and E a topological vector space. Then a subset A
of C(X, E) is ^-compact if and only if the following conditions hold:

(i) A is ^-closed;
(ii) A is /3-bounded;
(iii) A(x) = {f(x):fE A} is relatively compact in E for each x E X;
(iv) A is equicontinuous on each compact subset of X.

Proof. Suppose A is /3-compact in C(X, E). Then conditions (i) and (ii) hold trivially.
Since K « (i, A is »c-compact and so (iii) and (iv) follow from (7, p. 81, Exercise H(d)).

Conversely, suppose that a subset A of C(X, E) satisfies conditions (i)-(iv). Since A,
being /3-bounded, is u-bounded, the topologies /3 and K coincide on A (Theorem 3.4(iv)).
Thus, to show that A is ^-compact, it is only necessary to show that A is K-compact.
Now, by using the same argument as the one used to prove Theorem 3.4(iv), we can show
that the /3 and K closures of A are the same. Consequently, A is K-closed. This fact
together with conditions (iii) and (iv) imply that A is K-compact (see (7, p. 81, Exercise
H(d)). This completes the proof.

Let S0(X) denote the set of all non-negative upper semi-continuous functions on X
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which vanish at infinity. Then the S0(A>topology on C(X, E) is called the weighted
topology and is denoted by o> (cf. (10), p. 283).

Theorem 3.7. The topologies o> and fi coincide on C(X, E).

Proof. It is clear that w =s /3. Now, let <f> G B0(X). By Lemma 3.2, it is sufficient to
show that there exists a function in S0(X) which dominates <f>. For each n, the set
{x E X: \<f>(x)\ s= 2""} has compact closure, Kn say, in X. Let ty = 2~=, 2""^Kn. Then it is
not difficult to show that i/» G S0(X) and i// dominates 4>.

We conclude this section with an open problem. Let /3' denote the finest linear
topology on C(X, E), which coincides with the K-topology on u-bounded sets. Clearly
/3 =s /3'. Katsaras (6, Theorem 3.4) has shown that, if X is completely regular and E a
normed space, then /3 = /3' (see also, Fontenot (2, p. 844)). However, we do not know
whether or not /3 = /3' when X is completely regular and E a general topological vector
space.

4. A Stone-Weierstrass theorem for (C(X, E), 0)

The Stone-Weierstrass theorem for (C(X, E), /3) was first established by Buck (1) for
X a locally compact metrizable space and E finite dimensional. This result was later
extended to locally compact space X and locally convex space E by Todd (14) and
Wells (15). In this section we establish a Stone-Weierstrass type theorem with E any
topological vector space but introducing an additional condition on X which we define as
follows.

Definition 4.1. (9, p. 9). Let "U be a collection of subsets of a topological space X. For
any x G X, we define OTAX% the order of °U at x, as the number of members of % which
contain x, and we define ord % = suplord^^}. The covering dimension of X is defined as

x
the least positive integer n such that, for any finite open covering <% of X, there exists an
open covering 38 such that 38 is a refinement of °U and ord 58 *£ n + 1. If no such finite n
exists, then we say that X has an infinite covering dimension.

Theorem 4.2. Let X be a completely regular space of finite covering dimension and E
a topological vector space. If A is a C{X)-submodule of C(X, E) such that, for each
x&X, A(x) is dense in E, then A is /3-dense in C(X, E).

Proof. Suppose X has covering dimension of order n, and let / G C{X, E). Let
<t> G B0(X), 0 =s <f> =£ 1, and W G W. There exists a V G W such that V+V+- • • +
V((n + 2) - terms) C W. Let K be a compact subset of X such that <f>(x)f(x)e. V for
x{£ K. For each x G X, choose a function gx in A and an open neighbourhood N(x) of x
such that &c(y)-/(y)G V for all yGN(x). The sets {N(x):xGK} form an open
covering of K, and so there exists a finite open covering, {N(Xj):j = 1 , . . . , m} say, of K.
The sets °U = {X\X, N(Xj)(j = 1 , . . . , m)} form a finite open covering of X, and so, by
hypothesis, there exists an open covering 38 of X such that S8 is a refinement of ^ and
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ord S8 =£ n + 1. Since K is compact, a finite number of members of 93, Nu ..., Nr say, will
cover K. Moreover, since S3 is a refinement of all, for each 1 =s i «= r, there exists a
jh 1 ^ h ** "i» such that TV,- C N(xh). Let {<#»,: i = 1, . . . , / •} be a collection of functions in
C(X) such that 0 =£<£,=£ 1, 0, = 0 outside of N,, 2 •=, < ,̂(x) = 1 for x G K, and 2 •=, <£,(*)« 1
for x G X (8, p. 69, Lemma 2). We define an E-valued function g on X by

r

g(x) = 2 <£/(*)£*;.(*),

where giy is the function in A chosen as indicated earlier. Then g E A. Let y be any point
in X. If Iy = {i:y G TV,}, then / , has at most (n + l)-members and <j>,(y) = 0 if i £ Ir

Consequently if y G K, then

Xy) - /(y))}

G V + V + • • • + V (at most (n + l)-times)
C W.

If y&K, we have

<f>(y)(g(y)-f(y)) =

G V + • • • + V (at most (« + l)-times) + V
C W.

Thus g - f G (/(<£, W), and so / belongs to the /3-closure of A; that is, A is /3-dense in
C(X, £) , as required.

Corollary 4.3. Let X and E be as in the theorem, and let A be a C(X)-submodule of
C(X, E) and f G C(X, E). Then f belongs to the (3-closure of A if and only if, for each
x G X, f(x) belongs to the closure of A(x) in E.

The following result is a generalisation of (13, Theorem 1).

Corollary 4.4. Let X and E be as in the theorem. Then C(X) (x) E is fi-dense in
C(X, E).

If E is locally convex, then the proof of Theorem 4.2 can be modified slightly to give
the following

Theorem 4.S. Let X be completely regular and E a locally convex space. If A is a
C(X)-submodule of C(X, E) such that, for each x G X, A(x) is dense in E, then A is
(3-dense in C(X,E).

The above extends the results of Wells (IS, Theorem 2) and Todd (14, Theorem 3).
Consequently, Theorems 4 and 5 in (14), which characterise the /3-closed maximal
C(X)-submodules of C(X, E), will be true for X completely regular.
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