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Modelling dynamics of glaciers in volcanic craters
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ABSTRACT. General equations of ice dynamics are re-examined, using scale analysis,
in order to derive a simplified thermomechanically coupled model for ice flow and heat
transfer in ice caps filling volcanic craters. Relatively large aspect ratios between crater
depths and diameters, low surface temperatures and intense volcanic heating are the princi-
pal characteristics of such craters. The conventional boundary-layer (shallow-ice) approxi-
mation is revised to account for these conditions and, in addition, the variable density of the
snow, firn and bubbly ice. Large crater depths and intense bottom melting result in low lon-
gitudinal balance velocities, controlled by both shear and longitudinal stresses, and hence
small surface slopes. In such situations ice can be assumed to be linearly viscous. A flowline
model of the glacier dynamics 1s developed using this assumption. Explicit predictive for-
mulas for ice-particle trajectories and age—depth relations, thus obtained, suggest that the
age of ice at the bottom of glaciers in volcanic craters on Kamchatka Peninsula, Russia, may
reach hundreds or thousands of years. Ice cores from these glaciers represent unique cli-

matic and volcanic archives.

LIST OF SYMBOLS vy Index in the density—depth profile approximation;
see Equation (27)

a Parameter in Expression (24) A Ice-equivalent thickness of glacier
A Ice volume flow rate; see Equations (15) ¢ Normalized vertical coordinate (distance from
b Ice accumulation rate glacier bottom measured in terms of equivalent
c Ice porosity thickness of pure ice); see Equations (16)
[ Specific heat 0 Relative melt rate
d Crater diameter K Thermal diffusivity
€ij Deviatoric components of strain-rate tensor A Thermal conductivity
g Gravitational acceleration A Correcting factor (thermal conductivity of porous
H Width of ice-flow tube ice deposits normalized by that of pure ice)
Kq, K, K Similarity numbers; see Equations (7) w Viscosity of pure ice
L Latent heat of fusion v Exponent in the approximation of the ice-flow-
l Height of glacier surface tube width
P Pressure I3 Transverse curvilinear coordinate (£ axis
qo Volcanic heat flux oriented along an elevation contour)
Q Activation energy p Density
R, Gas constant o Proportion of the total ice-flow rate due to
s Longitudinal curvilinear coordinate (distance plastic deformation of the glacier body

measured from ice divide along reference flowline) Tij Components of the stress deviator
t Time v Coefhicient in the surface-profile equation (19)
T(Tt) Temperature (fusion point) Superscripts
U, V, W Velocity components 0 Typical value
W Bottom melt rate .
w Rate of vertical ice-mass transfer; see Equation Subscripts -

(22) b Basal.condltlons.

. . . i Pure ice properties
T,Y,% Cartesian coordinates (2 axis oriented along the ..
) o ) S Surface conditions

general ice flow; z axis directed vertically upward) 5,6, 2 Components in curvilinear coordinate system
0 Depth .ofcrat.er related to ice flowline
@ Creep 1ndex' in Glen's ﬂow law . T,Y, 2 Components in Cartesian coordinate system
154 Parameter (index) which controls the change in " Maximum ice thickness

ice viscosity with depth; see Expressions (17) 0 Bottom conditions, initial position, effective

and (18)
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1. INTRODUCTION

A special type of mountain glacier is formed by snow and ice
that accumulate in craters of volcanoes at high altitudes. Due
to intense volcanic heating, ice accumulation on such glaciers
may be essentially balanced by bottom melting. The water
thus produced penetrates into and runs off through the frac-
tured volcanic basement. As a result, the ice flux over the cra-
ter rims is low. Surface slopes are thus low, and longitudinal
velocities small. These peculiarities make such glaciers espe-
cially valuable as paleoclimatic archives.

The thermal and hydrodynamic interactions in such gla-
ciers manifest themselves through the thermal state and ver-
tical movement of the glacier, and the history of volcanic
eruptions in the vicinity of the glacier is preserved as a se-
quence of ash layers distributed through it. Thus, ice-core
data and borehole thermometry can be used to study volcanic
activity in the region, while historical eruptions are reliable
age markers which help to interpret ice-core records.

Mathematical modelling provides a theoretical basis for
processing proxy climate signals from glaciers, but in this
special case the models need additional elaboration. High
lateral aspect ratios of glaciers in craters require appropriate
adjustment of the boundary-layer approximations conven-
tionally used in the theory of ice dynamics (e.g. Grigoryan
and others, 1976; Fowler and Larson, 1978; Salamatin and
Mazo, 1984; Hutter, 1993). Densification of snow to firn and
bubbly ice with minimal surface melting at low surface tem-
peratures makes it necessary to account for compressibility
effects in the glacier body (Salamatin, 1991). Finally, ice flow
in our case is strongly influenced by the thermal state of the
glacier and by bottom melt rates.

Murav’yev and Salamatin (1989) and Salamatin and
Murav’yev (1991) first attempted to use heat-transfer models
to deduce subglacial volcanic heat fluxes on Ushkovsky and
Kluchevskoy volcanoes in Kamchatka, Russia, but the over-
rim ice discharge was neglected. Hence, the primary theoret-
ical goal herein is to re-examine the general equations of ice
dynamics on the basis of scale analysis, and to derive a simpli-
fied thermomechanically coupled model for ice flow and heat
transfer in crater glaciers with such flow over the rim.

In particular, this study concerns Kamchatka Peninsula
which is a key region, geographically and climatically
linked to the Okhotsk Sea. Glaciological observations at
Kamchatka have been carried out for many years, mainly
by Russian scientists. Since 1995 a joint Russian—Japanese
research project has been active (Kobayashi and others,
1997). The principal emphasis of this program is on glacier
monitoring and ice-core studies (Kodama and others, 1996;
Shiraiwa and others, 1997, 1999). The Gorshkov and Herz
crater glaciers on the summit of Ushkovsky volcano (Figs 1
and 2) are the primary areas of field observation and dril-
ling. The theory developed herein is used to predict ice-flow
patterns and the age of ice in the larger (Gorshkov) crater,
using available field data (Murav’yev and Salamatin, 1989;
Shiraiwa and others, 1997, 1999; Matsuoka and others, 1999)
to constrain the model.

2. EXAMINATION OF GENERAL ICE-FLOW
EQUATIONS

Let us first consider the general equations of non-inertial ice
motion. The cross-section of Gorshkov crater glacier along
the central flowline shown in Figure 3 illustrates the princi-
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pal notations used in this paper: z, y, 2 are the Cartesian co-
ordinates with the z axis vertical and directed upward, and
the z axis oriented along the general ice-flow direction. The
position of the origin of the coordinate system is not critical
at this stage, but it is fixed later at the ice dome (at the up-
stream end of a reference flowline, s, as shown in Figure 2),
at the mean elevation level of the ice surface in the crater.
Respective components of the velocity vector v are desig-
nated as u, v, w, while 7;; and e;; (4, j = z, y, 2) are used to
denote the tensor components of the stress and strain-rate
deviators. Accordingly, [ is the height of the glacier surface,
and zy 1s the depth of the crater. Owing to the low annual
surface temperatures and despite the intense volcanic heat-
ing, much of the glacier is composed of snow, firn and bub-
bly ice with the density p = p;(1 — ¢) noticeably different
from the density of pure ice p;, where c is the ice porosity.

Consequently, we write the mass and momentum con-
servation equations as

9p , 9pu)  Opv)  O(pw)
ot ox dy 9z
@ _ aTIL'.’L‘ aT:L‘y aTa:z
dr  Ox Oy 0z '
0 0Ty OTsy OTs.
D Y —gp (2)

92 0w oy Loz 9P

where t is the time, p is the pressure and g1s the gravitational

=0; (1)

acceleration. The depth profile of ice porosity, ¢, is assumed,
based on experimental data, so no additional theoretical
equations are needed to simulate snow densification.

An ice-flow law relates the stress tensor to the strain-rate
tensor and completes the system of equations of glacier
motion. Rheological properties of bubbly ice were theoreti-
cally described by Salamatin and Duval (1997). Based on
these results as well as on laboratory and field observations,
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Fig. 1. Topographic map of the summat ice cap on Ushkovsky
volcano, Kamchatka. Solid and dotted contours are on the gla-
cier surface and adjacent bedrock, respectively. The topography
of the summit craters is shown in detail in Figure 2.
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Fig. 2. Composite map (10 m contour interval) and air photograph of Gorshkov crater at the summat of Ushkovsky volcano. The
principal ice flowline, deduced from surface topography, is shown as a curved arrow. R2-5, K2, K4 and BHI are sites of radio-
echo soundings, located by hand-held global positioning system and theodolite survey in 1997. Snow-temperature measurements

ere made over a_full year, 1996/97, at BHI using a 27 m deep bo

Lipenkov and others (1997) and Salamatin and others (1997b)
studied the process of densification of dry bubbly ice in gla-
ciers, and showed that, at the small stresses (approximately
0.01-0.05 MPa) typical of large polar ice sheets, isotropic
polycrystalline ice behaves as a linear viscous body. As dis-
cussed below, in crater glaciers the stresses are even less: ap-
proximately 0.005-0.02 MPa. Hence, in accordance with
Salamatin and Duval (1997), we have, for porous glacier ice,

= 2(1 - Ju(T)ey;. (3)

Here the factor p(7T')is the viscosity of pure ice which, being

rehole.
a function of temperature T' (in K), is conventionally pre-

sented as
WT) = ubexp[g (7-75)] )

where py, 1s the ice viscosity at a typical basal temperature

Ti,”, assumed to be close to or equal to the ice melting point
Tyl

is

0
T, @ is the activation energy and R, = 8.314 Jmol 'K

the gas constant.
Although the linear approximation embodied in Equa-

tion (3) is not generally accepted (e.g. Hooke, 1981), neverthe-
less 1t may be regarded here, at least, as a reasonable
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Fig. 3. Typical cross-section of a crater glacter along a reference flowline, illustrated by the ice cap in Gorshkov crater (3903 m a.s.L.)
sochrones are shown.
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approximation which makes the mathematics more tractable.
Possible implications of a non-linear (Glen’s) flow law are dis-
cussed in Appendix 3. Furthermore, it is important to note
that the activation energy () in Equation (4) is not constant,
especially at temperatures above —10°C; rather, it increases
considerably as the melting point is approached (Hooke,
1981; Budd and Jacka, 1989). This peculiarity must be taken
into account in the theory of ice dynamics in volcanic craters.

Scale analysis of governing equations

To scale characteristics of ice dynamics typical values, desig-
nated by the superscript “0” (see Fig. 3), are used in this sub-
section. The longitudinal scale of the crater glacier is the
diameter of the crater, d’. Two typical values of the vertical
scale are introduced: [° for the altitudinal range of the gla-
cier surface (for the elevation of the ice surface over the cra-
ter rim), and 2° for the crater depth zy (ice thickness and z
coordinate). It is also clear that p° ~ p; and w® ~ b°, where
b is a typical value of the net ice-mass balance (accumu-
lation rate) b. Following Dahl-Jensen (1989) and Salamatin
and others (1997a), we distinguish here a separate scale 7°
for the normal stresses in the glacier body. Both I° and 7°
are to be found in the course of the scale analysis, and {” is
expected to be much less than 2°.

The secondary scales for the terms in Equations (1) and
(2) now become obvious:

0~ 2200 (u, )" ~ b0/ 2,
(Tows Ty -+ )" ~gpi 1020 /%, p° ~ g2, (5)
(Op/0x,0p/ )" ~gpiI°/d°,  (9p/0=2)" ~ gpi.

The next step is to transform Equations (1) and (2) to non-
dimensional forms, scaled in accordance with the above
choice of the typical values and Expressions (5). Thus, keep-
ing, for simplicity, the same notations (i.c. ¢,z, 2, p, Toz, - - -
for t/t0 /2" 2/ p/p° Tus)T0, ...
conservation equation unchanged and obtain the following

), we leave the mass-

representation of the uniformly normalized momentum equa-

tions:
,1@ - 0Tz asz 0T
K, ax_KT<aa:+ay>+az"" o
ap 2 &7—293 asz aTzz
— =K —p.
Oz ¢ Kl(c?x + oy +# K 9z "

The three dimensionless numbers are defined as

K;=2"/d", K, =1/ K,=7"/(gnl®). (7)

All of these have clear physical meanings: K, is a crater
form factor, K] is the relative elevation of the glacier surface
above the crater rim, and K, is the ratio between the
normal stresses and pressures acting in the glacier body.
The scales [” and 7V can now be determined through scaling
the glacier ice-flow law.

As pointed out by Dahl-Jensen (1989), two specific zones
with different types of deformation should be distinguished
in non-isothermal glaciers: (1) an upper cold stratum where
normal strain rates and compression effects prevail, and (2) a
warmer basal layer subjected to intensive shearing. This is
especially true of crater glaciers. With this in mind, let us in-
troduce the typical value 7" of the annual surface tempera-
ture, T}, and the corresponding ice viscosity s = p(T."). We
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can also set the scales for the strain-rate tensor components
to be consistent with those given by Expressions (5),

')()Nbo/zoa (erzv e»’«’yv o ')()N (bOdO)/(ZO)27 (8)
and write, by definition, the normalized strain rates as

o 1fou w0
o 3\ox oy 0z))

1 /0u 5 0w
812—5<E+Kd $>7

Consequently, the ice-flow law (Equation (3)) directly yields
the following relations between the stress and strain-rate
scales in the two zones

0 70 bod’ _gpi 020

(Exz, €yy, - -

9)

D (02 mpd
These result in explicit expressions for the similarity numbers
defined by Equations (7):
b0 ,
2 K =k2E
gpi(2PKy) b

For the natural talus slopes of volcanic craters, K4 ~ 0.2—

K = (10)

0.3, and preliminary calculations show that for the crater gla-
ciers on the summit of Ushkovsky volcano (b ~ 06ma ',
T." ~-20°C, 2° ~ 250 m) K; ~ 0.01-0. and K, ~ 0.5-1. In
accordance with the definitions in Equations (7), these esti-
mates lead us to the principal conclusions: (1) the ice surface
slope 1s relatively small, and the surface elevation above the
crater rim does not change noticeably in time; (2) longitudinal
stresses play a significant role in the dynamics of crater glaciers.

Correspondingly, the factor K2 in Equations (9), as well
as the factors K, K;2K; and K, K] in the last of Equations
(6), are hereinafter regarded as negligibly small. From the
latter equation it follows that the pressure in the ice thick-
ness 1s close to hydrostatic. Thus, in the dimensionless pre-

sentation we have
p= / pdz.
z

If the density p is a function of depth only and does not
vary significantly in lateral directions, then we obtain, after

Salamatin (1991),

0 0 o 0
<%’6‘_y)p:pKl<£’8_y)l’

and finally the first two scaled equations (6) take the form:
al aTIL‘.’I? 67—:1:1/ asz
P +—— ]+

Por ="\ oz oy 9z’ a1
ﬂ - K OTya _|_aTyy +&Tyz
pay S\ o oy 0z

These equations serve as a starting point for modelling ice
flow in volcanic craters.

Flowline model

It is important to emphasize here that K, determined by
Equations (7), becomes significant (together with the longi-
tudinal normal stresses) only because of the large tempera-
ture difference between the surface and the bed which results
in a large ratio us/p, in Equations (10). The corresponding
terms in Equations (11) are still small and are of the order
O(K,?) within the basal layer, where the shear stresses 7.,
T,y reach their maximum and are responsible for horizontal
motion of the ice. The longitudinal velocities u, v, in turn, are
practically constant in the upper cold stratum of the glacier
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where the longitudinal normal stresses become dominant.
Thus, as in the shallow-ice approximation (e.g. Salamatin
and Mazo, 1984), the flow vector in a crater glacier remains
collinear with the gradient of the glacier surface. This allows
us, at least approximately, to employ traditional flowline
modelling (e.g. Reeh, 1988; Salamatin, 1991) for the crater
ice-cap simulations.

To take into account the specific features of the ice flow,
let us apply a local horizontal orthogonal curvilinear coor-
dinate system (s, £), where s is the distance measured from
the ice divide (ice dome) along the reference flowline (Figs 2
and 3) and £ is the transverse coordinate with a £ axis or-
iented along an elevation contour. We also introduce H(s),
the width of the flow tube formed by the reference flowline
and a neighboring one. Furthermore, the same notations
(u,v) are used for the longitudinal and transverse compo-
nents of the ice-flow vector in this coordinate system. We no
longer need scaling. Hence, all the characteristics are here-
inafter considered as dimensional values.

By definition, v = 0, and mass conservation (Equation
(1)) takes the form:

p , 1 0(Hpu)  O(pw) _ (12)
o H 0s 0z

The curvature of the reference flowline is assumed to be
small, and the flow tube is quasi-symmetric. In accordance
with the projection of the force-balance equations (2) onto
the £ direction, this results in additional simplifications:
Tee = 0 or (€5 =0, Ou/0& ~0). Correspondingly, the com-
ponents of the strain-rate deviator, given by Equations (9),
can be rewritten using Equation (12) as

_8u+1dp _udH+1dp _1ou
Css = s 3pdt’ “THds 3pdt’ 99,
(13)

where dp/dt is the particle derivative.
It remains to project the force-balance equations (2) onto
the s axis. Consequently, instead of Equations (11), we have

ol O0rgs  Tes — TeedH  OTg

P95 ~ 0s H ds 0z
Neglecting small temporal variations of the glacier sur-
face elevation and taking into account the kinematic bound-
ary condition governing the movement of the free ice
surface, we can integrate Equation (12) over the glacier

(14)

thickness to obtain the ice-volume flow rate as a function of
the total mass balance:

/_ (1-cudz=A, A(s,t) :%/OSH(b—wo)ds,

20
(15)
where wy 1s the bottom melt rate. It is also assumed that the
water formed at the ice—rock interface flows downward
through the porous and fractured volcanic substrate.

This flowline model (Equations (12-15)) allows us to
construct a feasible approximation for the main dynamic
characteristics [, u and w, but it needs to be coupled with a
heat-transfer model.

3. THERMOMECHANICALLY COUPLED MODEL OF
A CRATER GLACIER

Surface elevation and velocity profiles

To account for the firn—ice compressibility effects, it is rele-
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vant to introduce, after Salamatin (1991), the normalized
vertical coordinate ( defined as the relative distance from
the glacier bottom and measured in terms of the equivalent
thickness of pure ice:

C:%[Z(l—c)dz, A_/;u_c)dz, (16)

20
where A is the ice-equivalent thickness of the glacier.

Now, using Equations (3), (4) and (13), we can try to inte-
grate Equation (14) with respect to ¢ to derive the profile of
the longitudinal velocity, u, expressed explicitly in terms of ¢
and the surface slope 9l/0s. Further integration of u would
convert the first of Equations (15) into a relation determin-
ing the ice-cap surface gradient along the reference flowline.
Certainly, such a procedure is only approximate. Salamatin
(1991) and Salamatin and others (1995) have elaborated
upon its principal steps. This technique, combined with the
modelling approach of Budd and Jenssen (1975), is applied
now (see Appendix 1) to Equation (14) which is more gen-
eral than those considered in the studies cited above. Addi-
tionally, since the activation energy () in Equations (3) and
(4) effectively changes near the melting point, we have also
modified Lliboutry’s (1981) approximation for the ice viscos-
ity p and write separately

~ QS(TLU - Tso)

W(T) = pge= 179 g, (17)
R,(T0)’
within the cold upper part of the glacier and
. - QT = T.°)
)~ me ™ m(1-0™ B2
u(T) ~ 1-¢ o
(18)

near the glacier bottom.

The indices (5 and (3}, are similar: 5 is determined pri-
marily by the activation energy, (), at the surface tempera-
ture 7%, while the definition of O is based on the activation
energy, Qy, related to the basal temperature T1,°. For typical
conditions on Ushkovsky volcano, G5 has a value of 2—4. Due
to the difference between Qs and @, (Budd and Jacka, 1989),
B, may be 3-5 times larger than [, reaching values of 10-15
or more. Both may be regarded as tuning parameters which
control the change in ice viscosity with depth in the glacier.

Finally, using Expressions (17) and (18), we arrive (see
Appendix 1) at a differential equation for the surface profile

B gpi Ol _ cA(l — cb)2 B ZMS\I/(I — e’/’b)
(B +3) Os A3 i Bs(By + 2)

where

19 (A 1 /(dH\?A
¥ =HAws [ma—@] _E<E> A

A0 (1Y A(1EHY 0 (b
T A0s \A s A\ H ds? Os A '

An approximate expression for the longitudinal velocity is
obtained simultaneously in the following form (Salamatin
and others, 1995):

u z§{1 +ﬁ [1 — (B +3)(1 - C)ﬁ”ﬂ } (20)

By definition, o represents the proportion of the total ice-

, (19)

flow rate due to plastic deformation of the glacier body:
0 <o < 1. As shown in Appendix 1, this parameter can be
directly related to the ice-sliding law (Fowler, 1981).

To formulate the heat-transfer problem and to determine
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ice-particle paths, we need the vertical velocity w. Actually
in our case, when densification processes are important and
the normalized “ice-equivalent” coordinate ¢ is introduced
instead of z, the particle derivative of any ice property, such
as temperature, T, 1s defined (Salamatin, 1991) as

d—T—a—T-l—ug—f—Eg (21)
dt ot ds A’
where @ is the rate of vertical ice-mass transfer:
N SN S S

Thus, the use of w is preferred.

A general relation for the vertical mass-transfer rate is
derived from Equation (12) in Appendix 2. Its simplest form,
consistent with Salamatin and Murav’yev (1991) and Sala-
matin and others (1995), is obtained as a consequence of Ex-

pression (20) when do/0s = 0:
o (
{1 —(1- C)Bb 2}}

O +2

W= —b+(b—w0)(1—g){1+

(23)

The latter expression is accurate, at least in the limiting
cases of 0 = 0 and 1. Eventually, 1t will be convenient to em-
ploy Expressions (20) and (23) as plausible approximations
of the ice-flow components, regarding o as another tuning
parameter responsible for ice sliding. It should also be em-
phasized that (3}, is large and the terms proportional to the
factor o in these equations are, if not negligible, at least not
dominant. Possible generalization of Expressions (19), (20)
and (23) for Glen’s flow law is discussed in Appendix 3.

For small surface slopes we have 9A/Js =~ (1 — ¢},)
0zy/0s, and Equation (19) can be solved easily. However, if
radio-echo sounding data provide ice thicknesses along the
ice flowline, there is no need to simulate the surface eleva-
tion profile in Equation (19) as it does not deviate signifi-
cantly from a horizontal plane. In fact, the glacier flow is
fully prescribed in this case by the balance equations (15),
(16), (20) and (23) provided that the porosity profile ¢ and
the melt rate wy are also known.

Quasi-stationary temperature distribution in a crater
glacier

One of the unique features of ice dynamics in volcanic craters is
that the vertical temperature difference over the ice thickness,
T;—T;, remains spatially constant. For typical conditions, convec-
tive heat transfer in crater glaciers is characterized by moderate
Peclet numbers Pe = 02 /k; < 2-3, where k; = Ai/ (picpi) is the
thermal diffusivity of pure ice and ¢p; and A; are the specific heat
and the thermal conductivity of pure ice, respectively. Thus, verti-
cal temperature profiles along a flowline are assumed to be similar
to one another in shape, and do not differ much in the (-scale pre-
sentation. This means that the term udT'/0s in Equation (21) is
small, and the effect of horizontal advection is mainly incorporated
into the vertical mass-transfer rate w given by Equation (22).

Vertical heat transfer is primarily determined by the
thermal conductivity of the snow, firn and bubbly-ice de-
posits: A = A A(c). The correcting factor A is a normalized
function of porosity (e.g. Murav’yev and Salamatin, 1989). It
can be presented approximately in a form which generalizes
Maxwell’s formula for a cubic array of spherical pores in an
ice matrix:

Axa(l—c)/(a+c). (24)

a = 2 for periodic structures, but this value appears to be no-
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ticeably less, approximately 0.5-1.0, in natural firn (Vostret-
sov and others, 1984) and seasonal snow (Sturm and others,
1997).

If, additionally, surface temperature variations averaged
over typical time periods, t° ~ 2°/b", are relatively small
compared with a large temperature difference over the ice
thickness (low background surface temperatures), then the
spatially one-dimensional and quasi-stationary description
(see Equation (A9)) of the heat-transfer process is quite ac-
ceptable. The solution of this boundary-value problem,
which is very similar to that solved by Robin (1955), can be
found analytically (Salamatin and Murav’yev, 1991). The ver-
tical heat flux and the temperature distribution in the glacier
body are

oT W
_)\g = (qo — piLwo) exp [/Z” A

! T d
T:TS—F(qo—piLwo)/eXp{/ R.Adg}jn.

z

dﬁ} ;

(25)
The melt rate, wy, is determined by the heat balance and tem-
perature conditions at the glacier bed (see Equation (A8)):

1 — T T — T,
= Y , (2
wo 2,01L< + qo > (26)

N
qo0 iTAT AT
where
1/ W dn
I(wo) —K/ZOGXP[/ZO Py df] N

and qp and L are the volcanic heat flux and the latent heat of

fusion, respectively.

Expressions (19), (20) and (23-26) make up a complete
flowline model of non-isothermal dynamics of a crater gla-
cier and represent a theoretical basis for computer simula-
tions and analysis of field data.

Different reduced forms of the heat-transfer model related
specifically to the conditions of crater glaciers are considered
in Appendix 4.

4. DISCUSSION: APPLICATIONS TO GORSHKOV
CRATER GLACIER

In the present discussion, we concentrate on interpretation of
available data (including field observations by the 1996 and
1997 Russian—Japanese expeditions) from Gorshkov ice cap,
which fills the larger of the summit craters (3903 ma.s.l) of
Ushkovsky volcano (Figs 1 and 2) and is being considered as
a possible drilling site (Shiraiwa and others, 1997, 1999).

General geographic information

The dome of Gorshkov ice cap is situated at the southern ex-
tremity of Gorshkov crater, which is nearly circular and
about 850-900 m in diameter (Fig. 2). The main ice flow goes
northward through the geometrical center of the crater. It
can clearly be seen from Figure 2 that the ice-surface slope
increases markedly as the ice crosses the rim and spills over
the side of the crater. It thus has minimal influence on the
glacier dynamics in the crater itself. Reconnaissance theodo-
lite and radio-echo surveys (Matsuoka and others, 1999;
Shiraiwa and others, 1999) conducted in 1997 make it possi-
ble to draw a generalized picture of the glacier surface eleva-
tion and bedrock relief along this flowline (Fig. 3). The
maximum glacier thickness, 240-250 m (Ky ~0.28), is found
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at a site about 650 m from the dome. As might be expected
from the theoretical estimates, the total change in the surface
level across the crater does not exceed 20 m (K ~0.08). This
corresponds to typical stresses of about 0.01 MPa.

Mass-balance measurements in pits (Murav’yev and
Salamatin, 1989) and in a 27 m borehole BH-1 (Shiraiwa
and others, 1997, 1999), drilled in 1996 not far from the geo-
metrical center of the crater (Figs 2 and 3), provide a reli-
able estimate of the mass-balance rate: b =~ 06 ma ' of ice
averaged over 28 years.

Ice-core analysis (Kodama and others, 1996; Shiraiwa and
others, 1997) has yielded the following mean-square approxi-
mation of the snow—firn density—depth (h = z — [) profile:

p=p(l—ce™); ¢=05 ~=003m". (27)
Equations (16) and (27) relate the coordinate ¢ to h:

h ¢
g=1—Z+7—Z(1—e*W"). (28)
Temperature observations (Shiraiwa and others, 1997,
1999) give a mean annual surface temperature, T, of about
—18°C. Experimental temperature—depth profiles also allow
us to infer near-surface temperature gradients.
All these data are sufficiently complete to constrain, at least
in general, our model of the dynamics of the crater glacier.

Predictive estimates of the volcanic heat flux and
ice melting rate

The volcanic heating, o, and, as a consequence, the rate of
ice melting, wop, are the least certain parameters of the
model. Thus, we start with a thermodynamic analysis of
the data available from temperature measurements in the
upper snow—firn stratum of the ice cap.

In accordance with Matsuoka and others (1999), the glacier
thickness in the vicinity of borehole BH-1 1s about 185 m (Fig.
3), and Equations (16), (27) and (28) predict the corresponding
ice-equivalent thickness to be ¢/ less, or A a2 168 m. Further-
more, we assume the following thermophysical properties for
pure ice at a mean temperature of about —10°C:

pi =918kgm ™, ¢,y =2.0kJkg 'K,
A=23Wm 'Kk =125x10m?*s?,
a=0.8 L=333kJkg™!

and fix 0 =1, f, =10 in Equation (23).

Now, for any given ice thickness, A, the local melt rate wy
1s related to the volcanic heat flux ¢g by Equation (26). The
melt rate is zero for small values of ¢y when the bottom tem-
perature is below the ice melting point 7t. Once the bottom
temperature becomes equal to ¢, wy increases nearly linearly
as qo increases (Iig. 4). Similarly, the first of Equations (25)
represents a relationship between ¢g and the temperature
gradient I' = —9T'/9z. Of particular interest is the tempera-
ture gradient at the ice surface, I's. As gy increases while the
bottom temperature is below the melting point, I" and also I’y
increase nearly linearly (Fig. 4), thus providing for conduc-
tion of the heat from the bed to the surface. Once the bottom
temperature reaches Ty and melting starts, I'y starts to
decrease slowly (Fig. 4). This is because an increase in the melt
rate increases the vertical velocity, w; thus more of the heat
entering the ice at the bed is used to warm downward-moving
ice, and less is conducted to the glacier surface (e.g. Robin,
1955; Hooke, 1998, fig. 6.6). In principle, both gy and wy can
thus be derived from the surface temperature gradient I'g
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Fig. 4. Calculated surface temperature gradient, I's, at 20 m
depth and bottom ice-melting rate, wo, at BH-I as a_function
of volcanic heat flux, qo (solid lines). Dotted lines with ar-
rows show estimates of qo and wy derived from the tempera-
ture-gradient values calculated from the mean annual 27 m
temperature profile.

measured below the level of the seasonal temperature fluctua-
tions or estimated on an annual bass.

July temperature profiles in the center of Gorshkov crater
obtained from a 13 m deep pit by Murav’yev and Salamatin
(1989) in 1986 and from the 27 m borehole BH-1 measured by
Shiraiwa and others (1997) 10 years later are very similar.
Thus, local climatic conditions have not changed signifi-
cantly. However, the temperature gradients are about 0.18
and 0.065°C'm ' over depth ranges of 5-8 m and 15-25 m, re-
spectively, and reveal obvious seasonal variability. Thus,
monthly temperatures from BH-1, measured during 1996-97
(Shiraiwa and others, 1999), have been used to calculate the
mean annual temperature—depth profile from 2 to 27 m. The
mean-square approximation gives I's = 0.049 £ 0.002°C'm !
within the firn layer from 15 to 25 m (for the estimated errors
in individual temperature measurements of about +0.05°C)
and leads to an apparent (extrapolated) temperature at the
glacier surface of —16.0 £ 0.1°C. This temperature, which is
about 2°C higher than the observed value owing to seasonal-
ity in precipitation, is used as the boundary condition, T, in
Equations (25) and (26).

The corresponding plots of I'y (at h = 20m) and wy as
functions of the bottom heat flux, gy, for BH-1 are shown in
Figure 4. These simulations show that there is an upper bound
for the surface temperature gradient, I'y’, and no reasonable
value of gy can be found if the observed (estimated) tempera-
ture gradient Ty is larger than T'\". On the other hand, two
plausible values of gy are determined when I's < I.0: the les-
ser one at wy = 0 and the larger one for non-zero melt rate
(wg > 0) which is likely in crater glaciers. In our case, T'\"
0.055°C'm " and the above experimental range in the surface
temperature gradient suggests gy ~ 1.4 + 04 W m ? and wy ~
0.11 £0.04ma ". The dotted lines with arrows in Figure 4 il-
lustrate this inverse procedure which appears to be rather sen-
sitive to errors in the temperature-gradient estimation. On the
other hand, the limiting temperature-depth profiles in
Gorshkov ice cap presented in Figure 5 by curves 1 and 2
(simulated in accordance with Equations (25) and (26) for
qo ~ 1.0 and 1.8 W m ? at BH-1) do not differ noticeably. Tem-
perature measurements are shown in Figure 5 by solid squares.
Curve 3 is computed for ¢ = 0 at gg ~ 1.0 W m ? and is quite
close to curve 1, simulated for o = 1. Thus, ice sliding has mini-
mal influence on the temperature field in a crater glacier.

183
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g, 5. Sumulated temperature—depth profiles at BH-I for duif-
Jerent conditions at the glacier base: (1) lower and (2) upper
bounds of the volcanic heat flux (qo ~ L0 and 18 W m Z, re-
spectively ) without basal ice sliding (o =1); (3) ice sliding
(o0=0atq~L0Wm?~

The maximum value of ¢y = 1.8 W me, derived from
the borehole temperature measurements, is only about one-
quarter of that obtained by Murav’yev and Salamatin
(1989), who neglected ice discharge from the crater, having
assumed wy = b. As a result, their prediction of the glacier
thickness was less than the real value by a factor of two.

The above considerations concerning the mean depths
and typical conditions of Gorshkov ice cap reveal another
important peculiarity of ice dynamics in volcanic craters.
The heat flux through the glacier thickness is found to be
much less than the bottom heating. Hence, the ice-melt rate
must be practically constant along the flowline, provided
that the volcanic heat flux remains unchanged.

Ice-particle trajectories and age—depth relation

The path of an ice particle deposited at ¢ = 0 on the glacier
surface a distance sp from the dome is determined by two
simultaneous differential equations:

ds d¢ w

_— = _— 2

at " odat T A’ (29)
Sit=0 = S0, C\t:() = 1a

where © and w are given by Expressions (20) and (23),
respectively.

Simplified analytical solutions of this system can be use-
ful for estimating the age of the ice. With this in mind, we
first assume that b and wy are constant, at least within the
major part of the crater area, and take the flow-tube width as

H(s) =s",

where the exponent v is a positive value for the typically di-
vergent flow patterns in ice caps. Although rather unsophis-
ticated, such an approximation is flexible enough to
represent a variety of general configurations of ice streams
in volcanic craters.

We neglect the secondary terms, proportional to
o/(Bp + 2), in Expressions (20) and (23) and write

uw=sb(1—0)/A(1+v), @w=-blo+(1-6),

where 0 is the relative melt rate, § = wy/b.
Next, for the naturally flattened ice-cap surface and a
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smoothed crater bottom (e.g. Fig. 3) the ice-equivalent gla-
cier body has an approximately parabolic shape:

A:A*i(2—i>.
Sk Sx

Here s, is the distance from the dome at which the maxi-
mum ice thickness A, is reached. Certainly, when the crater
is not axially symmetric, the latter approximation is valid
only for s < s,.

Finally, Equations (29) take the form:

ds  s.b(1—0) d¢ sblo+(1-6)
@ A (1+) (2—i) dt A*S(Q—i>
Sk Sy
S|t=0 = S0, C\t:[] =1,

which permits immediate integration for § <1.
Consequently, trajectories of ice particles are described
by the one-parameter family of curves

(%) g 1-oc, (30)

and the age—depth relation at a fixed distance, s, from the
dome is given explicitly as

- 722225”_2;) {1-16+0 -7}

(1 - 4; {1 FO+(1— 9)4]#}) .

Obviously, intense bottom melting limits the age ofice in

(31)

a volcanic crater. In accordance with Equation (31), the age
of the oldest ice is

L 2wt (1 - 9—>

b(1—0) \1+ 67

and it should be found near the glacier bottom at location

Smax = 23*/(1 + 9%1) .

In the case of Gorshkov ice cap, s, ~650m, A, ~223 m
and, for divergent radial flow (v /1) in the vicinity of the
reference flowline (Fig. 2) with b = 06ma ' and maximum
0~ 025 (i.e. wy ~0.15ma "), the age of ice at the maximum
depth (s = s,) is about 610 years. For a symmetric crater,
the maximum age of ice would not exceed 650 years at s ~
870 m, 1.e. 220 m downstream from the position of maxi-
mum depth. For minimum 6 =~ 0.12 (i.e. wy ~ 0.07ma ),
the maximum age would be about 800 years at s ~ 970 m.

Equations (30) and (31) are rather simple and directly
reveal an important fact: namely, that basal melting con-
strains the glacier dynamics and ice-age distribution in vol-
canic craters. For example, in Gorshkov crater at § ~ 0.25,
the maximum age of the ice does not change by > 5% when
v varies from 1 to oo. Using Equations (27) and (28), the
paths ofice particles and isochrones predicted by Equations
(30) and (31) can be directly plotted in the (%, s)-coordinate
system as shown in Figure 3 for 6 ~ 0.25.

More accurate and detailed simulations should be based
on the general flowline model given by Equations (19), (20—
26) and (29).

5. CONCLUSIONS

The boundary-layer approximation used in the theory of
glacier dynamics is re-examined on the basis of scale
analysis, and is applied to ice flow in volcanic craters. Due
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to the large aspect ratios, Kj ~ 0.2, the ice-cap surface in a
crater is expected to be practically flat, with slopes of the
order of K; K4 ~ 0.01. Thus, longitudinal normal stresses in
the glacier body become comparable to the basal shear
stresses. The highly non-isothermal conditions of crater gla-
ciers enhance the latter peculiarity. Intense volcanic heating
should be considered as one of the principal factors control-
ling the motion of a crater glacier. A thermomechanically
coupled flowline model is constructed for simulating the
non-isothermal ice flow in volcanic craters, with special at-
tention paid to snow—firn—bubbly-ice compressibility effects.
The profiles of vertical and horizontal velocities are derived
explicitly. The theory developed provides a basis for detailed
computer simulations and interpretation of field data.

In accordance with the primary objectives of this study,
we applied the model to Gorshkov ice cap in the larger sum-
mit crater of Ushkovsky volcano. Based on measured mass
balances and temperature profiles in pits and shallow bore-
holes, the ratio between the basal melt and mass-balance
rates is estimated to be § ~ 0.12-0.25. This means that up to
25% of the ice mass, accumulated in the crater, may be
melted by the volcanic heat flux gy ~ 1.0-1.8 Wm 2 while
the remaining 75% is discharged over the crater rim. Ice-
particle paths and age—depth relations are presented in ex-
plicit analytical form. The age of the basal ice at the deepest
point is predicted to be >610 years and is close to the max-
imum age of ice in the crater.
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APPENDIX 1
INTEGRATION OF THE STRESS EQUATION

The normal stresses T, T¢ are related by the flow law
(Equation (3)) to the corresponding deviatoric strain rates
€ss, €¢e, given by Equations (13). By assumption, the relative
rate of ice densification in Equations (13) does not depend on
the coordinate s and hence does not noticeably affect the
first term and is not present in the second term on the right-
hand side of Equation (14). Thus, by means of Equations (3)
and (13), after integration of Equation (14) with respect to 2
from z to [ for a small surface elevation slope (K; — 0), we
find the shear stress 7,4 as

a 29 L ou
Tos = —gpi(l—C)%‘i'Eg <HA/C Ko dC)

2A (dH\? [!
il il dc.
H2(ds)/gﬂu ¢

To evaluate the two integrals in Equation (Al), we use an

(A1)

appropriate approximation (Expression (17)) for the ice
viscosity, f, in the cold upper part of the glacier where p 1is
comparatively large and significant. Furthermore, as a first-
order iteration, we substitute the vertically averaged longi-
tudinal velocity, given by Equations (15), for v in Equation
(32). That is, we put u &~ A/A. This leads to the shear-stress
profile
— e (-0

Tos = —gpiA(1 = () % + QMS\PAleT (A2)
with ¥ defined in Equation (19). The second term in Equa-
tion (A2) for 7., represents an interpolation between the
boundary values at ( = 0 and 1. The fact that 74, is small
near the bottom is also taken into account.

Substituting Equations (13) and (A2) for e, and 7, into
the flow law (Equation (3)) and integrating with respect to
¢, we obtain

o ¢ 1-¢
LY (L
U= uy — gp s J, (1—0)2u ¢

2l (1 — e A0-9
+ 2 \IJAQ/ T,
Bs 0o (I1—o)p

where uj is the sliding velocity.

Owing to the effective change in @) near the melting
point (Hooke, 1981; Budd and Jacka, 1989), the ice viscosity
1, given by Equation (4), rapidly decreases with increasing
temperature as the glacier bottom is approached. Only the
basal values of the integrands are important in the integrals
in the above relation for w. In this case, Lliboutry’s (1981)
approximation (Expression (18)) becomes especially useful.
Consequently, we come to a simplified presentation of the
longitudinal velocity:

gnA? Ol ll - (1- C)ﬂ"ﬁl

u=1uy — —
0 ,ub(l — Cb)2 Os By +2

215(1 — e H)TA2 [1 — (1=

[ Bs(1 — )’ By +1

where ¢, 1s the basal porosity.
If the sliding velocity is introduced as
A
~(l-o0)— A4
w(1-0)% (A4)
then Expressions (15), (A3) and (A4) straightforwardly
yield Equation (19) for the surface elevation profile.

186

] o (A3)

https://doi.org/10.3189/172756500781832990 Published online by Cambridge University Press

A sliding law links ug to the basal shear stress 7,5 (at { =
0). At high load pressures the meltwater is supposed to pene-
trate into the underlying fractured volcanic rocks, and, in
the absence of cavity formation (ice—rock separation), by
means of Equation (A2) we write, after Fowler (1981):

koA < ol 1-— eﬁﬁ)
M8 (P, v ) (a5
pn (1 —cp) 9P 0Os a Bs (45)

Here ky is a basal friction factor which depends inversely on

uy =

the bedrock roughness and is proportional to the longitu-
dinal scale of the substratum corrugations. For the specific
dimensions of lava and tephra blocks in volcanic craters, kg
is expected to be relatively small.

Equation (19) can be used now to eliminate the surface
gradient from Equations (A3) and (Ab5). This results in Ex-
pression (20) for the longitudinal velocity profile and relates
parameter o to ko:

(1—cp)(By +3)ko] "
A .

Let us note that parameter o is close to unity for small values

of the ratio ko (8, + 3)/A.

o= |1+

APPENDIX 2
VERTICAL ICE-MASS TRANSFER

If the density p (porosity ¢) of the snow—firn—ice deposits
depends only on depth, then, following Salamatin (1991)
and calculating partial derivatives of ¢, defined by Equa-
tions (16), we can reduce Equation (22) for small K to a
relation between w and w:

w320
ds ’

At the same time, integration of Equation (12) with respect

w=(1-cw+(1—-c)(1—=0)

to z gives (Salamatin, 1991):

9 ¢
(1—c)w:—wo—%£ (HA/O ud()

~a-a)(1-Qut,

where s and ¢ should be considered as independent variables.
The latter two equations straightforwardly lead to the
final result

. 10 ¢

The integral in the latter equation can be evaluated easily
after substitution of the u-velocity profile (Expression (20))
and finally Equation (23) is obtained.

APPENDIX 3

COMMENTS ON IMPLICATIONS OF A NON-LINEAR
FLOW LAW

Glen’s flow law, a power-law relationship between effective
deviatoric strailn rates eg = (0.5€;5€;;)? and stresses
T0 = (05 Tij TZ‘]‘)E,
2,U/(T)60 = ’T()a 5 (A6)
1s normally used to describe the non-Newtonian behavior of
pure polycrystalline ice. Here the exponent « is the creep in-
dex, o > 1, and the viscosity factor 1 1s defined by Equation (4).
We expect that Equations (13—15) are also valid in this
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case. If) as before, the ice densification effects are not im-
portant in the normal strain rates in Equations (13), the line
of considerations of Appendix 1 can be extended to the non-
linear ice rheology.

For the cold upper (firn and bubbly-ice) stratum of the
glacier, where the normal stresses prevail, in accordance
with Equation (A6), we write (Salamatin and Duval, 1997)

Ty = (1_0)(2/‘)%@6%1 i287€7

where

®(u) = [(%):(%%)Z

The substitution of these expressions into Equation (14)

l-a
20

u dH du

H ds 0s

results in a generalized form of Equation (Al), and, for
urs AJ/A, the corresponding analogue of Equation (A2),
based on Expression (17), transforms into

1 1- ei%(lio

ol 1
Tos = —gpiA(1 — C)£+ a(2ps)* WA 5 ,

where

19 A\ 9 (A\] 1 (dH\® (A A
v HA&;{HA(I)<A> Bs <A)] T (d> ‘I’(A> A
For the basal shear layer, Equation (A6) gives (Salamatin
and Duval, 1997):

Ou ANE o

8C (1 _ C)onrlM ’
and instead of Equation (A3) for large 3, in Equation (18)
determining p, we obtain

Ao+ ol Lo 1-e 2]
U R Uup+ T |90 5 — a2ps)" W
,u'b(l - Cb) . 0Os ﬂs
1— (1 _ C)ﬂthoHrl
By +a+1

This approximate relation for the longitudinal velocity,
together with Equations (15) and (A4), straightforwardly
leads to the corresponding generalization of Equation (19).
Expressions (20) and (23) remain valid with 8,4 1 replaced
with B}, + c. This also means that all applications consid-
ered in section 4 do not depend directly on ice rheology.

APPENDIX 4

REDUCED FORMS OF THE HEAT-TRANSFER
MODEL

In the framework of the above scale analysis (see section 2),
the thermal conductivity in lateral directions has a small
effect, of the order O(K,?), on the temperature field. The
low dynamic activity of the glacier in combination with in-
tense volcanic heating makes internal dissipation of mech-
anical energy also negligible. Consequently, the general
heat-transfer equation in the flowline coordinate system s,
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¢, in accordance with Equation (21), can be written in the
following simplified form (Salamatin and others, 1995):
or or woal 0 or
oAt ut | == |1 = )N ==|. (AT
ewnd (G g+ K g) =g - Mg (4D
The principal boundary conditions on the bed and ice
surface are

(1—c)XoT 40, Tie=o < Tf
(&) - A O, ;
9 1 e=o0 q0 — piLwo, Ti—o = Tt
(b) Tjem =Ts. (A8)

The basal temperature is supposed to be close to the melting
temperature 7T;. Hence, Equation (A8a) determines the
melt rate, wy > 0. In a changing climate the annual surface
temperature, T, is a function of time.

Correspondingly, as explained in section 3, Equation (A7)
can be reduced to a spatially one-dimensional form relevant
to crater glaciers, and, for example, in the quasi-stationary
state can be written as (Salamatin and Murav’yev, 1991)

2001007
K O OC a¢

The latter boundary-value problem presented by Equa-
tions (A8) and (A9) leads to Equations (25) and (26).

Next, let us note that the most significant changes in ¢
and A (i.e. A) take place within the upper 30-50 m, in snow
and firn. Below this level, which also bounds the depth of
seasonal temperature fluctuations, the variations in ¢ and A

(A9)

do not exceed 10%. With this in mind, it is relevant, at least
in the deeper central area of the crater, to simulate the tem-
perature profile, based on the assumption that the thermo-
physical properties of ice in Equation (A9) are constant, 1.e.
¢~ 0, A = 1. The enhanced thermal resistance of the near-
surface snow-and-firn stratum in this case might be taken
into account by a special boundary condition (Salamatin
and others, 1995) imposed on the glacier surface instead of
Equation (A8b):

x oT

A 9y

o i

The apparent heat-transfer coefficient y is defined here so
that it is constant. Using Expressions (24) and (27) it can be
evaluated explicitly as x = [acs — (a 4+ 1) In(1 — ¢)]/(ay).

The above correction conserves the total heat balance of

= T\C:l =T

the glacier and represents the temperature field as ( — 1 as
an extrapolation of the temperature—depth relation from
the deeper part of the glacier, neglecting rapid changes in
physical properties p and A within the upper snow—firn stra-
tum. Both the temperature profile and the heat flux in the
basal layer remain unchanged. This is important for simu-
lating bottom melting processes and predicting their impact
on glacier motion. Such simplified formulation of the heat-
transfer equations can be especially useful in completing the
model of the dynamics of a crater glacier.
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