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SPECIAL COLLECTION

Visual Thalamus

The challenge of complexity

The structure of the nervous system is complex at a level that both 
experimental and theoretical neuroscience are struggling to come to 
grips with. Sensory data are processed by networks of many thou-
sands of synaptically connected neurons, but connections between 
neurons are usually mapped using one or two cells at a time. The 
pattern of connections within these networks is shaped by every level 
of neuronal interaction from synaptic geometry to global network 
activity, but our models of connection probability generally consider 
only cell type and proximity. Cellular connectomics is an attempt to 
deal with the daunting complexity neural tissue, not as noise to be 
averaged out, but as a critical adaptation that must be understood in 
order to understand the biological origins of behavior.

One of the current challenges of ‘connectomics’ is that the term 
is used to refer to several distinct big data approaches to neuro-
anatomy that differ significantly in their techniques and questions. 
One connectomic approach is to develop better frameworks for 
compiling the results from large numbers of functional and ana-
tomical experiments into integrated models of connectivity. Large 
scale examples of this approach include the Human Connectome 
Project (Glasser et al., 2016) and the Human Brain Project (Amunts 
et al., 2016). The second approach, critical to capturing the higher 

order organization of neural networks, is to develop tools that allow 
for direct observation of intact cellular networks (Morgan & 
Lichtman, 2013). Such techniques include scaling up calcium 
imaging and electron microscopy so that the functional or anatom-
ical connections between thousands of cells can be mapped in the 
same piece of tissue.

The lateral geniculate nucleus (LGN) of the thalamus is ide-
ally situated both to be understood by new cellular connectomic 
approaches and to contribute to our understanding of how net-
works of neurons process information. On the one hand, the LGN 
is a small, well-characterized piece of tissue with a single-output 
cell type and a well-defined core function. On the other hand, the 
LGN is developmentally plastic and its core function, relaying 
retinal information to the cortex, gains complexity through the 
interaction of multiple channels of visual information and by a 
large number of modulatory and feedback connections. Examples 
of potential LGN targets for connectomic analysis include gener-
ating an inventory of cell and synapse types, generating a wiring 
diagram of how information is shared across visual channels, 
identifying the level of specificity with which feedback connec-
tions are registered to feedforward connections, or mapping how 
neighboring neurons from the same functional mosaic deploy 
their synapses relative to one another. Although these issues have 
been addressed, to some extent, in a rich literature on LGN con-
nectivity (see this issue), the hope is that connectomic techniques 
can address many of these questions simultaneously using images 
and models of intact networks.

Review ARTicle

A connectomic approach to the lateral geniculate nucleus

JOSH L. MORGAN
Department of Ophthalmology and Visual Sciences, Department of Neuroscience, Washington University School of Medicine,  
Saint Louis, Missouri 63110

(Received January 12, 2017; Accepted May 25, 2017)

Abstract
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More than one wire in the lGN

A piece of tissue that is often referred to as a ‘relay’ might seem 
like an unlikely piece of the brain in which to study synaptic wiring. 
There are many examples of thalamocortical cell (TC) recordings, 
where the response properties of TCs appear unchanged from the 
response properties of the retinal ganglion cells (RGCs) that drive 
them (Smith et al., 1990; Sincich et al., 2007). Such responses are 
consistent with a simple one-to-one (one RGC to one TC) wiring 
plan in which the role of the LGN is to provide a way for the cortex 
to disconnect from the retina. However, the LGN is synaptically 
overpowered for this function. Up to 93 percent (depending on the 
species) of the synapses in the LGN are not between RGCs and 
TCs (Van Horn et al., 2000), but instead come from excitatory 
feedback from the cortex, feedback inhibition from the reticular 
nucleus, local feedforward inhibitory connections, input from optic 
tectum, and input from the brainstem (for review of TC synaptology, 
see Sherman & Guillery, 2004). Rather than being diffuse or random, 
these nonretinal synapses are often retinotopic (Ichida & Casagrande, 
2002; Ichida et al., 2014), channel specific (Briggs & Usrey, 2009; 
Ichida et al., 2014), and can be targeted down to the level of indi-
vidual synapses (Famiglietti & Peters, 1972). Instead of being 
structured as a simple ON/OFF relay, the LGN would be better 
described as converging arrays of transistors that constitute the 
front end of a set of thalamocortical loops.

However, this analogy is also incomplete because, even among 
the synaptic connections between the retina and TCs, only a subset 
appears consistent with the function of a gated relay, i.e., one-to-
one RGC to TC connectivity. Based on physiological data, one-
to-one connections appear to be common in the primate, fovea 
dominated, LGN (Sincich et al., 2007), but the motif is found in 
only a minority of TCs in the cat (Cleland et al., 1971; Mastronarde, 
1992) and is rarely observed in rodents (Hong et al., 2014; Weyand, 
2016). Recent results in the mouse, in particular, reveal the conver-
gence of different channels of visual information and the generation 
of new response properties (Marshel et al., 2012; Piscopo et al., 
2013; Rompani et al., 2017).

The LGN, therefore, is a stage of visual processing that shares 
a basic wiring plan with the previous retinal stages of visual pro-
cessing, but which also introduces new circuit properties. Like in the 
retina, in the LGN, there is a clear core of feedforward excitatory 
transmission of visual information that is spatially and temporally 
refined by local inhibitory neurons. Like the retina, the feedforward 
core of the LGN is anatomically organized according to visual 
space and visual channel and it exhibits channel-specific levels of 
divergence and convergence. However, unlike in the retina, the 
feedforward transmission is heavily modulated by other regions of 
the brain. Also unlike in the retina, most aspects of the feedforward 
circuitry are heavily dependent on developmental activity patterns. 
In the retina, disrupting synaptic transmission alters the numbers of 
synapses formed between different classes of neurons (Kerschensteiner 
et al., 2009; Morgan et al., 2011), but the basic wiring plan of the 
retina appears to be defined before the synaptic transmission begins 
(parallel arrays of bipolar cells and stratified dendritic and axonal 
mosaics). Altering developmental activity patterns has a much more 
dramatic effect in the LGN, where RGC axons face the challenge 
of reconstructing spatial and synaptic relationships after being 
bundled together in the optic tract. Nearly, every property of LGN 
circuitry—receptive field size, segregation of channels, and seg-
regation of inputs for different eyes—is significantly disrupted by 
disruptions of developmental activity patterns (Hahm et al., 1991; 
Hong & Chen, 2011).

It is the LGN’s balance between structural/functional stereotypy 
and developmental plasticity that makes it a particularly appealing tar-
get tissue for connectomic analysis. When neurons change their con-
nectivity in response to the firing patterns of their synaptic neighbors, 
higher order connectivity patterns can emerge that could not be 
predicted simply from knowing the type and position of two neurons. 
In the simplest Hebbian form, whether or not an axon will remain con-
nected to a given target cell will depend on whether the other inputs to 
the target neuron cause it to fire with the first axon. In the LGN, this 
sort of Hebbian plasticity has been strongly implicated in driving the 
segregation of RGC inputs coming from different eyes (Torborg et al., 
2005; Butts et al., 2007). At the synaptic level, these sorts of processes 
should generate identifiable wiring motifs. For instance, the observa-
tion that two given axons formed stable connections on one target cell 
would predict that those same axons should be unusually likely to 
form stable connections on other target cells. More generally, in net-
works shaped by activity, the probability of cell A and B being con-
nected can be dependent on whether cell C and B are connected. In 
order to understand how network activity becomes network structure 
(developmental and adult learning), we need plastic, but decipher-
able, neural networks like the LGN to be mapped using techniques 
that can reveal higher order wiring patterns.

Mapping lGN connectivity with electron microscopy

Electron microscopy (EM) has been used extensively to study the 
synaptic organization of the LGN. Studies that have combined EM 
with degeneration tracing, immunostaining, Golgi staining, and 
biocytin labeling have characterized ultrastructural identifiers 
for most of the cell types present in the LGN. For example, 
RGC inputs can be identified by their light mitochondria, round 
large and pale synaptic vesicles, and by their targeting of proximal 
TC dendrites (Szentagothai et al., 1966; Famiglietti & Peters, 1972). 
Tectal inputs resemble RGC inputs, but can be distinguished by 
their dark mitochondria (Bickford et al., 2015). Inhibitory reticular 
nucleus axons target the spiny distal dendrites of TCs with boutons 
that have small vesicle and dark mitochondria (Wang et al., 2001). 
Despite wide variation in the gross organization of the LGN across 
mammalian species, the same basic cell types and synaptic motifs 
are easily recognized in electron micrographs from rodents, cats, 
and primates (Colonnier & Guillery, 1964; Guillery, 1969; Guillery & 
Colonnier, 1970; Rafols & Valverde, 1973; Wilson, 1989). One 
easily identifiable higher order motif is the synaptic triad that can 
be found at most of the synapses between RGCs and TCs. The triad 
is formed by a local inhibitory neuron process that both receives 
input from the presynaptic RGC and goes on to innervate the post-
synaptic TC (Famiglietti & Peters, 1972; Ohara et al., 1983;  
Hamori et al., 1991). Because these synapses often occur within a few 
micrometers of each other, this motif can be identified in a 2D electron 
micrograph. The synapse level feedforward inhibition provided by 
these triad synapses is thought to act as temporal sharpening filter 
(Blitz & Regehr, 2005). However, these triad synapses are also part of 
a larger glial encapsulated synaptic structure termed as glomerulus 
(Szentagothai, 1963) in which many RGC and local inhibitory neuron 
boutons cluster around the proximal dendrites of TCs. The fact that 
multiple RGCs converge within these glomerular clusters (Hamos  
et al., 1987; Hammer et al., 2015; Morgan et al., 2016) suggests that 
the local feedforward inhibition might be part of more a complex 
dendritic computation such as coincidence detection. Making sense 
of these sorts of complex synaptic structures requires being able to 
identify the cohorts of neurons that participate in them.
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The biggest limit to reconstructing circuits with electron micros-
copy is that ultrathin sectioning and nanometer resolution imaging 
historically meant that only small volumes could be reconstructed. 
One approach to overcoming this limitation has been to target a 
neuron using a label that is visible both optically and in an electron 
micrograph. Using this method, Hamos and Sherman (Hamos et al., 
1987) were able to identify and reconstruct the target TCs innervated 
by an horseradish peroxidase labeled type X RGC axonal branch. 
They found that the axon passed by a large number of potential TC 
partners to selectively form synapses on four target cells. The con-
nectivity between the labeled axon and the four identified target 
cells was remarkable in its diversity. The X axon synapsed with 
three morphologically distinct X TCs and one Y TC. Among these 
X TCs, the labeled axon accounted for 100% of the inputs onto one 
cell, 91% on another, and only 33% on the third. In their 1987 article, 
Hamos and Sherman state that the major limitation of their study 
was that it was labor intensive and time consuming. The effort 
required to reconstruct a single axonal arbor meant that the diversity 
in connections that they observed would be difficult to confirm: 
“it will never be practical to obtain such analyses for large pop-
ulations of afferent axons”.

Although it still may not be feasible to acquire hundreds of 
circuit scale EM datasets in which a single-labeled RGC axon is 
traced in each, it is now possible to acquire a single EM dataset in 
which hundreds of unlabeled RGC axons can be traced. Tracing 
large numbers of unlabeled neurons requires that large regions of 
neuropil are digitized at sufficient resolution that nonspecific mem-
brane stains (such as osmium, lead, and uranium) are sufficient for 
following thin processes over long distances. Modern data storage 
and image processing capabilities are critical to this endeavor 
because acquiring high-resolution three-dimensional volumes on 
the hundred micrometer scale requires terabytes of data storage; 
the millimeter scale requires petabytes. Advances in data handling 
capabilities, electron microscopes, and sectioning techniques have 
allowed for a proliferation of circuit scale 3D EM techniques 
including block face imaging (Leighton, 1981; Helmstaedter et al., 
2013; Hayworth et al., 2015), high-throughput transmission EM  
(Bock et al., 2011), and scanning EM-based tape collection ultra-
microtomy (Schalek et al., 2011). Most of these techniques involve 
a significant amount of automation in the acquisition and pro-
cessing of EM images. Among the largest of EM datasets that have 
been produced in recent years, the mammalian visual system is 
well represented. Large scale EM reconstructions have been per-
formed on the rabbit (Anderson et al., 2011) and mouse retina 
(Briggman et al., 2011; Helmstaedter et al., 2013), mouse LGN 
(Morgan et al., 2016), and mouse visual cortex (Bock et al., 2011; 
Lee et al., 2016). Each of these studies has significant limitations 
due to tissue staining, traceability, and/or reconstruction size. 
However, in each case, important biological observations were 
obtained and there is a clear path forward for improving techniques. 
In particular, the ability to fully utilize these datasets depends 
on improvements in applying machine vision to EM data, an 
area in which rapid progress is being made (Arganda-Carreras 
et al., 2015; Kaynig et al., 2015; Januszewski et al., 2016; Zeng 
et al., 2017).

Critically, the quantity of data that can now be collected in a 
single piece of tissue has led to qualitative changes in the kinds of 
questions that can be asked. Because every cell and organelle is 
labeled and imaged in a 3D EM volume, the resulting dataset is 
essentially a digitization of a piece of fixed tissue. Within such a 
dataset, it is possible to map intact networks of hundreds of synap-
tically connected neurons. These networks contain large amounts 

of traditional connectivity data; i.e., which cell types connect to 
which cell types and how many inputs and outputs each neuron has. 
These datasets also make it possible to trace networks of hundreds 
of synaptically connected neurons and search for higher order con-
nectivity motifs. For instance, within a population of neurons of the 
same cell type it is possible to identify cohorts of axons that prefer-
entially target the same postsynaptic neurons. Finally, electron 
micrographic connectivity maps have the advantage that each node 
in the acquired network represents a rich structural dataset that 
includes cell morphology, the location of synapses, and intracel-
lular ultrastructure. This rich structural data mean that each fully 
reconstructed cell in a network can be reliably classified as to cell 
type and that ultrastructural details about individual synapses can 
be related to their role in the larger network.

One of the largest publicly available circuit scale EM volumes 
is an image volume of the mouse dorsal LGN (Morgan et al., 2016) 
(Fig. 1A). This dataset encompasses the full depth of a P32 mouse 
LGN (500 µm), a little less than half the width of the LGN (400 µm) 

Fig. 1. Reconstructing connections within an electron microscopy image 
volume of a P32 mouse LGN. (A) Aligned EM volume of mouse LGN. 
Optic tract is visible as a dark band at the surface. (B) Targeted manual 
segmentations of about 1% of imaged voxels from panel A. (c) Example 
tracing from EM volume in panel A in which an RGC axon (green) and a 
tectal axon (blue) innervate the proximal dendrites (red) of a TC. The myelin 
around the RGC axon is labeled white. (D) A force directed model of a 
subset of the traced neurons from panel B demonstrates that large bouton 
forming and small bouton forming RGCs sometimes segregate and some-
times mix together in their innervation of TCs. Synaptic connections (lines) 
are used to pull RGCs (trangles) and TCs (circles) into clusters of highly 
interconnected neurons. Neurons are color coded according to the average 
diameter of RGC boutons associated with the TC or RGC.
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and about a third of the rostro-caudal extent of the LGN (300 µm) 
(raw voxel size = 4 × 4 × 30 nm). Contained within this volume are 
thousands of TC cell bodies and hundreds of thousands of synapses. 
The initial publication of this dataset included a manual segmenta-
tion of ∼1% of the 100 trillion imaged voxels (Fig. 1B and 1C). 
These tracings consist primarily of a network of synaptically inter-
connected RGCs and TCs. The majority of these tracings were per-
formed manually using VAST (by Daniel Berger) and an aligned 
image volume that was down sampled to 16 × 16 × 30 nm voxel size. 
This down-sampled image volume, the VAST tracing software, and 
the published segmentations are available at https://software.rc.fas.
harvard.edu/lichtman/LGN/. In addition, the collection of Matlab 
code (NautilusAnalysis) that was used to perform most of the ren-
dering and analysis of the LGN data is available on this site. Any 
researcher needing ultrastructural, morphological or connectivity 
data for the mouse LGN is free to download and use the data. Work 
on improving this dataset is ongoing and it is hoped that a full res-
olution aligned dataset and annotation database will be available in 
the future.

The results of our initial tracings of this LGN EM volume 
were similar in many ways to the results observed by Hamos et al. 
(1987). We found that a single RGC could innervate a diverse 
population of TCs; TCs with different dendritic and synaptic 
structures. We were also able to determine that while some TCs 
were dominated by a single morphological type of RGC, other 
TCs were innervated by multiple types of RGCs. Although visual 
channels mixed and split in the mouse LGN, connectivity was 
not random. We observed specificity in RGC wiring both at  
the network level (preferred TC target populations) and at the 
microcircuit level (cohorts of RGCs targeting particular TC 
dendrites). We referred to this circuit organization as fuzzy, 
because although we could define clusters of cells by connectivity 
and ultrastructure, the boundaries between these groups were 
indistinct and individual neurons could be said to be members 
of multiple groups (Fig. 1D).

We were particularly surprised at the wide range we observed in 
the number of RGC axons that innervated TCs. Based on both 
anatomical and electrophysiological estimates of RGC convergence 
onto TCs (Cleland et al., 1971; Hamos et al., 1987; Mastronarde et al., 
1991; Chen & Regehr, 2000; Hong & Chen, 2011), we expected 
TCs to be innervated by 1–4 strong inputs and a few weaker inputs. 
We did observe some TCs in the mouse that were innervated by only 
a few very strong RGC inputs (each axon forming many large multi-
synaptic boutons) and several weak inputs. However, many other TCs 
appeared to be innervated by dozens of RGC axons. To some 
extent, this high convergence might be attributed to the young age 
(P32) of the reconstructed mouse or to the incomplete tracing of 
RGC axons that leave the imaged volume (Chen et al., 2016). 
However, similarly high convergence of mouse RGCs onto TCs 
have also been observed in using brainbow identification of RGC 
inputs (Hammer et al., 2015) and using trans synaptic tracing to the 
retina (Rompani et al., 2017). Part of the explanation for the high 
convergence in mouse relative to the rest of the mammalian LGN 
literature is likely to be simply species specific difference in visual 
processing (Chen et al., 2016). Until techniques that reveal the com-
plete complement of synaptic partners are applied to a wide range of 
species and cell types, it is unclear how much these apparent differ-
ences in connectivity reflect differences in species vs. experimental 
scale, targets, or techniques. As the speed at which circuit scale EM 
volumes can be acquired and analyzed increases, it is hoped that 
such connectivity maps will become a standard resource for most 
model neural circuits.

An lGN connectome

What would constitute a completed LGN connectome? A complete 
LGN connectome should include an inventory of all of the types 
and variations of LGN TCs and inhibitory cells as wells as all of 
the subtypes of axons converging on the LGN from the retina, cor-
tex, reticular nucleus, optic tectum, and brainstem. We would know 
how each type deploys its synapses relative to other types of neu-
rons and how each neuron deploys its synapses relative to other 
neurons of the same type (convergence, divergence, spatial mapping, 
competition, and coordination). We would have sufficient data on 
the size, topology, and cell type-specific physiology of all of these 
synapses such that reasonable estimates local synaptic interactions 
and cell wide integration can be made. All of this data would be 
integrated into a single model of the LGN which can track the flow 
of information at every level from subcellular microcircuits to 
global network activity. Ideally, we would have such a model for 
multiple species, ages, and disease states. The success of such a 
model would be in large part measured in whether it can make 
physiologically and behaviorally meaningful predictions.

To the extent that such a model can be produced, it will depend on 
combining both kinds of connectomic approaches: directly acquiring 
dense cellular network data and combining different datatypes into 
a single integrated model. Integrating different datatypes is easiest, 
of course, when different types of data can be acquired in the same 
piece of tissue. In the case of circuit scale electron microscopy, 
there are a number of examples of combining calcium imaging 
(Lee et al., 2016) or molecular characterization (Anderson et al., 
2011) of tissue with large scale EM. However, one of the benefits 
of generating such an integrated model in the LGN is that there is 
sufficient stereotypy in the relationship between structure and function 
that morphologically defined subtypes and retinotopic mapping can 
be used to anchor many different kinds of datasets together.

There are many important questions that such a model might be 
able to answer, but one of the most fundamental is, “can we build a 
functional neural circuit from the ground up and, if not, why not?” 
What are the critical developmental or physiological rules that 
would be required to animate such a structural model? At the 
moment, there is a gulf of circuit complexity between our under-
standing of how cells process information and our understanding of 
how brains produce behavior. Big data connectomics approaches are 
an attempt to bridge that gap.
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