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BIFURCATION POINTS
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Abstract

We consider symmetry-breaking bifurcation points which arise in parameter-
dependent nonlinear equations of the form /(JC, X) = 0. These types of bifurc-
ation points are connected to pitchfork bifurcation points. A direct method is used to
compute such points. Multiple shooting is used to discretise the two-point boundary-
value problems to obtain a finite-dimensional problem.

1. Introduction

Many physical problems can be formulated as a parameter-dependent nonlinear
equation of the form

/Oc,A.) = 0, (1.1)

where / is a C2-function which maps Rn x R into R". The point (x0, Xo) is
called a regular point of f(x, X) = 0 if fx(x, X) is nonsingular. It is called a
simple singular point of f{x, X) = Oif fx(x, X) is singular; / j 0 = fx(x0, Xo) and
f°J each has one-dimensional null space spanned by 0o and Vo respectively.
Whether (or not) bifurcation occurs at a singular point depends on the type
of singularity, which is described by (in)equalities involving the derivatives of
f(x,X) at (x0, Xo). Typically, turning points, and transcritical and pitchfork
bifurcation occur.
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104 B. S. Attili [2]

To compute such points, we use the extended system proposed by Griewank
and Reddien [4, 5]; that is,

where g(x, k) = uJ fx(x, k) • v and u and v are the left and right null vectors of
/JJ0 respectively. More on this system will be given in Section 3 (see also Attili
[1,2]).

The outline of this paper will be as follows. Some assumptions and definitions
are given in Section 2. In Section 3, we present the relation between symmetry-
breaking bifurcation points and pitchfork bifurcation, and details on the extended
system will also be presented. In this section we also present the main theorem
of this paper, which shows that a symmetry-breaking bifurcation point is an
isolated solution of the extended system. Numerical details are given in the final
section.

It is important to note that Werner and Spence [9] have considered com-
putation of such points using a different extended system; also some other
investigators considered systems which do not utilise the symmetry, see Moore
[6] and Werner [10]. But the system considered here is more direct, and reduces
the number of equations and unknowns considerably, in comparison with the
system considered by Werner and Spence [9].

2. Assumptions and definitions

Before defining what is meant by a symmetry-breaking bifurcation point,
we shall recall some standard theory on bifurcation. The point (*0> k0) is a
simple singular point of f(x, X) — 0 if f(x0, k0) = 0, N(f°) =span{</>0} and
*(/?) = iy € R" : fh = 0}.

DEFINITION 2.1. A simple bifurcation point (xo, k0) is called a pitchfork bifurca-
tion point of f(x, k) = Oif V0

TA° = 0, ^oT/>o0o = Oand ^( /A+Zi^oVo) #
0 where f°v0 = — /x°. If Vro"/t

o
x0o0o # 0, the bifurcation point is called tran-

scritical.

We shall assume that (Al): There exists 5 e L(R"), the bounded linear
operators mapping R" into R", with 5 # / and S2 = I and f(Sx, A.) = Sf(x, k)
for all JC e Rnandk e Rn.
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Here (Al) will give rise to the natural decomposition

R" = R"s 0 R"a, (2.1)

where
/?? = [x e R" : Sx = x] (2.2)

is the set of symmetric elements, and

Rn
a = {x e R" : Sx = -x} (2.3)

is the set of antisymmetric elements, see Sattinger [7]. The decomposition arises
because x e R" can be written as 2x = (/ + S)x + (/ - S);t,where Sx e R"
and (/ - S)x e R"a. To see this relation, note that S(I + S)x = Sx + S2x =
Sx + Ix = (/ + 5)JC which implies that (/ + S)x e Rn

s and also (/ - S)x e Rn
a

since S(/ - S)* = (5 - S2)x = (5 - 7)jc = - ( / - 5)JC.

DEFINITION 2.2. If (x0, Xo) is a singular point of f(x, X) = 0, then (x0, Xo) is
called a symmetry- breaking bifurcation point of f(x, k) ifx0 e ?̂" and0o € /?^
where span{0o} =

3. Symmetry breaking and pitchfork bifurcation points

The singular points in definition (2.2) will be shown to be pitchfork bifurcation
points of f{x, X) = 0 under certain generic conditions. Before doing that, we
state some results which can be obtained from assumption (Al).

LEMMA 3.1. Assume that (Al) holds. Then for all X e R andx, w,v 6 Rn,we
have

MSx,X) = SfdSx.k),
fASx,X)Sv = SfASx,X)v,

fkxiSx,X)Sv = SfkxiSx,X)v, P - ;

fxxiSx,X)SvSw = SfxxiSx,X)vw.

All results in (3.1) can be obtained by differentiating fiSx, X) = Sfix, X)
with respect to X or x. Using (3.1), one can show that for X e R and x e /?"

fix,X),Mx,X)eR"s. (3.2)

This is true if x e /?; then Sx = x and so fix, X) = fiSx, X) = Sfix, X),
which implies that fix,X) e R". The same can be said about /x(x, X). Note
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that R" and /?£ are invariant with regard to fx(x, k) and fkx(x, k). This follows
since if v € R" then Sv = v and so

fAx,k)v = Sfx(x,k)v. (3.3)

Also, for v, w 6 R" or v, w e fl", fxx(x, k)vw e /?". The reason is that
if v, w are in R", then Sv = v and 5io = w, which yields / „ ( * , A)vu> =
fxx(x, X)Svw = Sfxx(x, X)vw, and thus fxx(x, k)vw e /?;. If v e R", w e R"
thenfxx(x,k)vw e Rn

a.

LEMMA 3.2. For every x € /?", we have ^x = 0.

PROOF. Since R" is invariant with respect to f° as in (3.3), then R" is the range
of ./j0. The conclusion now follows from the Fredholm Alternative.

Standard theory of bifurcation shows that at a symmetry-breaking bifurc-
ation point, the solution set of (1.1) will consist of two smooth transversally
intersecting branches (see Brezzi, Rappaz and Raviart [3]); that is,

C, = {(x, k):k = ko

a n d

Ca = {(JC, k) : k = k0+oU2),

where Cs and Ca refer to the symmetric and antisymmetric branches respectively.
The Implicit Function Theorem will guarantee that Cs C R" since f£ is restricted
to R" is an isomorphism of /?". Hence Ca bifurcates from a symmetric branch of
solution Cs at a symmetry-breaking bifurcation point. Such branching is given
by 0o € /?a- To compute symmetry-breaking bifurcation points, let us consider
the extended system

-ulfx(x,k)v

where u = \jr0 and v = <pQ, the left and right null vectors of f° respectively,
g{x, k) is obtained from the following lemma.

LEMMA 3.3. The systems
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and

where v and u are n x 1 vectors, g is a scalar function, T and R are n x l
vectors, are both uniquely solvable and

8 = ~uTfxV, 3 ? )

f/ie prime denotes differentiation with respect to x or A..

Here 7"T and /? are normalisations for v and u respectively, which forces fx

to be singular, see Attili [1,2] and Griewank and Reddien [4, 5]. Also v and R
are chosen to be in Rn

a. It follows from (3.2) and (3.3) that F(x, A.) maps Rf x R
into R" x R. Hence a symmetry-breaking singular point (*o, A-o) corresponds to
a solution (JC0, A.o) of (3.4). Moreover, the next theorem shows the relevance of
(Al) for pitchfork bifurcation. See Brezzi, Rappaz and Raviart [3].

THEOREM 3.1. Assume that (Al) it holds and let (x0, A.o) be a symmetry breaking
simple singular point. Let F(x, A.), as in (3.4), be a mapping from R" x R into
R" x R then (x0, A.o) is an isolated solution of (3.4) if and only if(xo, A.o) is a
pitchfork bifurcation point.

PROOF. The Jacobian of (3.4) is

At (*<), A.o), consider the system

r /? A° l r ^ i - o
L ^ o / ^ tfUfo J ' L <* \

which when expanded gives

(i)
(») ^

Since -/A° = / ? • u0 and /X°0O = 0, then from (3.9-i), we have

(3.10)
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Substituting (3.10) in (3.9-ii) we get

& T > l f = 0. (3.11)

Moreover t/̂ J fxx(f>o<po = 0 since (x0, k0) is a pitchfork bifurcation point, and
hence (3.11) becomes

«[^0
T( /A + f?x4>ovo)] = 0.

But ^ofxX(f>o + fxxfovo # 0 since (x0, Ao) is a pitchfork bifurcation point,
this yields a = 0. Thus / = £0O which implies t e /?", but ? e /?", then
^ e Rn

s PI /?^ = {0} and hence (3.10) has only the trivial solution. The solution
{t, a)J is nontrivial if and only if there exist ana e R and t e R" such that

A° + ft = o,
and

or equivalently, the null space of (3.8) is trivial if and only if

and t satisfies

A° + ft = o.
Thus (xo, -̂o) is a pitchfork bifurcation point.

The above theorem shows that the symmetry-breaking bifurcation point is an
isolated solution of the extended system (3.4), hence it will be used to compute
such points. Moreover, the same system can be used to compute certain double
singular points (x0, kQ) of f{x, k) = 0, as we shall show here that (x0, -̂o) is
again an isolated solution to (3.4), where F(x, k) = 0 (the extended system)
maps R" x R into R" x R. Now assume that

N(f?) = span{0o0i}, <£o e K - {0} and </>, e Rn
s - {0}, (3.12)

fl(/°) = {yeRn: fry = 0, i = 0, 1}, (3.13)

and
tfx = 0 forx e R", xfrjx = 0 for* e Rn

a. (3.14)

With these assumptions, we will have the following theorem.
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THEOREM 3.2. Assume that (Al) holds and let (x0, k0) be a double singular
point with x0 € R". Assume also that (3.12), (3.13) and (3.14) hold. With
F(x,k) given by (3.4) considered as a mapping on R" x R, then (x0, XQ) is an
isolated solution of (3.4) if and only if f® g range(/J°) and t/fo/t°J</>o0i # 0.

PROOF. Consider

^!</>oJ• U _ r 0 > (3l5)

where the matrix in (3.15) above is the Jacobian of (3.4). Equation (3.15) implies

(i) f!'t+af° = 0,
(ii) ^oT/>or+a^0

T/c>o = 0. ^O)

Now since / ° £ range(/;c
0), then rfrjf° ^ 0 and so (3.16-i) implies that

f] f?t+ax//] f° = 0. Further since ifrjf? = 0, t h e n a ^ A 0 = O . b u t ^ / " # 0,
this shows that a = 0. Now (3.16-i) becomes f°t — 0, and thus t e N(f°), or
equivalently t = a</>0 + b<f>\. Substituting this in (3.16-ii) we obtain

«^oT/,>o0o + bflf^fa = 0. (3.17)

From (3.12), </>0 € /?„ and so f°x(pO(f>o 6 /?" as shown earlier in this section, also
irjf°x4>o4>o = 0 since \frjx = 0 for every x e R" (Lemma 3.2), (3.17) becomes
b\//Q fxx(po<f)i = 0, which means b = 0 since irj f°x4>o<l>i # 0, and so / = a</>0-
Here f = a</>0 implies t e Rn

a since 0O € ^ J . but t € R" since F (x , A.) maps
/?; x R into /?; x /?, which shows t e R? D Rn

a - {0} and so a = 0. Thus (3.15)
has only the trivial solution. The other side of the "if and only i f statement
follows directly.

A result similar to the above is stated without proof in Werner and Spence
[9], where they considered a different extended system than the one presented
here.

4. Numerical examples

4.1. Coupled cell reaction. Consider the nonlinear operator
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where x = (x\, x2) € ./? x R, which represent a two-cell exothermic reaction
(see Werner and Spence [9]), where

h(xi,x2, A.) = xi +e(x, -x2)-Xexp[xi/(l +Sx,)}.

Here e is some coupling coefficient and the exponential term is the Arrhe-
nius reaction rate term. Solving the extended system (3.4) with e = .01
and £ = .23 we obtained (Xi,x2,k) = (7.7773552,7.7773261,-47827289)
and (xux2,k) = (2.430591,2.4306056,-51124817), which are two simple
symmetry-breaking bifurcation points. With e = 0, the simple symmetry-
breaking bifurcation coalesces with the simple turning point. This means that
assumption (Al) will split the double turning point referred to in Theorem 3.2
into a simple turning point and a simple symmetry-breaking bifurcation point.

4.2. The Duffing equation. The system (3.4) in the previous section will be
a basis for the computation of symmetry breaking; that is, pitchfork bifurca-
tion points. Such points will be isolated solutions of (3.4). For more on the
experimental aspects, consider the Duffing equation which exhibits secondary
bifurcation, see Seydel [8]; that is,

Jc + 2;c3=A.cosf, x(0)=x(2n). (4.1)

We are seeking 2n-periodic solutions. The assumption (Al) of Section 2 is
satisfied directly for (4.1) because of the symmetry properties of the cosine for
S € (Sa, Sfi, Sy), where

(Sax)(t) = x(-t),

(Spx)(t) = -x{n-t), (4.2)

(Syx)(t) = -x(t - 7t).

Equation (4.1) has a branch of 2n-periodic functions which are symmetric
with respect to all symmetries. On this branch there are several symmetry-
breaking bifurcation points at which two symmetries are broken and one sym-
metry is preserved. See Werner and Spence [9].

We shall discretise (4.1) using the shooting method to obtain a finite-dimen-
sional problem. We start by dividing the interval [0, 2n] into four equal subin-
tervals. Let or (0) = S\, x(0) = s2, x(n) = s3 and JC(TT) = *4 be initial guesses at
0 and n. With s\ and s2 as initial guesses, solve the two initial-value problems on
[0, n/2] and backward on [37r/2, 2n] to obtain xx, x\ at n/2 and x4, x4 at 37r/2
respectively. Also with s^ and s4 as initial guesses, solve the two initial-value
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problems backward on [n/2, n] and forward on [n, 3n/2] to obtain x2, x2 at
n/2 and JC3, i 3 at 3n/2 respectively. Now

F(s, k) =

" xx

X\

X3

-x2

-x2
-Xi,

-x4 _

(4.3)

For the finite-dimensional problem, (Sax)(t) = —x(t) will be equivalent to
saying s2 = 0 and s4 = 0, and so an analogous symmetry to Sa is

5 , =

1 0 0 0
0 - 1 0 0
0 0 1 0
0 0 0 - 1

(4.4)

The second symmetry (Spx)(t) = —x(n — t) will be analogous to

0 0 - 1 0
0 0 0 1

- 1 0 0 0
0 1 0 0

Also, (SYx)(t) = —x(t — n) is analogous to

0 0 - 1 0
0 0 0 - 1

- 1 0 0 0
0 - 1 0 0

(4.5)

(4.6)

To show that assumption (Al) holds for the finite-dimensional problem, we
shall deal with F(s, k), where

F(s, k) = QF(s, k)

and

Q =

l - l l i
l l i - l

- l l l l
1 1 - 1 1

(4.7)
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Note that solving F(s, k) — 0 is equivalent to solving F(s,k) = 0 , since Q
is invertible. The function F is given by

(4.8)F(s, k) =

Now, under the 5i symmetry, we have

X\ — Xi + *3 — X4 — X\ + X2 + XT, — X4

X\ — X2 + X3 — X4 + X\ — X2 — JC3 + X4
—X\ + X2 + X-} — Xj + X\ — X2 + X3 — X4

Xl — JC2 — *3 + X4 + X\ — X2

S\s = Si

si

(4.9)

\ s4 J \ —s4

Solving the initial-value problems with S\, —s2 and s3, —s4, we obtain
x4, —x4 on [0, n/2], JC3, — x3 on [n, n/2], x2, —x2 on [n, 3n/2] and xu —xt

on [In, 3n/2]. Using these values we find F(Sys, k) is the same as F(s, k)
with the second component and the fourth component reversed in sign, which is
SiF(s, k), and so

Similarly, one can prove the same result for the other symmetries, which shows
that assumption (Al) is satisfied.

For the computations, we can find the symmetric solution by solving

jci +2x\ = kcost,

on [0, n/2]. In order to find the antisymmetric solution, we solve

jc, +2x\ = kcost,

(4.10)

5i, (4.11)

on [0, n/2]. There will be no need to solve the other initial-value problems on
the other subintervals. The solutions may be extended based on the symmetries.
We transform (4.10) and (4.11) into a first-order differential equation to obtain

X\ = X2,

x2 = — 2x\ + kcost,
(4.12)

together with the initial conditions Xi(0) = Si and ^2(0) = 0 in the symmetric
case and ^ ( 0 ) = 0 and x2(0) = st in the antisymmetric case. In the symmetric
case, we need to satisfy x, (n/2) = 0 and so
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To find g we used R = 1 and 7 T = 1. With this choice, g = BF/dsx. The
function dF/dsi can be obtained by solving the initial-value problem

u, = v2, v2 = — 6u]vi, V](0) = 0, v2(0) = 1

and 3 F / 3 A. is obtained by solving

u>i = w2, w2 = cost — 6u\w\, tUi(0) = 0, u;2(0) = 0.

Using Newton's method, (£) = 0 was solved with ^ = 2.88 and A, = 11
as initial guesses. We find s{ = 2.97410 and A. = 12.0776. The value of
g = —.111768 - 10.

The same system was solved using other initial guesses, s\ — 1.2 and X =
1.35. We find 5, = 1.33150 and A. = 1.57408. Note that this problem was
solved by Werner and Spence [9] using finite differences, and similar results
were obtained.
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