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Abstract In this paper we extend results due to Vogt on line bundles over Cousin groups to the case of
domains stable by the maximal compact subgroup. This is used to show that the algebraic dimension of
Oeljeklaus–Toma manifolds (OT-manifolds) is 0. In the last part we establish that certain Cousin groups,
in particular those arising from the construction of OT-manifolds, have finite-dimensional irregularity.
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1. Introduction

A connected complex Lie group that admits no non-constant holomorphic functions is
called a Cousin group, or a toroidal group in the older literature. These groups are named
after Cousin (see [3]). If C is an n-dimensional Cousin group, it is abelian and can be
realized as the quotient of Cn by a lattice Λ of Cn of rank n + m, with 1 � m � n.

It is a fact that the line bundle associated with a positive divisor on a compact Kähler
manifold has a non-trivial real Chern class. In [10], Vogt proved the following in the non-
compact context: let L be a topologically trivial line bundle on a Cousin group. Then L

is holomorphically trivial if and only if it admits a non-trivial holomorphic section. This
result had already been proved by Cousin [3] for the special case m = 1. His original
proof was rewritten by Huckleberry and Margulis [6], who used it to establish a theorem
on hypersurfaces in quotients of semi-simple complex Lie groups (see also [2,5]).

In the first section of the present paper we generalize Vogt’s result to the case of a
domain U in a Cousin group C = Cn/Λ whose inverse image in Cn is convex. This
assumption implies in particular that U is invariant under the action of the maximal
compact subgroup of C.
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In the next section we use the previous result to confirm the non-existence of complex
hypersurfaces in Oeljeklaus–Toma manifolds (OT-manifolds). In particular, the algebraic
dimension of these manifolds is always 0. This result was proved in a special case by Ornea
and Verbitsky [8]. OT-manifolds were introduced in [7] and we recall their construction
later.

The last section is devoted to the observation that if the coordinates of the lattice
points of a Cousin group C are all algebraic integers, then the irregularity dimC H1(C,O)
is finite.

The paper is organized as follows. In the first section we recall the notation of [9,10]
and prove the following theorem.

Theorem. Let U be an open subset of a Cousin group C ∼= Cn/Λ whose inverse
image Ũ in Cn is a convex domain. Let L be a topologically trivial holomorphic line
bundle over U . One has H0(U, L) �= 0 if and only if L is holomorphically trivial.

In the second section we first recall the construction of OT-manifolds, and then prove
the following theorem.

Theorem. Let X be an OT-manifold. Then there are no complex-analytic hypersur-
faces on X and, in particular, the algebraic dimension of X is 0.

Before stating the result of the last section, we recall the following theorem.

Theorem (Vogt [9]). Let C = Cn/Λ be a Cousin group. Then the following condi-
tions are equivalent.

(1) The space H1(C,O) is finite dimensional.

(2) Let P = (InS) be a period basis of Λ. Then there exist constants C > 0 and a � 0
such that ‖tσS + tτ‖ � C exp(−a|σ|) for all σ ∈ Zn \ {0} and all τ ∈ Zm, where
n + m is the rank of Λ.

(3) Every line bundle over C comes from a theta factor.

Applying a generalization of Liouville’s theorem, we obtain the following theorem that,
in particular, applies to Cousin groups arising in the construction of OT-manifolds.

Theorem. Let Λ ⊂ Cn be a lattice such that C = Cn/Λ is a Cousin group with a
period basis whose coefficients are all algebraic numbers; then C satisfies the equivalent
conditions of the previous theorem (see Theorem 4.1).

2. Preliminaries

Let us consider a domain U of a Cousin group C ∼= Cn/Λ whose inverse image
Ũ = π−1(U) in Cn is a convex domain, where π : Cn → Cn/Λ is the quotient map.
In particular, U is invariant under the action of RΛ/Λ and admits no non-constant holo-
morphic functions, and Ũ is invariant under the action of RΛ and is evidently Stein. We
recall the notation, definitions and results from [9] that adapt directly to our situation.
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Definition 2.1. A map α : Λ × Ũ → C∗ is called a factor of automorphy if it satisfies
the following properties:

(a) αλ : Ũ → C∗, αλ(z) := α(λ, z), is holomorphic for all λ ∈ Λ;

(b) α(0, z) = 1 for all z ∈ Ũ ;

(c) α(λ + λ′, z) = α(λ, z + λ′)α(λ′, z) for all λ, λ′ ∈ Λ and all z ∈ Ũ .

If α is a factor of automorphy, then for every λ ∈ Λ there exists a holomorphic function
aλ : Ũ → C, unique up to an additive constant 2iπkλ with kλ ∈ Z, such that α(λ, z) =
exp(aλ(z)).

Definition 2.2. A map a : Λ × Ũ → C is called a summand of automorphy if the
following three conditions are satisfied:

(a) a(λ, ·) : Ũ → C is holomorphic for all λ ∈ Λ;

(b) a(0, z) = 0 for all z ∈ Ũ ;

(c) a(λ + λ′, z) = a(λ, z + λ′) + a(λ′, z) for all λ, λ′ ∈ Λ and all z ∈ Ũ .

Definition 2.3. Two factors of automorphy α and β are called equivalent if there is
a holomorphic function h : Ũ → C∗ satisfying

β(λ, z) = h(z + λ)α(λ, z)h−1(z).

Two summands of automorphy are called equivalent if the induced factors of automorphy
are equivalent.

Since Ũ is Stein, one has the following proposition (see [9]).

Proposition 2.4. There is a bijection between equivalence classes of factors of auto-
morphy and equivalence classes of line bundles over U .

We now recall two normal forms for the lattice Λ defining a Cousin group (see [9,
Propositions 1 and 2]).

Proposition 2.5. Let C = Cn/Λ be a Cousin group. Then the real rank of Λ is
r = n + m with 1 � m � n and the following hold.

(1) The Cousin group C has a period basis, i.e. a basis of Λ of the form P = (InS); a
lattice Λ defined by such a matrix gives a Cousin group if and only if tσS �∈ Zm

for all σ ∈ Zn \ {0}.

(2) The Cousin group C has a period basis of the form

P =

(
0 T

In−m R

)
,

where T = (ImS) is the period basis of a complex torus of dimension m and R is a
real matrix; a lattice Λ defined by such a matrix gives a Cousin group if and only
if tσR �∈ Z2m for all σ ∈ Zn−m \ {0}.
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2.1. Vogt’s results generalized

Given a factor of automorphy on Ũ , one gets a line bundle L on U by Proposi-
tion 2.4. The following proposition characterizes the topologically trivial bundles obtained
that way. Its proof is the same as in the case of a Cousin group (see, for example, [1,
Lemma 2.1.9]).

Proposition 2.6. Let L
p−→ U be a holomorphic line bundle given by a factor of

automorphy α : Λ × Ũ → C∗. Then the following two conditions are equivalent:

(a) the bundle L is topologically trivial;

(b) there is a summand of automorphy a : Λ× Ũ → C such that α(λ, z) = exp(a(λ, z)).

The previous proposition now gives a first normal form in the class of a summand of
automorphy.

Proposition 2.7. Let Λ ⊂ Cn be a lattice whose period basis is given in the form
(InS). Then every summand of automorphy b : Λ × Ũ → C is equivalent to a summand
of automorphy a : Λ × Ũ → C with the following properties:

(a) a(σ, z) = 0 for all σ ∈ Zn and all z ∈ Ũ ;

(b) for all λ ∈ Λ, the holomorphic function

aλ : Ũ → C

z �→ a(λ, z)

is Zn-periodic.

Proof. The projection π : Cn → C factors through Cn/Zn:

Cn π2−→ Cn/Zn π1−→ C,

with π = π1◦π2. The image of Ũ by π2 in Cn/Zn ∼= (C∗)n is Stein by Grauert–Docquier’s
theorem. Let L be the line bundle defined by the summand of automorphy b. By the pre-
vious proposition, L is topologically trivial; so is π∗

1L. Because every topologically trivial
line bundle over a Stein manifold is holomorphically trivial, one obtains a trivialization
of π∗L by taking the pullback of a trivialization of π∗

1L. The summand of automorphy
a : Λ × Ũ → C given by this trivialization is equivalent to b in the sense of Definition 2.3
and it satisfies condition (a). Condition (b) is a consequence of both (a) and the definition
of a summand of automorphy. �

One also has a second normal form for summands of automorphy.

Proposition 2.8. Let Λ ⊂ Cn be a lattice whose basis is given under the form

P =

(
0 T

In−m R

)

such that C = Cn/Λ is a Cousin group. Then every summand of automorphy b : Λ× Ũ →
C is equivalent to a summand of automorphy a : Λ×Ũ → C with the following properties:
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(a) a(λ, z) = a(λ, zm+1, . . . , zn) for all λ ∈ Λ and all z ∈ Ũ ;

(b) a(λ, z) = 0 for all λ ∈
( 0

Zn−m

)
and all z ∈ Ũ ;

(c) for all λ ∈ Λ the holomorphic function

aλ : Ũ → C

z �→ a(λ, z)

is
( 0

Zn−m

)
-periodic.

The proof given in [9] readily adapts to our case so we will not repeat it here.
Now we state the main result of this section.

Theorem 2.9. Let U be an open subset of a Cousin group C ∼= Cn/Λ whose inverse
image Ũ in Cn is a convex domain. Let L be a topologically trivial holomorphic line
bundle over U . One has H0(U, L) �= 0 if and only if L is holomorphically trivial.

Proof. The sufficient condition is clear so we prove the necessary condition. We choose
the second normal form of the lattice of Proposition 2.5. Since L is topologically trivial,
Proposition 2.6 implies that it is given by a summand of automorphy a : Λ × Ũ → C. By
using the normal form of Proposition 2.8 we may assume that

• a(λ, z) = a(λ, zm+1, . . . , zn) for all λ ∈ Λ and

• aλ : Ũ → C, z �→ a(λ, z) is
( 0

Zn−m

)
-periodic for all λ.

Now, consider the Fourier series of aλ:

aλ(z) =
∑

σ∈Zn−m

aλ,σe2iπtσ(zm+1,...,zn).

Since a is a summand of automorphy, we have

aλ(z + λ′) + aλ′(z) = aλ′(z + λ) + aλ(z),

and hence
aλ,σ(1 − e2iπtσλ′

2) = aλ′,σ(1 − e2iπtσλ2)

for λ, λ′ ∈ Λ (where λ2 (respectively, λ′
2) is the (n − m)-tuple consisting of the n − m

last coordinates of λ (respectively, λ′)) and z ∈ Ũ .
We want to extend the map a to RΛ × Ũ such that

a(x + x′, z) = a(x, z + x′) + a(x′, z) for all x, x′ ∈ RΛ, z ∈ Cn. (2.1)

First we define a(x, z), for an element x of RΛ of the form x = rλ, by

a(x, z) :=
∑

σ∈Zn−m

aλ,σC(σ, r, λ)e2iπtσ(zm+1,...,zn),
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where

C(σ, r, λ) =

⎧⎪⎪⎨⎪⎪⎩
1 − e2iπrtσλ2

1 − e2iπtσλ2
if tσλ2 �∈ Z,

lim
u→0

1 − eiru

1 − eiu
= r if tσλ2 ∈ Z.

The Fourier series defining a(x, z) is convergent since, for any fixed real r, the factors
C(σ, r, λ) are uniformly bounded by r.

Now, for an element of RΛ of the form x =
∑n+m

j=1 rjλj we define the differentiable
function a(x, z) everywhere on RΛ × Ũ using (2.1).

Consider a section s of L. We shall prove that if s vanishes at one point, then it
is constant equal to 0. This section corresponds to a holomorphic function f : Ũ → C

satisfying
f(z + λ) = ea(λ,z)f(z) (2.2)

for all λ ∈ Λ and all z ∈ Ũ .
Let z0 ∈ Ũ and consider the function

tz0 : RΛ → C

x �→ f(z0 + x)e−a(x,z0).

Then, for all λ ∈ Λ and all x ∈ RΛ, one has

tz0(x + λ) = f(z0 + x + λ)e−a(x+λ,z0)

= f(z0 + x)ea(λ,z0+x)−a(x+λ,z0)

= f(z0 + x)e−a(x,z0)

= tz0(x).

Hence, tz0 is a Λ-periodic function and therefore bounded by a constant Cz0 . This implies
that, for all x ∈ RΛ,

|f(z0 + x)| � Cz0 |ea(x,z0)| = Cz0e
Re a(x,z0). (2.3)

Let Cm
Λ be the maximal complex subspace of RΛ. We require that the function x �→

Re(a(x, z0)) is bounded. In order to satisfy this, we will slightly modify the map a. There
exists a unique linear map gz0 : Cm

Λ → C such that Re(gz0(λ1)) = Re(a(λ1, z0)) for all
λ ∈ Λ.

We then consider the summand of automorphy ãz0 : Λ × Ũ → C defined by

ãz0(λ, z) = a(λ, z) − gz0(z + λ) + gz0(z) = a(λ, z) − gz0(λ)

that defines the same line bundle as a. Hence, up to exchanging a with ãz0 , one can now
assume that Re(a(λ1, z0)) = 0 for all λ ∈ Λ. For x ∈ Cm

Λ and λ ∈ P , one has

a(x + λ1, z0) = a(x, z0 + λ1) + a(λ1, z0)

= a(x, z0) + a(λ1, z0)
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(since by assumption on a, in its second argument it only depends on the last n − m

coordinates), so the restriction of Re a to Cm
Λ × {z0} is T̃Z2m-periodic, and therefore

bounded. Consequently, the restriction of f(z0 + ·) to Cm
Λ is a bounded holomorphic

function, so it is constant, and this holds for all z0 ∈ Ũ . This lets us see that f does
not depend on the first m coordinates; we can see f as a holomorphic function over
Ũ2 = {z2 | z ∈ Ũ}. The zeros of f are (In−mR)-invariant because of condition (2.2).
Since Cn/Λ is a Cousin group, there is no σ ∈ Zn−m \ {0} with tσR ∈ Z2m, and so the
group generated by (In−mR) is dense in Rn−m. As a consequence, if f(w) = 0 for some
w ∈ Ũ2, then f vanishes on w+Rn−m and also on the intersection of Ũ2 and the complex
linear subspace Cn−m generated by w + Rn−m, i.e. Ũ2 ∩ Cn−m = Ũ2. Finally, if s is a
non-trivial section of L, it never vanishes and L is holomorphically trivial. �

Now we give a reformulation of the previous proposition, which will be used in the
next section.

Lemma 2.10. Let U be an open set of a Cousin group C ∼= Cn/Λ whose inverse
image Ũ in Cn is a convex domain, and let D be a positive divisor of U . Let L be the line
bundle over U associated with D. Then L is not topologically trivial, i.e. its first Chern
class c1(L) ∈ H2(U, Z) is not 0.

Proof. Assume that L is topologically trivial. By Theorem 2.9, since it admits a
(non-trivial) section s1 given by D, it is holomorphically trivial. This means that it has
a holomorphic section s2 that never vanishes. The quotient s1/s2 is then a non-constant
holomorphic function on U (since s1 vanishes on D and not on the complement of D),
which is a contradiction. One can also notice that s1 vanishes on D and so is identically 0
by the proof of the previous theorem, which also leads to a contradiction. �

3. Hypersurfaces on OT-manifolds

The goal of this section is to prove that the algebraic dimension of an OT-manifold is 0.
We first briefly recall the construction of OT-manifolds.

3.1. Construction of OT-manifolds

Let K be a number field of degree n over Q; call s (respectively, 2t) the number of real
(respectively, complex) embeddings of K, so that n = s + 2t. For the construction one
needs to assume that the integers s and t are non-zero. Call σ1, . . . , σs, σs+1, . . . , σs+t,

σ̄s+1, . . . , σ̄s+t the s + 2t embeddings of K and define the following map:

σ : K → Cs+t

a �→ (σ1(a), . . . , σs+t(a)).

Then σ(OK) is a lattice of rank n in Cm (where we set m := s + t), and hence we have
a properly discontinuous action of σ(OK) on Cm. We also define l : O∗,+

K → Rm by

l(a) = (log |σ1(a)|, . . . , log |σs(a)|, 2 log |σs+1(a)|, . . . , 2 log |σm(a)|).
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By Dirichlet’s units theorem, l(O∗,+
K ) is a lattice in the vector space L := {x ∈ Rm |∑m

i=1xi = 0}. The projection pr : L → Rs given by the s first coordinates is surjective,
so there are subgroups A of rank s of O∗,+

K such that pr(l(A)) is a lattice of rank s

of Rs. Such an A is called admissible. We then look at the quotient X := X(K, A) =
(Hs × Ct)/(A � OK); it is a complex compact manifold of dimension m. This manifold
is called an Oeljeklaus–Toma manifold or OT-manifold.

We know (see [7, Lemma 2.4]) that Cm/σ(OK) admits no non-constant holomorphic
function. In other words, the complex Lie group C := Cm/σ(OK) is a Cousin group.

We recall two lemmas and a definition (see [7]) for further use.

Lemma 3.1. Let A be a subgroup of O∗,+
K that is not contained in Z. Then the

following two conditions are equivalent:

(1) the action of A on OK admits a (non-trivial) proper invariant submodule of lower
rank;

(2) there exists a proper intermediate field extension Q ⊂ K ′ ⊂ K with A ⊂ O∗,+
K′ .

Definition 3.2. We say that X(K, A) is of simple type if A does not satisfy one of
the equivalent conditions of the previous lemma.

Lemma 3.3. Let Q ⊂ K ′ ⊂ K be an intermediate field extension with A ⊂ O∗,+
K′

an admissible subgroup for K. Let s′ and 2t′, respectively, be the number of real and
complex embeddings of K ′. Then s = s′, t′ > 0 and A is admissible for K ′.

For more details, see [7].

3.2. Algebraic dimension

First we shall consider the case of an OT-manifold of simple type.

Proposition 3.4. Let X be an OT-manifold of simple type. Then it admits no irre-
ducible divisor; in particular, the algebraic dimension of X is 0.

Proof. Assume that D is an irreducible divisor of X of multiplicity 1. We consider
X = X(K, A) as the quotient of U := (Hs × Ct)/σ(OK) (which is diffeomorphic to
(R>0)s × (S1)n) by A ∼= Zs. One has the following commutative diagram:

U
A∼=Z

s

p
��

(S1)s+2t q

��

X

(S1)s+2tq′

��
(R>0)s

Z
s

p′
�� (S1)s

(3.1)
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Because X is of simple type, one has dimH2(X) =
(

s
2

)
= dimH2((S1)s) by [7, Proposi-

tion 2.3]. Thus, the first Chern class c1(L(D)) of the line bundle L(D) over X associated
with D is the pullback by q′ of an element ω ∈ H2((S1)s, Z). The fact that the map
(q′)∗ : H2((S1)s, Z) → H2(X, Z) is injective is established in the proof of Proposition 2.3
in [7]. The commutativity of diagram (3.1) implies that the pullback ω̃ over U of ω by
q′ ◦ p is the same as the pullback by p′ ◦ q of ω. Furthermore, one has (p′)∗(ω) = 0
since H2((R>0)s, Z) = 0. Hence, ω̃ = 0. This is a contradiction to Lemma 2.10 since
ω̃ = c1(L̃(D)), where L̃(D) is the bundle associated with the divisor p−1(D) of U . �

Now we can omit the hypothesis that X is of simple type.

Theorem 3.5. Let X be an OT-manifold. Then there are no complex-analytic hyper-
surfaces on X. In particular, the algebraic dimension of X is 0.

Proof. By Proposition 3.4, we can assume that X is not of simple type. Consequently,
there exists a field extension Q ⊂ K ′ ⊂ K with A ⊂ O∗,+

K′ and we call s′ (respectively,
2t′) the number of real (respectively, complex) embeddings of K ′. Since A is admissible
for K, we have s = s′ and A is admissible for K ′ (see Lemma 3.3). Without loss of
generality, we can suppose that K ′ is the smallest subfield of K such that A ⊂ O∗,+

K′ ,
i.e. X(K ′, A) is of simple type. Call σ1, . . . , σs, σs+1, . . . , σs+t, σ̄s+1, . . . , σ̄s+t the s + 2t

embeddings of K and σ′
1, . . . , σ

′
s, σ

′
s+1, . . . , σ

′
s+t′ , σ̄′

s+1, . . . , σ̄
′
s+t′ the s + 2t′ embeddings

of K ′.
As before, we call σ the following map:

σ : K → Cs+t

a �→ (σ1(a), . . . , σs+t(a)).

We look at the complex linear subspace VK′ of Cs+t spanned by σ(OK′). We denote
by C (respectively, C ′) the Cousin group Cs+t/σ(OK) (respectively, VK′/σ(OK′)). The
group C ′ is a closed complex Lie subgroup of C. We study the two open sets

U := (Hs × Ct)/σ(OK) ⊂ C and U ′ := ((Hs × Ct) ∩ VK′)/σ(OK′) ⊂ C ′.

The quotients U/A and U ′/A are OT-manifolds that we call X and X ′ respectively;
moreover, X ′ is a compact complex submanifold of X.

We consider the following commutative diagram:

0 �� C ′ � �� C
q �� �� C/C ′ �� 0

U ′ � ���

��

p′

��

U
�

��

p

��

�� q(U)
�

��

X ′ � i �� X

(3.2)
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Let D be an irreducible divisor of X of multiplicity 1 and let L(D) be the associated
holomorphic line bundle. By restriction, we get a bundle L′ := i∗L(D) over X ′.

Since X ′ is of simple type, the line bundle (p′)∗(L′) over U ′ is topologically trivial (see
the proof of Proposition 3.4). The maximal complex subgroup H ′ ∼= Ct′

of the maximal
compact torus T ′ ∼= (S1)s+2t′

of C ′ is a subgroup of the maximal complex subgroup
H ∼= Ct of the maximal compact torus T ∼= (S1)s+2t of C. We denote by B ∼= Ct−t′

a
connected complex subgroup of T such that B × H ′ ∼= H. Since B is a subgroup of T it
acts on U and this action is transitive on the leaves of the U ′-foliation of U induced by
the C ′-foliation of C. The induced action of B on H2(U, Z) is trivial since H2(U, Z) is
discrete and B is connected, i.e. we have b∗c1(L) = c1(L) for every line bundle L above U

and all b ∈ B.
The inverse image D̃ := p−1(D) is a divisor of U . We shall now prove that the divisor D̃

is saturated by the leaves of the U ′-foliation of U .
We have

c1(L(D̃)) = p∗(c1(L(D))) ∈ H2(U, Z). (3.3)

Since (3.2) commutes, we have

c1(L(D̃)|U ′) = c1(L(D̃))|U ′ = c1(p∗L′) = 0 = c1(b∗L(D̃))|U ′ .

There are three possible cases for the intersection b(D̃) ∩ U ′. Either this intersection
is U ′, or it is empty (these two cases fit our purpose), or it is a divisor of U ′. The last
case cannot occur since c1(b∗L(D̃))|U ′ would be non-zero by Lemma 2.10, which is a
contradiction to (3.3). Hence, D̃ is saturated by the leaves of the U ′-foliation of U .

Now, D̃ induces a divisor q(D̃) of q(U). One has q(U) = C/C ′ because the leaves of
the U ′-foliation of U are in bijection with those of the C ′-foliation of C. Hence, q(D̃) lifts
as a divisor in C, which is stable under the action of the group A � C ′. We still denote
by D̃ this divisor.

Since the group O∗,+
K is abelian, the action of O∗,+

K on U induces an action of O∗,+
K on X.

Let η ∈ O∗,+
K , we have η̃D = ηD̃. We use the C ′-invariance of η̃D to write ηD̃+C ′ = ηD̃,

and hence D̃ is both C ′-invariant and η−1C ′-invariant.
Let J be the smallest connected complex subgroup of C containing C ′ and ηC ′ for all

η ∈ O∗,+
K . If J is a proper subgroup of C, its maximal compact subgroup is defined by a

sublattice of OK that is stable under the action of O∗,+
K . This is impossible because there

is no sublattice of OK stable by O∗,+
K . Indeed, if it were the case, since O∗,+

K contains
a primitive element of K, this element should have a minimal polynomial with degree
strictly smaller than the one of K and this is impossible. Finally, J = C and D̃ is invariant
by C, which is a contradiction. Hence, X admits no divisor and its algebraic dimension
is 0. �

4. A special class of Cousin groups

4.1. Introduction

In [9], Vogt exhibits a special class of Cousin groups by proving the following theorem.∗

∗ The theorem given in [9, p. 208] has eight equivalent assertions, here we only recall three of them.
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Theorem 4.1. Let C = Cn/Λ be a Cousin group. Then the following conditions are
equivalent.

(1) The space H1(C,O) is finite dimensional.

(2) Let P = (InS) be a period basis of Λ. There then exist constants C > 0 and a � 0
such that ‖tσS + tτ‖ � C exp(−a|σ|) for all σ ∈ Zn \ {0} and all τ ∈ Zm, where
n + m is the rank of Λ.

(3) Every line bundle over C comes from a theta factor.

Let α be a real irrational algebraic number. In his paper, Vogt gives the following
example of a lattice in C2 given by

P =

(
0 1 i

1 α 0

)
,

which defines a Cousin group satisfying condition (2). Here we give a general theorem in
this setting which, in particular, applies to all Cousin groups appearing in the construc-
tion of OT-manifolds.

We shall use the following generalization of Liouville’s theorem, which can be found
in [4, Theorem 1.5, pp. 27].

Theorem 4.2. Let α1, . . . , αm be algebraic numbers, of respective degrees nk, with
deg Q(α1, . . . , αm) = n, and let

P (z1, . . . , zm) =
N1∑

k1=0

· · ·
Nm∑

km=0

ak1,...,kmzk1
1 · · · zkm

m ∈ Z[z1, . . . , zm].

If P (α1, . . . , αm) is non-zero, then one has the inequality

|P (α1, . . . , αm)| � L(P )1−δn
m∏

k=1

L(αk)−δNkn/nk

with δ = 1 if all the αi are real, δ = 1
2 otherwise, and where L(P ) is the sum of the

absolute values of the coefficients of P (and L(α) is the quantity L(μ), with μ being the
minimal polynomial of α).

4.2. A class of Cousin groups satisfying condition (2)

We shall show the following theorem.

Theorem 4.3. Let Λ ⊂ Cn be a lattice such that C = Cn/Λ is a Cousin group with a
period basis whose coefficients are all algebraic numbers. Then C satisfies the equivalent
conditions of Theorem 4.1.

https://doi.org/10.1017/S0013091514000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000327


284 L. Battisti and K. Oeljeklaus

Proof. Let us write a period basis of Λ as a matrix

(InS)

where In is the identity matrix of size n and S = (si,j) is a matrix with n rows and m

columns whose coefficients are algebraic numbers over Q.
In order to check that the second condition of Theorem 4.1 is satisfied, we have to

verify that there exist constants C > 0 and a � 0 such that, for all μ ∈ Zn \ {0} and all
ν ∈ Zm, one has

‖tμS + tν‖ � C exp(−a|μ|).

It is enough to prove this inequality for any non-zero coordinate of the vector tμS + tν

and then consider the infinity norm of this vector. Denote tμ = (μ1, . . . , μn) and tν =
(ν1, . . . , νm). Then the kth coordinate of the vector tμS + tν (for k ∈ {1, . . . , m}) is

μ1s1,k + · · · + μnsn,k + νk.

We now distinguish the following two cases: either we have that the inequality |νk| �
2|μ1s1,k + · · · + μnsn,k| holds, or we have that its converse holds.

Suppose first that |νk| � 2|μ1s1,k + · · · + μnsn,k|. By Theorem 4.2, we have

|μ1s1,k + · · · + μnsn,k + νk| � C(|μ1| + · · · + |μn| + |νk|)p,

where C > 0 and p < 0 are constants independent of μ and ν. Recall here that we assumed
that μ1s1,k + · · · + μnsn,k + νk is non-zero. By assumption on νk, we have

(|μ1| + · · · + |μn| + |νk|)p � (|μ1| + · · · + |μn| + 2|μ1s1,k + · · · + μnsn,k|)p

� C′(|μ1| + · · · + |μn|)p

� C′ exp(−|p|(|μ1| + · · · + |μn|))

with C′ independent of μ and ν.
Now suppose that |νk| > 2|μ1s1,k + · · ·+μnsn,k|. We write the reverse triangle inequal-

ity:

|μ1s1,k + · · · + μnsn,k + νk| � ||νk| − |μ1s1,k + · · · + μnsn,k||
= |νk| − |μ1s1,k + · · · + μnsn,k|
� |μ1s1,k + · · · + μnsn,k|.

If μ1s1,k + · · · + μnsn,k vanishes, we have |νk| � 1 and the result is obtained; otherwise,
we can again use Theorem 4.2:

|μ1s1,k + · · · + μnsn,k| � C′′(|μ1| + · · · + |μn|)q

� C′′ exp(−|q|(|μ1| + · · · + |μn|)),

where C′′ > 0 and q < 0 are constants that do not depend on μ and ν. �

https://doi.org/10.1017/S0013091514000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000327


Line bundles and algebraic dimension of OT-manifolds 285

4.3. Application

We recall that in the construction of an OT-manifold, the group C := Cm/σ(OK) is a
Cousin group. As a corollary of Theorem 4.3, we have the following.

Corollary 4.4. The Cousin group C satisfies condition (2) of Theorem 4.1.
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