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Abstract
In the reliability analysis of multicomponent stress-strength models, it is typically assumed that strengths are either
independent or dependent on a common stress factor. However, this assumption may not hold true in certain sce-
narios. Therefore, accurately estimating the reliability of the stress-strength model becomes a significant concern
when strengths exhibit interdependence with both each other and the common stress factor. To address this issue,
we propose an Archimedean copula (AC)-based hierarchical dependence approach to effectively model these inter-
dependencies. We employ four distinct semi-parametric methods to comprehensively estimate the reliability of the
multicomponent stress-strength model and determine associated dependence parameters. Furthermore, we derive
asymptotic properties of our estimator and demonstrate its effectiveness through both Monte Carlo simulations and
real-life datasets. The main original contribution of this study is the first attempt to evaluate the reliability problem
under dependent strengths and stress using a hierarchical AC approach.

1. Introduction

The stress-strength model is extensively utilized in the context of reliability analysis. This model char-
acterizes the life of a component with a random strength denoted by X and subject to a random stress
represented by Y. The component fails if the applied stress exceeds the strength (Y > X); conversely,
it continues to function if the strength surpasses the stress (X > Y). Therefore, R = P(X > Y) serves
as a metric for the reliability of a component. Stress-strength models are applied in various research
domains, particularly in engineering. Examples include modeling the degradation of concrete pressure
vessels, the decay of rocket motors, the static fatigue of ceramic components, and the fatigue failure
of aircraft structures [35]. For additional applications spanning engineering, quality control, medicine,
and psychology, please refer to [22], [29], and [36].

In the context of single-component stress-strength models, various lifetime distributions for the stress
and strength random variables have been assumed to estimate reliability. Significant contributions to this
topic include studies on the exponential distribution (ba14), Weibull distribution (kundu06), Burr XII
distribution (lio12), Lindley distribution (al13), Kumaraswamy distribution (nada14), standard two-
sided power distribution (kaya2019), and the truncated proportional hazard rate distribution (bai19).
For more comprehensive information, please refer to the extensive coverage of this subject provided
by [29].
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With the development of society and advancements in science and technology, the complexity of
products and the diversity of services have led to an increasing number of complex systems, the vast
majority of which are multicomponent systems. How to conduct reliability research on multicomponent
systems has become a topic of widespread concern. One of the key issues is the stress-strength model
for multicomponent systems. Hanagal [16] initially estimated the system reliability under the premise
that the strengths of the k components (X1, X2, . . . , Xk) are influenced by a statistically independent
common stress Xk+1. Moreover, Kotz et al. [29] provided both practical and theoretical insights into
the theory and application of stress-strength models within economic and industrial systems. In recent
years, many researchers have considered the multicomponent stress-strength model reliability under
complete samples, for example, Rao and Kantam [41] addressed multicomponent stress-strength model
reliability using the log-logistic distribution. Kızılaslan and Nadar [26] focused on Weibull distribution
for multicomponent stress-strength model reliability estimation. Nadar and Kızılaslan [33] estimated
the reliability of a multicomponent stress-intensity model with k independent and equally distributed
strength components, each consisting of a pair of dependent elements following a Marshall–Olkin binary
Weibull distribution, each exposed to a common random stress following a Weibull distribution. Rao
et al. [42] investigated multicomponent stress-strength reliability using the exponentiated Weibull distri-
bution. Hassan and Alohali [17] estimated multicomponent stress-strength reliability with a generalized
linear failure rate distribution. Akgül [1] explored the estimation of multicomponent stress-strength
reliability through classical and Bayesian approaches, assuming both stress and strength followed the
Topp–Leone distribution. Kayal et al. [24] investigated the reliability of multicomponent stress-strength
systems using the Chen distribution. Rasekhi et al. [43] employed Bayesian and classical inference
techniques to estimate reliability in multicomponent stress-strength system, assuming the stress and
strength followed a generalized logistic distribution. Bai et al. [4] discussed inferential procedures for
stress-strength reliability of multistate system using generalized survival signature under the assumption
of Gumbel copula dependence between strength variables. Kotb and Raqab [28] investigated reliabil-
ity estimation in multicomponent stress-strength system using a modified Weibull distribution. Jana
and Bera [21] studied interval reliability estimation for a multicomponent stress-strength system with
inverse Weibull-distributed stress and strength components. Bai et al. [6] discussed inferential proce-
dures for stress-strength reliability of the multistate system using the proposed improved generalized
survival signature, under the stress and strength are independent, while stress is dependent between
Gumbl and Clayton copula.

It is essential to highlight that most of the models discussed in the aforementioned literature are built
on the assumption that stress and strength are independent variables. Nevertheless, this assumption may
not always hold in real-world situations. For instance, mechanical structures may demonstrate different
fatigue lives under various stress levels, and a structure’s fatigue life essentially reflects its capacity
to resist structural failures. In addition, Domma and Giordano [11] elaborated the possibility of inter-
dependence between stress and strength from six aspects, including engineering, operations research,
quality control, economics, education, and insurance; furthermore, they aimed to fill a gap by evaluat-
ing reliability of stress-strength model taking into account the association between stress and strength
via Farlie–Gumbel–Morgenstern (FGM) copula. Consequently, the stress-strength model incorporat-
ing stress-dependent strength has emerged as a focal point of interest among researchers. Vaidyanathan
and VA [45] derived the expression of R when stress and strength follow bivariate Lindley distribution.
Papadrakakis et al. [39] investigated stress-strength reliability estimation using the Extended FGM and
Ali–Mikhail–Haq (AMH) copula with exponential distribution. The stress-strength model is investi-
gated by [40] with stress and strength margin belonging to the Pareto family and the dependency is
represented using four different types of copulas. Pak and Gupta [38] discussed on estimation of the
parameter R where more realistically stress and strength are dependent random variables distributed as
bivariate Rayleigh model. Zhu [46] evaluated multicomponent system reliability, in which, the stress
and strength are assumed to have dependent Kumaraswamy variable and unit Gompertz variable based
on Clayton copula. James et al. [20] obtained the estimates of reliability and dependence parameters
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Table 1. The relation of stress and strength in stress-strength model.
Case Reference

Strength and stress are independent Many works
Strength and stress are dependent [20]
Strengths are independent and independent of common stress [10]
Strengths are dependent and independent of common stress [4]
Strengths are dependent and dependent of common stress No work
stresses are independent and independent of common strength [9]
Stresses are dependent and independent of common strength [6]
Stresses are dependent and dependent of common strength No work

under the assumption stress and strength are linked by FGM copula with Rayleigh marginals as the
underlying distribution.

To the best of our knowledge, until now a similar task has never been attempted for evaluation of R
where strengths are dependent, which are dependent of the common stress (see Table 1). However, this
problem is common in daily life, for example, the various components of a system are often interdepen-
dent due to shared environmental factors, leading to correlated strengths among these components. In
addition to the interdependence of strengths within the system, there also exists a relationship between
the system’s strength and the applied stress it experiences (that is, stronger systems tend to withstand
higher levels of stress). Generally speaking, the dependence between the strength of the components
of the system is not the same as the dependence between the strength of the system and the stress to
which it is subjected. In addressing this theoretical challenge, the main interest of this attempt is to
formulate dependence stress-strength reliability model with hierarchical Archimedean copula (HAC)
approach. HACs provide a natural way to model the dependence structure in multivariate distributions
by incorporating multiple levels of dependence through a hierarchical framework, which introduced by
[23] as an extension of Archimedean copulas (ACs). Our works will improve the corresponding results
of multicomponent stress-strength model from the independent assumption on component’s strength to
the statistically dependent setting under complete sample.

The predominant focus of research pertaining to the estimation of reliability measures is predomi-
nantly situated within a parametric framework, encompassing both classical and Bayesian methodolo-
gies. It is widely acknowledged that statistical models rooted in traditional parametric distributions may
lack the necessary adaptability to offer a dependable portrayal of survival data. As a result, nonpara-
metric estimators have gained substantial traction within the field. Semi-parametric estimators, seen as
an intermediary approach, endeavor to strike a harmonious balance between conventional parametric
techniques and their nonparametric counterparts. In a concerted effort to address this gap, the pur-
pose of this paper is to study the estimation of of multicomponent stress-strength reliability using four
semi-parametric approach based on a complete sample when there is hierarchical dependence among
stresses, as well as between stresses and strengths. The subsequent sections of this paper are structured as
follows. Section 2 provides an exposition on HAC theory, model delineation, and fundamental assump-
tions. In Section 3, we introduce the semi-parametric estimation approach for the dependence parameter
and the estimation method for R within the multicomponent stress-strength model and establish the
properties of the estimator. Illustrative simulations and presentation of real data analysis in Section 4.
Concluding remarks are outlined in Section 5.

2. Preliminaries

Before proceeding to the main results, let us first recall concepts of copula and HAC, which will be used
in the sequel.
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2.1. Archimedean copula

The copula function has demonstrated its versatility in characterizing the relationship between variables,
irrespective of their individual marginal behaviors. For readers new to the concept of copula and its
applications, the foundational sources are the monographs by [23] and [37]. Additionally, Durante and
Sempi [12] furnished a comprehensive compilation of references pertaining to copulas. Next, we provide
the definition of a copula.

Definition 2.1. A copula is a function C : In → I, where I = [0, 1], with the following properties

(i) C(v1, v2, . . . , vn) is increasing in vi, i = 1, 2, . . . , n,
(ii) C(1, . . . , 1, vi, 1, . . . 1) = vi, for all i = 1, 2, . . . , n,
(iii) C(0, . . . , 0) = 0 and C(1, . . . , 1) = 1, and
(iv) for any x1, x2, . . . , xn, y1, y2, . . . , yn, if xj ≤ yj, j = 1, 2, . . . , n, then

2∑
i1=1

2∑
i2=1

· · ·
2∑

in=1
(−1)i1+i2+···+inC(v1i1 , v2i2 , . . . , vnin) ≥ 0,

where vj1 = xj, vj2 = yj, j = 1, 2, . . . , n.

Another reason the copula modeling approach offers significant flexibility is due to the availability
of various copula functions. Among these, the AC family is a frequently used group of copula functions,
and its n-dimensional AC function is defined as follows:

Ci (u1, u2, . . . , un) = i

(
i−1 (u1) + i−1 (u2) + · · · + i−1 (un)

)
, i ∈ Φ, (1)

where Φ represents a class of function families: i : I → [0,∞], is a completely monotonic function,
so that it satisfies

i(0) = 1, i(∞) = 0, (−1)k dk

dtk
i(t) ≥ 0, k ∈ N , 0 < t < 1,

the function i is recognized as the copula generator, and its inverse is denoted as i−1, commonly defined
as i−1(u) = inf{t : i(t) = u}.

General degree of dependence is an important feature for the copula. This can be explained by the
link between Kendall’s tau(g) and the copula, which is defined as follows.

Definition 2.2. Let variable (X, Y) and (X′, Y ′) be independently identically distributed (i.i.d.), the
Kendall’s tau is defined as

g = P [(X − X′) (Y − Y ′) ≥ 0] − P [(X − X′) (Y − Y ′) ≤ 0] .

If X and Y are AC dependent, according to Definition 2.2 and [37], the Kendall’s tau of (X, Y) can
be written as

g = 1 + 4
∫ 1

0

i(t)
i′ (t) dt, (2)

where i is generator of AC and i′ is the derivative of i.
It should be noted that when given the n-dimensional AC function C(·), for any r, s(r < s) ∈

{1, 2, . . . , n}, we have
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C (r,s) (ur , us) = C(1, . . . , 1︸   ︷︷   ︸
r−1

, ur , 1, . . . , 1︸   ︷︷   ︸
s−r−1

, us, 1, . . . , 1︸   ︷︷   ︸
n−s

)

= i(i−1 (ur) + i−1 (us) + (n − 2)i−1(1))
= i(i−1 (ur) + i−1 (us)). (3)

This implies that the resulting two-dimensional (2D) marginal distribution function C (r,s) (ur , us) is
still an AC function and has the same generator function i.

Next, for all pairs (Xr , Xs) of n-AC with generator i, the Kendall distribution of (Xr , Xs), where
r, s ∈ {1, 2, · · · , n} and r ≠ s will be defined as

Definition 2.3. For all r, s ∈ {1, 2, . . . , n} and r≠ s, let X ↦→ V r,s = H (X) = C (Ur , Us), where
(Ur , Us) ∼ C. Then the Kendall distribution of C(Ur , US) is

K {r,s} (v) = P(V {r,s} < v), v ∈ I . (4)

For a bivariate AC with generator i, Kendall’s tau (g) can be calculated using (2).
Genest and Rivest [15] demonstrated that the function i(t) can be derived from the Kendall distri-

bution function K (t) = Pr{C(U, V) ≤ t}. Intriguingly, a relationship exists between the function i(t)
and K(t), which can be expressed as follows

K (t) = t − i(t)
i′ (t) ,

and the function i(t) can be determined as

i(t) = i (t0) exp
[∫ t

t0

1
z − K (z) dz

]
,

where 0 < t0 < 1 is a constant. The function K(t) is a crucial factor in identifying the function i(t) and
therefore determines the dependence structure of the AC family.

2.2. Hierarchical Archimedean copulas

As is well known, simple multivariate ACs exhibit exchangeable, meaning that (U1, . . . , Uk) =st(
Uj1 , . . . , Ujk

)
, where (j1, j2, . . . , jk) is any of the n! permutations (1, 2, . . . , k), and =st represents the

distributional equivalence of the two random variables before and after. This assumption is often chal-
lenging to uphold in practical scenarios. A considerably more adaptable approach is furnished by HACs.
A copula C(·) is classified as HAC if it adheres to the AC structure, where its arguments may be substi-
tuted with other HACs. When C(·) is recursively defined by (1) for k = 2, and further, with the arguments
possibly permuted,

C (u1, u2, . . . , uk; i0, i1, . . . , ik−2) = ik−2

(
i−1

k−2

(
C (u1, . . . , uk−1, 1; i0, i1, . . . , ik−3) + i−1

k−2 (uk)
))

,
(5)

then C(·) is called a HAC.

Remark 2.4. For k ≥ 3 in (5), C(·) is called fully HACs with k − 1 hierarchies. Otherwise, C(·) is
called partially HACs. Fully and partially HACs are summarized as HACs.
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(a) Cf (b) Cp1 (c) Cp2

Figure 1. The structure tree-based complete and partial HACs.

In the special case of fully nested copulas, the copula function is given by

C(u1, u2, . . . , uk; i0, i1, . . . , ik−2) = ik−2 (i−1
k−2 ◦ (ik−3 [· · · (i−1

1 ◦ i0 [i−1
0 (u1) + i−1

0 (u2)]
+ i−1

1 (u3)) + · · · + i−1
k−3(uk−1)]) + i−1

k−2(uk)). (6)

Illustrated the structure of HACs, we first illustrate it in an example. Consider
Cf = Ci1 (Ci2 (Ci3 (u1, u2), u3), u4) and Cp1 = Ci1 (Ci2 (u1, u2), Ci3 (u3, u4)) and Cp2 =

Ci1 (Ci2 (u1, u2, u3), u4) for three generators i1, i2, i3, its tree structure is depicted in Figure 1,
where Cf is called fully ACs and Cp1 and Cp2 are called partially ACs.

The greatest strength of HAC lies in its capability to capture asymmetric dependence. Unlike con-
ventional ACs, HACs delineate the entire dependence structure in a recursive manner. Note that the
generators ii can belong to the same family with varying parameters, in which case HACs are referred to
as homogeneous HACs. Alternatively, for greater flexibility, the generators can be derived from different
families, in which case HAC is known as heterogeneous HACs.

2.3. Model description

Suppose that a system contains n parallel components which suffers from a common external stress.
The component’s strengths X1, X2, . . . , Xn are dependent non-identically distributed random variables
with cdf Fi (·), respectively. The stress Y is a random variables with cdf G(·), which is dependent with
each Xi. Then the reliability of stress-strength model with parallel structure is given by

R = P(max(X1, X2, . . . , Xn) > Y) = P(Xn:n > Y).

Next, we will use the hierarchical copula to describe the dependence structure among variables.
Without loss of generality, suppose that the dependence structure of Y and Xn:n is represented by
selected 2D copula C(u, v, \), and the dependence structure of X1, X2, . . . , Xn is represented by selected
n-dimensional copula C1(u1, u2, . . . , un, \1). Therefore, R can then be written as

R = P(Xn:n > Y) =
∫ ∞

0

mC(FXn:n (x), G(x))
mFXn:n (x)

dFXn:n (x), (7)

where FXn:n (x) represents the CDF of Xn:n, as given by

FXn:n (x) = C1(FX1 (x), FX (x2), . . . , FXn (x), \1). (8)
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Figure 2. The structure tree-based 2-HAC.

Let H (x, y) be the joint cdf of (Xn:n, Y), then

H (x, y) = P(Xn:n ≤ x, Y ≤ y)
= C(C1(FX1 (x), FX2 (x), . . . , FXn (x), \1), G(y), \). (9)

Note that H (x, y) is actually a hierarchical copula that satisfies a specific structure, the structure
tree-based hierarchical of copulas in Figure 2. The hierarchical copula is a powerful tool for modeling
the dependence structure of multidimensional data. It involves a series of nested conditional copulas,
each linking a subset of variables in the data. This allows for a more flexible and realistic modeling
of complex dependence structures, since it can capture both global and local dependencies among the
variables.

Suppose that M items are put into a life testing experiment and the observed data are Xi1, Xi2, . . . , Xin
and Yi, i = 1, 2, . . . , M . The observed values of the strength and stress random variables are designed
as follows:

©«
X11 X12 · · · X1n
...

...
...

...

XM1 XM2 · · · XMn

ª®®®¬ and
©«

Y1
...

YM

ª®®®¬ .
3. Semi-parametric estimate

According to (7), if we obtain F̂Xn:n (x), Ĝ(x), \̂1, and \̂, the estimate of R is given by

R̂ =

∫ ∞

0

mC(F̂Xn:n (x), Ĝ(x); \̂)
mF̂Xn:n (x)

dF̂Xn:n (x). (10)

It is important to note that HAC arises in the aforementioned solution. However, HAC is not directly
observable, necessitating the creation of a semi-parametric HAC copula estimator in two stages: ini-
tially estimating the marginals and subsequently constructing the copula estimator using these estimated
marginals. Due to the intricacies involved, in the subsequent phases, we adopt a stepwise estimation
approach to estimate the pertinent parameters. The following Step 1–Step 2 can obtain Ĝ(x), \̂1 and
F̂Xn:n (x).

Step 1. We derive nonparametric estimates of the marginal distributions of stress and strength sep-
arately using the empirical distribution function (EDF). Based on observed data Xi1, Xi2, . . . , Xin and
Yi, i = 1, 2, . . . , M, using the marginal empirical method, the estimate of FXj (xij) and G(yi), i =

1, 2, . . . , M, j = 1, 2, . . . , n are given by

ûij =
M × EFXj

(
xij

)
(M + 1) =

Ru
ij

M + 1
, (11)
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and

v̂i =
M × EFY (yi)

(M + 1) =
Rv

i
M + 1

, (12)

respectively, where EFX and EFY are the marginal empirical cdf of X and Y, respectively, Ru
ij denotes

the rank of Xij among X1j, X2j, . . . , XMj, and Rv
i denotes the rank of Yi among Y1, Y2, . . . , YM .

Step 2. Estimation of the dependence parameter \1
Generally speaking, the estimation of Copula dependence parameters is based on likelihood methods.

However, for an n-dimensional Copula C1(·, \1), the likelihood function is very complex. Therefore, in
this part, we consider methods based on Kendall’s g and Bernstein polynomials to separately estimate
the dependence parameter \1.

Step 2.1. Based on Kendall’s tau of C1(·, \1):
We employ the inversion of Kendall’s tau to estimate the dependence parameter \1. It was introduced

by [25] as a coefficient of agreement among n ≥ 2 rankings. The Kendall’s tau of (X1, X2, . . . , Xn)
may be defined as the average value of Kendall’s tau taken over all possible pairs (Xr , Xs) with r, s =

1, 2, . . . , n of (X1, X2, . . . , Xn)

gn =
1

n(n − 1)
∑
r≠s

g2(Xr , Xs)

=
1

n(n − 1)
∑
r≠s

(
4
∫
[0,1]2

C1(ur , us; \1)dC1(ur , us; \1) − 1
)
. (13)

Further, the consistent estimator of gn can be expressed as

ĝn,M =
1

n(n − 1)
∑
r≠s

ĝ2,M (Xr , Xs)

=
1

n(n − 1)
∑
r≠s

(
4

M (M − 1)
∑
i≠j
I(Xir ≤ Xjr , Xis ≤ Xjs) − 1

)
, (14)

where i, j = 1, 2, . . . , M, r, s = 1, 2, . . . , n and I(·) is the indicative function.
Therefore, \̂1 can be obtained from the following nonlinear equation,

\g,M = b
(−1)
n (ĝn,M), (15)

where bn : \1 ↦→ gn.

Based on [14], it is known that when the mapping bn is both invertible and differentiable, the consis-
tency and asymptotic normality of the estimator \n can be established by observing that ĝn,M converges
to a U-statistic that is unbiased and Gaussian as n → ∞.

Step 2.2. Based on Bernstein estimate of Kendall distribution function of C1(·, \1),
For over all possible pairs (Xr , Xs) with r, s = {1, 2, . . . , n} of (X1, X2, . . . , Xn), the Kendall

distribution of (Xr , Xs) is given by

K {r,s} (v) = P(C(Ur , Us) < v), v ∈ I,

where Ur and Us are random variables defined on the interval [0,1] following a uniform distribution,
and the joint distribution of the random vector (Ur , Us) is also denoted by C1(ur , us).
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Furthermore, we can obtain the consistent estimator of K {r,s} (v)

K̂r,s
M (v) = 1

M

M∑
i=1

{
V r,s

i ≤ v
}

, (16)

where V r,s
i = 1

M−1
∑M

j=1 I(Xir < Xjr , Xis < Xjs), i = 1, 2, . . . , M, and (Xir , Xis) |r,s={1,2,...,n} is over all
possible pairs of (Xi1, Xi2, . . . , Xin).

Although EDF is a reliable estimator of the distribution function, it may not be suitable for estimat-
ing a continuous distribution function due to its jump discontinuities. To address this issue, a smooth
estimator of the distribution function was introduced by [3], employing Bernstein polynomials. This
novel estimator offers a continuous approximation of the conventional EDF.

Now, based on the pseudo-observations data, we use Bernstein method to estimate the univariate dis-
tribution function K {r,s} (v). The Bernstein estimator of order m> 0 for the Kendall distribution function
K {r,s} (v) is expressed as the following equation:

K̂ {r,s}
m,M (v) =

m∑
k=0

K̂ {r,s}
M (k/m)Pk,m (v), (17)

where K̂ {r,s}
n is the EDF of K {r,s} (t) (as defined in (16)) and Pk,m (t) denotes the binomial probability

with parameters m and k.
It’s important to note that the choice of the order m for the Bernstein polynomial estimator is crucial.

According to the recommendation in [3], the order is typically chosen as m = M
log(M ) .

Using the Bernstein estimator of K {r,s} (v), we can obtain an estimator for g2(Xr , Xs) = 3 −
4
∫ 1
0 K {r,s} (t)dt as follows:

ĝ
B{r,s}
2,m,M = 3 − 4

∫ 1

0
K̂ {r,s}

m,M (t)dt = 3 − 4
∫ 1

0

(
m∑

k=0
K̂ {r,s}

M (k/m)Pk,m (t)
)

dt. (18)

Furthermore, we obtain the estimate of gn as

ĝB
n,m,M =

1
n(n − 1)

∑
r≠s

ĝ
B{r,s}
2,m,M

=
1

n(n − 1)
∑
r≠s

[
3 − 4

∫ 1

0

(
m∑

k=0
K̂ {r,s}

M

(
k
m

)
Pk,m (t)

)
dt

]
. (19)

Therefore, we can obtain \̂1 from the following nonlinear equation:

\1 = b
(−1)
n (ĝB

n,m,M), (20)

where bn : \1 ↦→ gn.

Next, we prove that ĝB
n,m,M is consistent and asymptotically unbiased. Before presenting the main

results, we first introduce some symbols and useful lemmas.
For a bounded function F defined on [0, 1], we denote ‖F‖ = supx∈[0,1] |F (x) |. Let Xi =

(Xi1, Xi2, . . . , Xin) , i = 1, 2, . . . , M be a sample of capacity M for an n-dimensional random intensity
vector X = (X1, X2, . . . , Xn) defined on [0, 1].
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Lemma 3.1. Let ĝB{r,s}
2,m = 3 − 4

∫ 1
0 K̂ {r,s}

m (t)dt, where K̂ {r,s}
m (v) = ∑m

k=0 K {r,s} (k/m)Pk,m (v). Then, as
m → ∞,

ĝ
B{r,s}
2,m → g

{r,s}
2 .

Proof. Note that

‖ĝB{r,s}
2,m − g

{r,s}
2 ‖ =

3 − 4
∫ 1

0
K̂ {r,s}

m (t)dt − 3 + 4
∫ 1

0
K {r,s} (t)dt


≤ 4

∫ 1

0
‖K {r,s} (t) − K̂ {r,s}

m (t)‖dt. (21)

Since K {r,s} (x) is a continuous bounded function on [0, 1], according to Theorem 1 ([13], Chapter
VII.2), for all t ∈ [0, 1], as m → ∞,

‖K̂ {r,s}
m (t)dt − K {r,s} (t)‖ → 0

almost everywhere. Thus, the lemma is proved. �

Now, we will show that ĝB
n,m,M is consistent.

Theorem 3.2. Let X1, X2, . . . , XM be a sequence of M ≥ 2 mutually independent observations from a
continuous n-variate distribution with underlying copula C1(·, \1), then,

‖ĝB
n,m,M − gB

n ‖ → 0. a.s. m, M → ∞.

Proof. We first note that

‖ĝB
n,m,M − gB

n ‖ =
 1
n(n − 1)

∑
r≠s

ĝ
B{r,s}
2,m,M − 1

n(n − 1)
∑
r≠s

g
B{r,s}
2


≤ 1

n(n − 1)
∑
r≠s

‖ĝB{r,s}
2,m,M − g

B{r,s}
2 ‖.

By introducing ĝ
B{r,s}
2,m , it follows from the triangle inequality that

‖ĝB{r,s}
2,m,M − ĝ

B{r,s}
2 ‖ ≤ ‖ĝB{r,s}

2,m,M − ĝ
B{r,s}
2,m ‖ + ‖ĝB{r,s}

2,m − g
B{r,s}
2 ‖. (22)

To show that the estimator is consistent, it needs to show that the sum of the two terms on the RHS
of the inequality goes to zero as m and M approach infinity. Recall (18) and (19), we have

‖ĝB{r,s}
2,m,M − ĝ

B{r,s}
2,m ‖ ≤ 4

∫ 1

0
‖K̂ {r,s}

m (t) − K̂ {r,s}
m,M (t)‖dt

≤ 4
∫ 1

0

 m∑
k=0

(
K {r,s} (k/m) − K̂ {r,s}

M (k/m)
) Pk,m (t)dt

≤ 4

 m∑
k=0

(
K {r,s} (k/m) − K̂ {r,s}

M (k/m)
)
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≤ 4 max
0≤k≤m

���K {r,s} (k/m) − K̂ {r,s}
M (k/m)

���
≤ 4‖K {r,s} − K̂ {r,s}

M ‖. (23)

Since by Glivenko–Cantelli theorem, ‖K {r,s} − K̂ {r,s}
M ‖ → 0 almost surely as M → ∞, the result

follows from (22), (23), and Lemma 3.1.
Combine Theorem 3.2, (20), and Delta method, we have

sup
\1∈Θ1

��\̂1 − \1
�� → 0. (24)

The following theorem shows that ĝB
n,m,M is asymptotically unbiased. �

Theorem 3.3. Let X1, X2, . . . , XM be a sequence of M ≥ 2 mutually independent observations from a
continuous n-variate distribution with underlying copula C1(·, \1), then, for m → ∞

E(ĝB
n,m,M) → gB

n .

Proof. According to (19), we have

E(ĝB
n,m,M) = E

(
1

n(n − 1)
∑
r≠s

ĝ
B{r,s}
2,m,M

)
=

1
n(n − 1)

∑
r≠s

[
3 − 4

∫ 1

0

(
m∑

k=0
E(K̂ {r,s}

M (k/m))Pk,m (t)
)

dt

]
=

1
n(n − 1)

∑
r≠s

[
3 − 4

∫ 1

0

(
m∑

k=0
K {r,s} (k/m))Pk,m (t)

)
dt

]
=

1
n(n − 1)

∑
r≠s

ĝ
B{r,s}
2,m ,

the result follows from Lemma 3.1, this completes the proof. �

Hence, based on \̂1 and ûij, i = 1, 2, . . . , M, j = 1, 2, . . . , n, the estimate of FXn:n (x1, x2, . . . , xn) can
be given by

F̂X i
n:n

= C1(ûi1, ûi2, . . . , ûin, \̂1) := ûX i
n:n

, i = 1, 2, . . . , M, (25)

where X i
n:n = max(Xi1, Xi2, . . . , Xin).

Step 3. Estimation of the dependence parameter \:
Below, based on F̂Xn:n (x), Ĝ(x), \̂1, and copula C(·), we utilize the method of moments to obtain an

estimate \̂. Let X∗
i = (X i

n:n, Yi) for i = 1, 2, . . . , M be a sample of 2D strength-stress, and X∗ = (Xn:n, Y).
According to Step 2.1, we can obtain an estimate of \̂ as follows:

\ = b
(−1)
2 (ĝ2,M), (26)

where b2 : \ → g2, and ĝ2,M satisfies:

ĝ2,M =
4

M (M − 1)

(∑
i≠j
I(X i

n:n ≤ X j
n:n, Yi ≤ Yj) − 1

)
, (27)

where I(·) denotes the indicator function.
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Thus, we have obtained estimates for FXj (xij) and G(yi) for i = 1, 2, . . . , M, j = 1, 2, . . . , n, as well
as estimates for \1 and \. Thus, for Eq. (7), the estimated value of R, denoted as R̂, can be expressed as:

R̂ =

∫ ∞

0

mC(F̂Xn:n (x), Ĝ(x), \̂)
mF̂Xn:n (x)

dF̂Xn:n (x). (28)

Next, we are going to prove that R̂ is a consistent estimator of R. Before the proof, let’s start with the
following useful conditions.

C1: Suppose that strength random vector (X1, X2, . . . , Xn) is a nonnegative continuous random vari-
able vector on the set D = [0,∞]n. The joint distribution function of max (X1, X2, . . . , Xn), denoted by
FXn:n (x), is continuous.

C2: Suppose that the stress random variable Y is a nonnegative continuous random vector on the set
[0,∞]. The distribution function of Y, denoted by G(y), is continuous.

C3: Suppose that the dependent parametric \1(\) is defined in the set Θ.
C4: Suppose that mC (u,v)

mv exist everywhere and continuous on (0, 1)2.
We are now ready for the following useful theorem.

Theorem 3.4. If conditions C1–C4 hold. Then R̂ is a consistent estimator of R.

Proof. According to (28), we have

‖R̂ − R‖ =
∫ ∞

0

mC(F̂Xn:n (x), Ĝ(x); \̂)
mF̂Xn:n (x)

dF̂Xn:n (x) −
∫ ∞

0

mC(FXn:n (x), G(x); \)
mFXn:n (x)

dFXn:n (x)


≤
∫ ∞

0

[
mC(F̂Xn:n (x), Ĝ(x); \)

mF̂Xn:n (x)
−
mC(FXn:n (x), G(x); \)

mFXn:n (x)

]
dFXn:n (x)


+

∫ ∞

0

mC(F̂Xn:n (x), Ĝ(x), \̂)
mF̂Xn:n (x)

d[(F̂Xn:n (x) − FXn:n (x))]
 . (29)

From (8), we haveF̂Xn:n − FXn:n

 = C(F̂1, F̂2, . . . , F̂n; \̂1) − C(F1, F2, . . . , Fn; \1)
 .

Hence��F̂Xn:n (x; \̂1) − FXn:n (x; \1)
�� = ��C(F̂1(x), F̂2(x), . . . , F̂n(x); \̂1) − C(F1(x), F2(x), . . . , Fn(x); \1)

�� .
Note that C1(u1, u2, . . . , un) is a continuous function defined on [0, 1]n. According to the prop-

erties of copula functions, the function Cu(u, v, \) =
mC (u,v,\ )

mu is continuous on [0, 1]2. Thus, by
the continuous mapping theorem and the convergence properties supxi∈D

��F̂Xi (x) − FXi (x)
�� → 0,

supx∈D

���Ĝ(x) − G(x)
��� → 0, and (24), we can conclude that:

sup
x∈D

��F̂Xn:n (x; \̂1) − FXn:n (x; \1)
�� → 0,

and

sup
x∈D

���Cu(F̂Xn:n (x), Ĝ(x), \̂) − Cu(FXn:n (x), G(x), \)
��� = 0.

This theorem is thus proved. �
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Table 2. The copula generators and Kendall’s g of Clayton, Gumbel, Frank, and Joe copula.
Family k(t) Kendall’s g

C (1 + t)−1/\ 0 < gC = \
\+2 ≤ 1

G exp
(
−t1/\

)
0 ≤ gG = \−1

\
≤ 1

F − log(1 − (1 − e−\ ) exp(−t))/\ −1 ≤ gF = 1 − 4
\
(1 − 1

\

∫ \

0
t

et−1 dt) ≤ 1
J 1 − (1 − exp(−t))1/\ 0 ≤ gJ = 1 − 4

∑∞
k=1

1
k (\k+2) { \ (k−1)+2} ≤ 1

4. Numerical results

In this section, we investigate the finite-sample behavior of semi-parametric estimation for multicom-
ponent stress-strength model under HAC. In the simulation studies, we consider four AC families with
a wide range of parameter values are considered.

Case 1: the Clayton copula (C copula) family defined as

CC (u1, u2, . . . , un) =
(

n∑
i=1

u−\
i − n + 1

)−1/\

,

where \ ∈ (0,∞).
Case 2: the Gumbel copula (G copula) family defined as

CG (u1, u2, . . . , un) = exp ©«−
(

n∑
i=1

(− ln(ui)) \
)1/\ª®¬ ,

where \ ∈ [1,∞).
Case 3: the Frank copula (F copula) defined as

CF (u1, . . . , un) = −1
\

log
(
1 +

∏n
i=1 (exp (−\ui) − 1)
(exp(−\) − 1)n−1

)
,

where \ ∈ [−∞,∞).
Case 4: the Joe copula (J copula) defined as

CJ (u1, . . . , un) = 1 −
(
1 −

n∏
i=1

[
1 − (1 − ui) \

] )1/\

,

where \ ∈ [1,∞).
The copula generators and Kendall’s g corresponding to the well-known cases of Clayton copula,

Gumbel copula, Frank copula, and Joe copula are provided in Table 2.
According to the conclusion in [32], as long as C1 and C belong to the same family and \1 < \, the

constructed hierarchical copula remains a copula. Therefore, when \1 < \, the C-C HAC, G-G HAC,
F-F HAC, and J-J HAC are all appropriate copulas, where the C-C HAC, G-G HAC, F-F HAC, and J-J
HAC satisfy the following condition:

H (u1, u2, . . . , un, v) = C(C1(u1, u2, . . . , un; \1), v; \).
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Algorithm4.1Algorithm for Generating Sample Data for Multi-Component Stress-Strength
Model with HAC Dependence
Input: λ, λi|i=1,2,...,8, τ1, τ, n, and M .
Output: D = {(X1j , X2j , . . . , Xnj , Yj), j = 1, 2, . . . , M}.
1: Generate pseudo-random numbers (U1, U2, . . . , Un, V ) according to C-C HAC, G-G HAC, F-F HAC,

and J-J HAC using the onacopula function from the R package nacopula developed by Hofert
and Martin (2011), and the functions copClayton@iTau, copGumbel@iTau, copFrank@iTau, and
copJoe@iTau.

2: Repeat step 1 for M times to obtain M samples {U1j , U2j , . . . , Unj , Vj , j = 1, 2, . . . , M}.
3: Substitute {U1j , U2j , . . . , Unj , Vj , j = 1, 2, . . . , M} into Xij = F−1

i (Uij) and Yj = G−1(Vj) to generate
an n + 1 dimensional stress-strength dataset {X1j , X2j , . . . , Xnj , Yj , j = 1, 2, . . . , M}, where F−1

i (·)
is the quantile function of the exponential distribution with parameter λi, and G−1(·) is the quantile
function of the exponential distribution with parameter λ.

4: Obtain pseudo-observation data D = {(X1j , X2j , . . . , Xnj , Yj), j = 1, 2, . . . , M}.

4.1. Simulation studies

Now, we will use Monte Carlo (Markov chain) simulations to validate the described estimation methods.
Consider M identical multicomponent products (from the same manufacturer and manufacturing

process). Assume the products are composed of n different components in parallel and are subjected to
a single stress. The reliability of such a product is given by:

R = P(max(X1, X2, . . . , Xn) > Y),

where Xi |i=1,2,...,n represents the strength of the ith component and Y represents the stress on the product.
Without loss of generality, assume Xi follows an exponential distribution with parameter _i, and Y fol-
lows an exponential distribution with parameter _. To analyze the reliability of these M multicomponent
products, four types of test products with n = 2, 3, 4, 8 are selected, denoted as Model 1, Model 2, Model
3, and Model 4. Set the true model parameters as(_1,_2,_) = (1, 2, 3), (_1,_2,_3,_) = (1, 2, 3, 4),
(_1,_2,_3,_4,_) = (1, 2, 3, 4, 5) (_1,_2,_3,_4,_5,_6,_7,_8,_) = (1, 2, 3, 4, 5, 6, 7, 8, 9), and the
dependency relationships between components and between strength and stress are characterized by
C-C HAC, G-G HAC, F-F HAC, and J-J HAC. Additionally, based on the reviewers’ suggestions, we
have also considered the independent scenario. Three sample sizes M = {50, 100, 200} are chosen for
the experimental samples.

Although the focus of this subsection is on the dependency parameters \ and \1 in HAC, the
meanings and ranges of the dependency parameters vary across different copula functions. Therefore,
they cannot be directly compared, whereas Kendall’s rank correlation coefficient can be directly com-
pared across different models. Additionally, functions such as copClayton@iTau, copGumbel@iTau,
copFrank@iTau, and copJoe@iTau in the R software can conveniently convert Kendall’s g to depen-
dency parameters. Hence, for consistent comparison of dependency parameters, we will convert all
dependency parameters to Kendall’s g. In this section, we set (g1, g) = (0.2, 0.5), which evidently
satisfies \1 < \ in C-C HAC, G-G HAC, F-F HAC, and J-J HAC.

Based on the above settings, we first present an algorithm (Algorithm 4.1) for generating simulated
data for a multicomponent stress-strength model with a sample size of M.

Based on the pseudo-observation data � obtained from Algorithm 4.1, the reliability R and
the dependent parameters \1 and \ of the four types of multicomponent stress-strength models
M1, M2, M3, M4 can be estimated using the methods proposed in this chapter. In order to evaluate the
effectiveness of the estimation methods, we conducted a total of N = 1000 repeated sampling experi-
ments, and then assessed the estimation performance using bias and Mean Squared Error (MSE). The
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results are shown in Tables 3–7. In these tables, subscript 1K indicates estimation of dependent param-
eter \1 based on Kendall’s g, subscript 1B indicates estimation of dependent parameter \1 based on
the Bernstein method, subscript KK indicates estimation of dependent parameter \ using Kendall’s g
method on the basis of estimating \1 using Kendall’s g, subscript KB indicates estimation of dependent
parameter \ using the Bernstein method on the basis of estimating \1 using Kendall’s g, subscript BK
indicates estimation of dependent parameter \ using Kendall’s g method on the basis of estimating \1
using the Bernstein method, and subscript BB indicates estimation of dependent parameter \ using the
Bernstein method on the basis of estimating \1 using the Bernstein method.

Based on the results presented in Tables 3, 4, 5, 6, and 7, all estimation methods exhibit satisfactory
performance regardless of whether the C-C HAC, G-G HAC, F-F HAC, or J-J HAC method are used to
describe hierarchical dependence or independence case. It is worth noting that these methods maintain
excellent efficiency even with limited sample sizes. As the sample size M increases gradually, most
cases demonstrate a gradual improvement in estimation accuracy. When the sample size remains con-
stant, the increase in the number of strength variables generally leads to improved estimation accuracy.
Specifically, in the estimation of reliability R, the accuracy improves significantly with the increase in
the number of strength variables, as evidenced by the trends in Figures 3, 4, and 5. Additionally, it can be
clearly observed that RKB consistently outperforms RKK when the sample size remains constant. Overall,
these findings demonstrate that selecting the RKB method can yield optimal estimates of R. These analy-
ses not only enrich our understanding of hierarchical dependence modeling but also provide theoretical
support for decision-making in practical applications.

Furthermore, based on Model 1, Model 2, Model 3, and Model 4, Table 8 presents the discrepancies
when the model is dependent but the dependence structure is ignored, that is independent copula, with
the discrepancies represented by the percentage error (PE). The calculation formula is as follows:

PE =
Rdependent − Rindependent

Rindependent
× 100%.

4.2. Goodness-of-fit test and empirical study

In this section, We carry out an empirical study on four real datasets and demonstrate the above
mentioned methods can be applied in practice. These four dates are as follows:

Data 1: 693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16, 671.49,
183.16, 727.23, 257.44, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11,
43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25
Data 2: 71.46, 419.02, 284.64, 585.57, 456.60, 688.16, 662.66, 113.85, 187.85, 45.58, 578.62,
756.70, 594.29, 166.49, 707.36, 99.72, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81,
119.86, 581.60, 48.01, 200.16, 36.75, 244.53, 83.55
Data 3: 6.53, 7, 10.42, 14.48, 16, 10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 83, 84, 91, 108,
112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218, 225, 241, 248,
273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417
Data 4: 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 74.48, 78.26,
81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281,
319, 339, 432, 469, 519, 633, 725, 817, 1776

Remark 4.1. The Data 1 and Data 2 have been analyzed by [44] for stress-strength reliability with
exponential distribution. Data 3 and Data 4 have been discussed by [19] for estimations of stress-strength
reliability with inverted gamma distribution. All of them have been analyzed by [4] for dependent stress-
strength reliability of multistate system.

To investigate dependencies more effectively, it is essential to have an equal sample size for each
dataset. Currently, Data 1 and Data 2 have a sample size of 30, while Data 3 and Data 4 have
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Table 7. The bias and MSE of R under independence case.
50 100 200

Model 1, Model 2,
Model 3, Model 4

Bias (0.0003, −0.0002,
0.0003, −0.0001)

(0.0001, 0.0007,
0.0003, 0.0001)

(−0.0002, −0.0001,
0.0006, 0.0001)

MSE (0.0013, 0.0006,
0.0002, 0.0001)

(0.0007, 0.0003,
0.0001, 0.0001)

(0.0003, 0.0001,
0.0001, 0.0001)

Figure 3. The bias and MSE of R under G-G HACs with M = 50.

Figure 4. The bias and MSE of R under G-G HACs with M = 100.

sample sizes greater than 30. To address this, we utilized the sample() function in R to randomly
extract two groups of 30 data points from Data 3 and Data 4, respectively, denoted as Data∗3 and
Data∗4.
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Figure 5. The bias and MSE of R under G-G HACs with M = 200.

Table 8. The discrepancies in the reliability estimates of the model when the dependence structure is
ignored.

C-C copula G-G copula F-F copula J-J copula

Model 1 7.15% 9.15% 6.18% 6.41%
Model 2 7.64% 9.53% 7.83% 6.98%
Model 3 8.11% 9.76% 7.81% 6.17%
Model 4 9.57% 9.83% 8.29% 7.31%

Data∗ 3: 173.00, 16.00, 140.00, 49.40, 22.70, 133.00, 146.00, 273.00, 583.00, 112.00, 523.00,
277.00, 241.00, 10.42, 42.00, 176.00, 218.00, 1417.00, 417.00, 14.48, 140.00, 1146.00, 594.00,
297.00, 53.62, 154.00, 10.00, 7.00, 165.00, 45.28
Data∗ 4: 133.00, 1776.00, 633.00, 469.00, 92.00, 58.36, 119.00, 146.00, 281.00, 194.00, 179.00,
74.48, 112.00, 432.00, 159.00, 195.00, 68.46, 339.00, 47.38, 94.00, 84.00, 140.00, 41.35, 319.00,
725.00, 63.47, 78.26, 173.00, 110.00, 31.98
To exemplify, we examine the reliability R = P(max{X1, X2} > Y). Here, X1 represents

Data 1, X2 corresponds to Data 2, and Y denotes Data∗ 3. In our initial step, we employed the
cor.test(,method=”Kendall”) function in R to execute a Kendall’s tau-based test of dependence
between X1, X2, and Y. Based on Figure 6, it is evident that there exists a pronounced interdependence
among variables X1, X2, and Y, with varying degrees of dependence between them. This observation is
further corroborated by the findings presented in Table 9, highlighting the strongest dependency between
X1, X2, and Y. As a result, we can employ a hierarchical copula to accurately model the interdependen-
cies among X1, X2, and Y. The dependent structure can be found in Figure 7. Furthermore, to discern
the dependence structure between X1, X2, and Y, we utilize a goodness-of-fit test for copula. This test
is rooted in the multiplier central limit theorems and was introduced by [27]. We present the results of
the goodness-of-fit test for various copula models applied to stress variables X1 and X2, which consti-
tute the first hierarchical layer, in Table 10. Since g(max{X1, X2}, Y) = −0.1197 < 0, in order to have
comparability, we chose AMH copula in addition to Frank copula mentioned above to fit dependent
structure of stress and strength variables max{X1, X2} and Y, the goodness-of-fit results can be fined in
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Figure 6. Scatter plots of X1, X2, and Y.

Table 9. The Kendall tau of Data 1, Data 2, and Data∗ 3.
Data 1 Data 2 Data∗ 3

Data 1 1.0000 0.2967 −0.1611
Data 2 0.2967 1.0000 0.0322
Data∗ 3 −0.1611 0.0322 1.0000

Figure 7. The dependent structure of X1, X2, and Y.

Table 11. The results of the goodness-of-fit test rely on the empirical copula process using the copula
distribution function. These results are presented under the null hypothesis H0 : C ∈ C\ against the
alternative hypothesis H1 : C ∉ C\ , where the null hypothesis signifies that the data belong to the
parametric family. The analysis indicates that the F-F HAC model exhibits a superior fit for X1, X2, and
Y. In Figure 8, we give a comparison graph between the actual data (left) and the simulated data (right).
Through comparison, it is found that the simulated data are close to the actual data, and the usability of
the model is further verified.

Table 12 showcases the estimated reliability for the scenario R = P(max{X1, X2} > Y), acquired
through both empirical and semi-parametric methodologies. In this instance, it’s notable that the
empirical and semi-parametric reliabilities do not exhibit close proximity to each other.

Through further research, we have discovered that when considering Data 1 and Data 2 as strength
variables and Data∗ 4 as stress variable, the interdependence structures between Data 1, Data 2, and
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Table 10. Goodness-of-fit results for (X1, X2), where the significance of the bold value indicates the
optimal result.
Copula Test stat. P-value

C 0.0472 0.0215
G 0.0478 0.0305
F 0.0325 0.1024
A 0.0465 0.0255
J 0.0729 0.0045

Table 11. Goodness-of-fit results for (max{X1, X2},Y), where the significance of the bold value indicates
the optimal result.
Copula Test stat. P-value

F 0.0353 0.1024
A 0.0396 0.0435

Table 12. Reliability results of stress-strength model for Data 1, Data 2, and Data∗ 3.
Copula Estimate method Estimate value

F-F HAC (ĝ1K , ĝKK , R̂KK ) (0.2966, −0.0506, 0.4786)
(ĝ1K , ĝKB, R̂KB) (0.2966, −0.0655, 0.4943)
(ĝ1B, ĝBK , R̂BK ) (0.3486, −0.0566, 0.4790)
(ĝ1B, ĝBB, R̂BB) (0.3486, −0.0655, 0.4939)
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Figure 8. Scatter plots of X1, X2, and Y (left) versus simulated data (right).

Table 13. The Kendall tau of Data 1, Data 2, and Data∗ 4.
Data 1 Data 2 Data∗ 4

Data 1 1.0000 0.2967 0.0391
Data 2 0.2967 1.0000 −0.0483
Data∗ 4 0.0391 −0.0483 1.0000

Data∗ 4 still differ (see Table 13 and Figure 9). However, after conducting goodness-of-fit tests, we
found that the interdependence structures between Data 1 and Data 2, as well as between the pair (Data
1, Data 2) and Data∗ 4, are distinct and cannot be characterized using the same family of copulas, that
is, combine with Tables 10 and 14, we can use F-J HAC to characterize the interdependence structures
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Figure 9. Scatter plots of X2, X3, and X4.

Table 14. Goodness-of-fit results for (Data 1, Data 2) Data∗ 4, where the significance of the bold value
indicates the optimal result.
Copula Test stat. P-value

C 0.0468 0.0455
G 0.0356 0.1533
F 0.0466 0.0415
A 0.0476 0.0305
J 0.0306 0.2612

Table 15. The Kendall tau of Data 2, Data∗ 3, and Data∗ 4.
Data 2 Data∗ 3 Data∗ 4

Data 2 1.0000 0.0322 −0.0483
Data∗ 3 0.0322 1.0000 −0.0460
Data∗ 4 −0.0483 −0.0460 1.0000
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X4

Figure 10. Scatter plots of X1, X2, and X4.
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Table 16. Goodness-of-fit results for (Data 2, Data∗ 3), where the significance of the bold value indicates
the optimal result.
Copula Test stat. P-value

C 0.0334 0.2043
G 0.0544 0.0734
F 0.0560 0.0315
A 0.0572 0.0365
J 0.0544 0.1264

Table 17. Goodness-of-fit results for (Data 2, Data∗ 3) Data∗ 4, where the significance of the bold value
indicates the optimal result.
Copula Test stat. P-value

C 0.0334 0.2043
F 0.0227 0.3152
A 0.0346 0.1264

between Data 1, Data 2, and Data∗ 4. Similar phenomena have also been observed in the case of Data
2 and Data 3 as strength variables and Data∗ 4 as stress variable (see Table 15 and Figure 10), combine
with Tables 16 and 17, we can use C-F HAC to characterize the interdependence structures between
Data 1, Data 2, and Data∗ 4. Therefore, in the future, we will study multicomponent stress-strength
reliability based on heterogeneous HACs methods.

5. Conclusion

This study underscores the significance of accounting for dependence among strengths and the inter-
dependent between strengths and stress in reliability analysis within multicomponent stress-strength
models. The conventional assumption of independence might not hold in various practical scenarios,
prompting the development of innovative methodologies.

By introducing an AC-based hierarchical dependence approach, this paper has presented a novel
framework for effectively modeling these interdependence. The application of four distinct semi-
parametric methods to estimate reliability, accompanied by the determination of dependence parame-
ters, has advanced the understanding of stress-strength relationships. Moreover, the derived asymptotic
properties of the estimator provide a foundation for its robustness and applicability.

The validation of the proposed methods through Monte Carlo simulations and real-life data sets
underscores their practical utility. This research not only enhances the comprehension of complex inter-
relationships within multicomponent stress-strength models but also paves the way for more accurate
and reliable reliability estimation methodologies in the face of realistic dependence scenarios. The
integration of HACs and semi-parametric methods showcases a noteworthy advancement in the field,
fostering more informed decision-making in diverse engineering and scientific applications.

Looking ahead, this paper primarily considers partially HACs. In future work, we will focus on
the application of fully hierarchical HACs in multicomponent stress-strength models. Additionally,
while this study emphasizes the reliability of stress-strength models with parallel structures, we will
explore more general systems, specifically coherent systems, to further enrich our understanding and
methodologies in this area.
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