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The generation and radial structure of zonal flows are studied in competing collisional
drift waves and interchange turbulence using the reduced flux-driven nonlinear model
Tokam1D. Zonal flows are generated in both the interchange dominated and adiabatic
regimes with the former favoring radially structured flows and avalanche transport. The
distance to the instability threshold proves to be key, with a more stable radial flow struc-
ture emerging near the threshold and increased energy stored in the flows for interchange
turbulence. The avalanches are shown to perturb zonal flow structures in drift-wave tur-
bulence and to reactivate them in the interchange regime. Finally, the ExB staircases
with radially structured, stable in time zonal flows are proved beneficial for the overall
confinement.

Key words: plasma flows, plasma instabilities, plasma simulation

1. Introduction

Cross-field transport is critically important for fusion devices such as tokamaks, as
it governs the overall energy and particle confinement time. This transport is mainly
driven by turbulence at the ion scale. The question of turbulence saturation is then
crucial for the design of future machines. The underlying saturation mechanisms also
represent a fundamental question, still largely debated. Three main mechanisms can
be identified for turbulence saturation in tokamak core plasmas: the relaxation of
the profiles (density n, temperature T'), the energy transfer towards dissipative scales
and the generation of secondary structures such as zonal flows (ZFs). The second
and last mechanisms are partly related since ZFs can contribute to the generation of
small-scale structures via vortex shearing.

The profile relaxation is a direct result of the cross-field transport induced by
turbulence. A lower thermodynamic gradient reduces the drive for the instability
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and resulting turbulence. The transfer towards dissipative scales can occur through
mode-mode couplings which lead to turbulent cascades such as those described by
Kolmogorov (1941): the energy flows down from the injected scales towards the
small scales where it gets dissipated through viscosity. Additionally, the magnetic
and velocity shears can lead to the decorrelation of turbulent structures into smaller
cells (Biglari, Diamond & Terry 1990; Terry 2000). Finally, the generation of ZFs —
large-scale symmetric flows, constant on magnetic surfaces — is considered crucial in
tokamaks because their action on turbulence is twofold. First, they are generated by
the turbulence and store a part of its energy without inducing cross-field transport.
Second, ZFs induce a velocity shear that participates in the shear decorrelation
mechanism (Lin et al. 1998). Third, they can also be radially structured, resulting in
a set of micro-barriers which is expected to efficiently limit the extension of the radial
transport. This process can generate ExB staircases in the form of localized velocity
shear layers associated with steps in the pressure profile (Dif-Pradalier et al. 2010,
2015). The transport in between the staircase steps is often considered mediated by
avalanches: quasi-ballistic transport events of heat or particles (Dif-Pradalier et al.
2017).

Zonal flows are generated by turbulence through the action of the Reynolds
stress — coupling of velocity fluctuations in the radial x and poloidal y directions -
being the sum of two contributions, the electric [Ty (Diamond & Kim 1991) and
the diamagnetic I1, (Smolyakov, Diamond & Medvedev 2000; Hallatschek 2004;
McDevitt et al. 2010; Sarazin et al. 2021; Dif-Pradalier et al. 2022): I1,,, = I + I1,.
The first, [Tz = (Vg, Vg, ), relates to the electric drift vy = E x B/B?* which involves
the electric E and magnetic B fields. The second, I, = (Vg,V.,), stems from the dia-
magnetic drift, v, = B x V p/(enB?) which involves the plasma pressure p, electron
charge e and plasma density »n.

The generation of ZFs and their impact on turbulence have been studied exten-
sively for the past 20 years (Diamond ez a/. 2005). While their important role has
been assessed, the turbulence regimes leading to their generation and radial structure
are still actively explored in view of quantitative prediction. In collisional drift-wave
turbulence (Hasegawa & Wakatani 1983), a bifurcation is observed from turbulence
dominated regimes to flow dominated regimes. On the one hand, gradient-driven
models tend to indicate a collapse of the relative ZF energy at large collisionality
(Numata, Ball & Dewar 2007). On the other hand, Panico et al. (2025) with a flux-
driven model — where the profiles can adapt freely to the turbulence parameters —
found a more gradual reduction of the ZF energy when increasing collisionality. The
collisional drift-wave (CDW) instability is controlled using the adiabaticity parame-
ter C = (kax)za)L.e /Vei, being the parallel wavenumber k; normalized to the Larmor
radius p, = /m;T;/(eB) divided by the electron-ion collision frequency normalized
to the electron cyclotron frequency w. = e¢B/m,, where m; and m, are respectively
the ion and the electron mass. However, in tokamaks, it appears important to also
take into account the interchange instability that originates from the magnetic field
inhomogeneity. The interchange instability is controlled through an effective gravity
parameter g =2p,/R, ratio of the Larmor radius to the major radius R of the toka-
mak. This latter instability has been shown to be important in describing avalanche
transport in early reduced flux-driven models (Sarazin & Ghendrih 1998; Garbet
et al. 1999). Synergy between interchange and CDWs has also proved to be impor-
tant in the context of gradient-driven simulations (Scott 2005). Exploring the phase
space in this context showed that different confinement properties can be found
depending on the turbulence regime (Rogers, Drake & Zeiler 1998; Eich et al. 2021).
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In this framework, the goal of the present paper is threefold. First, we use the
Tokam1D model derived in Panico et al. (2025) to study the generation of ZFs in
a flux-driven competing CDW - interchange turbulence. Second, we investigate the
radial structure of the flows and in particular the regimes leading to the appearance
of staircases. Third, we explore the impact of ZFs and their radial structure on the
transport and confinement. These questions will be tackled by performing several
scans of the turbulence parameters C and g on particle confinement time scales
while still resolving the small turbulence scales.

In §2, the Tokam1D model is briefly recalled and the performed simulations
are detailed. In particular, the role of the source is discussed. In § 3, the genera-
tion of ZFs is studied. The regimes leading to a large ratio of flow to turbulence
energy are understood through a study of the underlying Reynolds stress compo-
nents. Additionally, the ZFs radial structure and the impact of the profile’s distance
to the instability threshold are studied. Finally, in §4, the impact of the flows —
and more particularly of their radial structure — on the overall confinement is inves-
tigated. Interestingly, depending on the turbulence regime, the ZFs are shown to
interact with passing avalanches either constructively or destructively.

2. Tokam1D model and performed simulations

TokamlD is a flux-driven reduced code derived in Panico (2024) and Panico
et al. (2025) that features two dominant instabilities of the plasma edge: CDWs and
interchange. Assuming an electrostatic isothermal plasma with hot ions, the role of
the diamagnetic component of the Reynolds stress is considered. The model stems
from the electron density conservation equation and charge conservation equation
solved in a slab geometry. It evolves the logarithm of the density N =Inn and the
general vorticity £2 = V2 (¢ + tN) self-consistently, with ¢ the electric potential and
t =T;/T, the ion to electron temperature ratio

N +{¢, N} =gdy(¢ — N)+0oVj(N — ) + DVIN + Sy, (2.1
3R2+V. o, Vi +TN)=—(1+1)80,N+0V}(N —¢) +1ViR. (2.2)

Here, o) = w../ V.0 1s the plasma conductivity taken at a reference plasma density,
and D and v are dissipation coefficients. Note that the time is normalized to the ion
cyclotron frequency w. = (eB)/m;, the lengths to the sound Larmor radius p, =
(m;c,)/(eB) and the electric potential is normalized to the electron temperature ¢ =
e®/T,. The model is further reduced to one dimension by separating the quantities
into so-called equilibrium (actually flux-surface averages) and fluctuations

1
(2m)?

Ney(x,t) = / Ndydz, (2.3)
¥,z

where x stands for the radial, y the poloidal and z the parallel direction. The fluc-
tuating components are Fourier transformed and projected onto single parallel and
poloidal wave vectors (ky, k)

(2)’) — (Neq) (x, 1)+ (%) (x, 1) exp [i(kyy + kjz)] + cc, (2.4)

eq

where cc stands for the complex conjugate. The resulting system solves the equilib-
rium density N,,, the equilibrium velocity V,, = d,¢.,, the density fluctuations N
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and the vorticity fluctuations §2;, both taken at the poloidal wavenumber k,. The
Tokam1D equations read

atNeq :_axnurb"i_DOa,%Neq"i_SNa (25)
8t Veq = _axntot + anf Veq - /’LVeq’ (26)
Ny =+ iky(d)kaxNeq_Vequ) +igk,(pi—Ni) + C(pr—N)+D,VIN,,  (2.7)

0,2k =—ikyg(1 + T)Ny — ik Vo 2t + iky 0, [r0x (Veg + T0:Ney) ]
— 1k, 0, Voy 0, (Pr + TNi) + C (e _Nk)+V1VJ2_~Qk- (2.8)

The reduction to one dimension effectively removes mode-mode (in k) interac-
tion as those terms involve modes that are not accounted for in the model. The
principal consequence is that turbulence saturation through cascade processes is not
included in the model. However, nonlinear terms are still retained through the inter-
action with the equilibrium fields, without any scale separation assumption in time
or in the radial direction. As such, turbulence saturation principally occurs through
profile relaxation, ZF generation and shear-induced transfer towards stable radial
wavenumbers. In this model, it is argued that those mechanisms are essential in
fusion plasmas close to marginality (Panico et a/. 2025). Additionally, Staebler et al.
(2016) have shown that, in the gradient-driven regime, while mode-mode coupling
and ZF shearing are competing mechanisms for turbulence saturation at low k,, the
latter largely dominates at large k, (see their figure 1).

The code is flux driven with a particle source Sy and no scale separation in x and
time is assumed between equilibrium and fluctuating components. The equilibrium
density (2.5) results from the balance between the turbulent flux of particles I5,,, =
—2k,Im(N¢;), where Im stands for the imaginary part, and the particle source. The
equilibrium velocity evolved in (2.6) is that of the ZFs generated through the action
of the total Reynolds stress I7,,, defined as the sum of the electric and diamagnetic
components

M,y =g + IT, = =2k, Im[(¢; + TN;)9.]. (2.9)

Each instability is controlled through a physical parameter. The interchange insta-
bility is driven by the magnetic curvature g =2p,/R with p, the sound Larmor
radius and R the tokamak major radius. The CDW instability is governed by the
adiabatic parameter C = (k;05)*®,./Vei, With v,; the electron-ion collision frequency
normalized to the electron cyclotron frequency w., (Hasegawa & Wakatani 1983).
Dissipation and viscosity are accounted for via the coefficients (Dy, vo) for the equi-
librium and (Dy, v;) for the fluctuations. An additional friction w is considered for
the flows, representative of magnetic pumping or neoclassical friction.

The order of magnitude of C and g can be estimated from plasma parameters.
Typically, the parallel wavenumber is estimated considering a connection length,
L, =2mqgR, with g the safety factor, which gives ky =27/L, =1/(qR). Note that
k, can be characterized experimentally using long range correlation, see for example
Mahdizadeh et al. (2007). Estimations of the main parameters are given for standard
edge values of the WEST, TCV and MAST-U tokamaks in table 1. The values are
computed considering a major radius R =2.5 m and minor radius ¢ =0.5 m for
WEST, (R, a) = (0.87, 0.25) m for TCV and (R, a) = (0.9, 0.6) m for MAST-U.

It appears from the parameter dependencies that the strong variation of density
and temperature profiles at the edge of tokamak plasmas translates into a wide range
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Model parameters Plasma parameters
8= 2& C= (knps)zﬁo Nsep [1019] Tsep [eV] Bsep [T] gqos
Dependencies 1/2/(RB) cxk 5/2/(noB)
WEST 2 3x 1074 1—10 x 1074 1-2 50—100 3 5.5
TCV 8—12x 107* 1.5—-15x 1073 0.5—-1 25-50 1.4 3.5
MAST-U 3x 1073 3x 1073 1.5 40 0.43 6

TABLE 1. Main model parameters and their range for typical values of WEST, TCV and
MAST-U tokamaks. Plasma parameters are computed at the separatrix: T, = Ty,p, no =
nsep and B = By,,. The parallel wavenumber is computed assuming a connection length

ky=1/(gqosR).

of g and C values. It is interesting to note that C decreases when density increases.
It has implication for the interpretation of the nonlinear simulations: a high density
(respectively low C) leads to a decrease in the ZF energy for CDW turbulence, see
§3.1.

In order to characterize the generation of ZFs and their impact on the transport
as a function of the parameters C and g, a total of 104 simulations are performed
starting from a stable density profile with constant dissipation coefficients Dy = vy =
Dy =v; = 1072, friction u = 10~*, poloidal wavenumber k, = 0.3 and ion to electron
temperature ratio T = 1. Simulations are performed on a radial domain of L, =
400 p, using a grid of 1024 points. Dirichlet boundary conditions ensure vanishing
fluctuations and vanishing equilibrium velocity on both boundaries. A Neumann
boundary condition is used for the equilibrium density on the left-hand side of the
simulation and Dirichlet (N,, =0.1) on the right-hand side. Each simulation is run
until the density profile has reached statistical steady state. The particle confinement
time is defined as

dex

R

The source is taken Gaussian with the maximum located at the inner boundary of
the domain. In order to develop turbulence, one needs to ensure that the maximum
gradient achievable by the simulation' - when the diffusion balances the source in
(2.5) - called the diffusive gradient |3, N,,|*// = [ Sy/D,, is larger than the linear
threshold defined by the critical gradient |9, N,,|"". The critical gradient is com-
puted by solving the linear dispersion relation of the Tokam1D system with V; =0
(the equilibrium velocity and all of its derivatives) and N/, =0 for p > 2. Details
of the computation are provided in Panico (2024). Two sets of simulations are per-
formed with different source strategies. The first is performed with a constant source
Sy(0) =107, chosen such that any simulation is above its linear threshold. Since
the explored parameter space is large and some cases exhibit large |3, N,, |, some
simulations yield steady-state gradients much larger than their linear threshold. To
palliate this problem and take into account the linear instability threshold depending

(2.10)

In principle, a local corrugation — in time and space — of the density profile can create a gradient that exceeds
the linear instability threshold, triggering turbulence. However, in practice, we rely on the averaged box-size gradient
to establish a general threshold.
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FIGURE 1. Diffusive (diamond), critical (square) and steady-state (circle) gradients. The first
corresponds to the maximum gradient achievable by the simulations, the second to the linear
instability threshold and the last to the mean gradient at steady state. (a) Simulations with a con-
stant Sy (0) = 104, (b) Simulations with adapted sources such that |3y Ny |7/ = 6]d Nog |7
Both figures as a function of C for g = 1074,
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FIGURE 2. Scanned parameter space for constant source cases, each point corresponds to a
simulation that has reached statistical steady state. The color indicates the absolute value of the
gradient at the steady state. (circles) scan of C at g = 10™%; (triangles) scan of C at g = 1073;
(squares) scan of C at g =5 x 1073, (diamond) scan of g at C = 1073.

on the turbulence parameters (C, g), a second set of simulation is performed using
an adapted source similarly to Panico ef al. (2025). In this latter case, the source is
chosen such that the diffusive gradient is 6 times the critical gradient. This ensures
that each simulation remains relatively close to its linear threshold. Note that the
choice |3, N,,|*// = 6|3, N,,|""" is arbitrary and has been made such that the turbu-
lent flux I3, is larger than the diffusive flux I, at steady state. The diffusive,
critical and steady-state gradients are shown in figure 1 for a scan of the parameter
C at g =10"*. The case with a constant source is shown on the left, the one with
adapted sources on the right.

Performing simulations using a constant source is closer to experiments. However,
the effective applied forcing is not constant as a function of the turbulence param-
eters. Indeed, simulations that have a lower instability threshold — at low C - are
forced more than simulations at large C. As a result, the steady-state gradient can
be forced very far from its linear threshold, especially for the low C cases. Using an
adapted source allows one to have a constant distance to the threshold. Therefore,
the system’s stiffness, i.e. the relation between the turbulent flux and the equilibrium
density gradient, can be studied. In the following, both results from the constant and
adapted sources will be compared.

The scanned parameter space is displayed in figure 2. Each point represents
a simulation that has reached statistical steady state. The color indicates the
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absolute steady-state gradient. Here, C is scanned from C =2 x 10~ to 8 x 1072 for
g=10"* 1073 and 5 x 1073 and g is scanned from 10~* to 3 x 102 for C =103,
The figure features a total of 52 simulations performed at constant source. Large
gradients at large C result from the stabilization of both instabilities when getting
close to the adiabatic regime. As a matter of fact, simulations at large C > 6 x 1072
correspond to low turbulence regimes where the turbulent flux is comparable to the
diffusive flux. The lowest gradients are obtained for the cases at large g, small C,
when the interchange instability dominates. Note that very large values of g > 1072
are stabilizing because of the compressibility terms — divergence of the electric drift
and diamagnetic flux in the density conservation equation — and that very low values
of (C, g)=(2x107%,107*) lead to the stabilization of the CDW instability. Three
regimes are identified: the CDW, the interchange and the adiabatic regimes. The
transition from one to the other is loosely defined. The CDW dominates at low g
medium C, interchange at low C large g and the adiabatic regime takes over at very
large values of C regardless of g.

3. Generation of zonal flows in competing turbulence

In this section, we study in detail the generation of ZFs in competing CDW-
interchange turbulence. The ZFs act on turbulence in two principal ways. The first
is by storing energy: the more energy is stored by the ZFs, the less is available
for turbulence to produce transport. The second is by inducing a shear that will
decorrelate turbulent eddies. The latter mechanism requires ZFs to live on a longer
time scale than the typical lifetime of turbulent structures (Biglari ef a/. 1990; Hahm
et al. 1999).

3.1. Flow dominated regimes at large C or g

Numata et al. (2007) have shown that there was a collapse of relative energy stored
into the flows at low C. Since C « 1/v,;, large collisionality is expected to lead to a
strong decrease of ZF activity. Later on, Guillon & Gtircan (2025) brought forward
a hysteresis mechanism around the transition point. In another contribution, by using
a flux-driven code, Panico et al. (2025) have hinted that the decrease of ZF energy
could be more gradual than previously expected. Gradient-driven and flux-driven
contributions are in agreement provided that one accounts for the evolution of the
density gradient together with the adiabatic parameter. However, in all the above
cases the turbulence is driven by CDWs only. In this section, we propose to come
back to the turbulence-flow energy partition by including the interchange instabil-
ity. Additionally, by comparing simulations with constant and adapted sources, the
impact of the distance to the linear threshold is studied.

To compare the different simulations, the flow-to-turbulence energy partition of
the system is used. The energies of the flows and turbulence, Ey., and E,,,, (derived
in Panico et al. 2025), are recalled

Eyey =V, (3.1

Epury =21+ ) |Ni|* + 210.:9)” + 2|70, Nil* + 4TRe (9.0 Ny)
+ 2k} [1k]? + [T Nil* + 2T Re (i Ny ) |
— 2k, [(Pr0: ;) + TNiO by + T N; 4+ TN Ny ] - (3.2)

The parameters Ey,, and E,,, are further coarse grained on 4 autocorrelation
times of the turbulence t,,,,. Then, the root-mean-square (r.m.s.) radial profiles are
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FIGURE 3. Energy partition between turbulence and flows as a function of C for three scans at
different values of g. Cases with a constant source Sy (0) = 10~* are indicated with full lines,
those with an adapted source are shown with dotted lines.

computed

E;(x) = /(Ef,,(x. 1)), (3.3)
with (. ..),; the time average. Finally, to produce a single estimate per simulation, the

energy partition ratio is averaged radially (EVy. /(EV,: + EL)) .

The results are summarized in figure 3 for the cases g =10"%, g=10"* and
g =75 x 1073 as a function of C. Simulations with an adapted source (‘fixed” distance
to linear threshold) are displayed with dotted lines.

For all considered values of g, a flow dominated regime is found at large C,
as expected from previous contributions (Numata et al. 2007; Grander, Locker &
Kendl 2024; Panico etf al. 2025). Note that, in gradient-driven models, the transi-
tion point between flow and turbulence dominated regimes depends on the value of
the density gradient. In Numata et al. (2007), the collapse occurs at C = 0.1 because
the gradient is large: k = 0, Inny = 0.1. In comparison, the steady-state box-averaged
gradients in the present simulations are lower (see figure 2). Therefore, we expect
the transition to occur at lower values of C. Adding the interchange instability mod-
ifies the trend at low C. The low g case is analogous to cases without interchange:
although not collapsing, the ZF energy is subdominant compared with that of turbu-
lence. When g increases, the flows become more important with approximately 30 %
of stored energy at g =5 x 1073, Additionally, simulations with an adapted source —
closer to the linear threshold - display a larger flow to turbulence energy ratio.

The reader should be reminded that the friction exerted on the flows —uV,, is set
constant in those simulations. However, increasing density also increases the friction
coefficient. The large amount of energy captured by the flows at large g and small
C may be less pronounced if the friction applied to the flows increases with density
(low C). Gianakon, Kruger & Hegna (2002) provide a heuristic expression for this
neoclassical coefficient. Simulations taking into account the dependence of C and u
with density is left for future work.

3.2. Both components of the Reynolds stress are crucial depending
on turbulence regime

The generation of ZFs and of the associated shear is governed by the total
Reynolds stress I1,,,, which is the sum of two contributions: electric 7y and
diamagnetic I7,. While the former has been recognized as crucial for years
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FIGURE 4. Radial average of the r.m.s. profile of IT;,; as a function of C for three values of g.
(left) Simulations with constant source Sy (0) = 10~4. (right) Simulations with adapted sources.

(Diamond & Kim 1991), the latter has been less studied (Smolyakov et al. 2000;
Hallatschek 2004; Ivanov et al. 2020; Sarazin et al. 2021; Dif-Pradalier ef al. 2022).
The parameter I71,,,, being the sum of two contributions, depends on their relative
amplitude and whether they are in phase. In this section, both components of the
Reynolds stress are studied with the objective to understand the two regimes leading
to a large flow to turbulence energy ratio, namely at high C and high g.

First, let us take a look at the general behavior of I7,, through the correlation
and relative amplitude of its two contributions. In figure 4, the r.m.s. value of the
total Reynolds stress is shown as a function of C for three different values of g
for cases with a constant source (left) and with adapted sources (right). A gen-
eral trend observed in this figure is that the total Reynolds stress increases with C
in most of the parameter domain. Furthermore, at low C, the interchange domi-
nated case stands out with a somewhat large Reynolds stress, especially for cases
with constant sources, where it decreases until the CDW instability takes over at
C ~4 x 1073, The simulations sitting closer to their linear threshold, displayed in
figure 4(b), depart from the results with constant source in figure 4(a). Indeed, the
total Reynolds stress is smaller for the same values of C and g (at the exception
of very large C <4 x 107*). That is understood from the linear analysis point of
view: as the gradient increases, so does the growth rate, which leads to a larger
fluctuation amplitude and resulting Reynolds stress. Interestingly, this behavior is
not recovered in the flow-turbulence energy partition in figure 3. This indicates
that the turbulence intensity keeps increasing with the gradient, thus leading to
a larger I1,,, but that the generated flows are not able to capture all the added
energy. Note that this does not imply that the ZF energy decreases at large gradi-
ents: it keeps increasing with the drive I7,,, but less than the background turbulence
(see figure 7).

To get more insight into I7,,,, the correlation between the electric and diamagnetic
contributions to the total Reynolds stress is shown in figure 5, together with their
relative amplitude. To take into account the possible radial structure of the Reynolds
stress, the radial average is computed after having performed the ratio of the r.m.s.
profiles.

The three different regimes appear clearly in figure 5. The adiabatic regime, at
large C, displays the two contributions correlated and in phase, independently of g.
The interchange regime, at low C, shows the contributions in phase opposition, all
the more so when g is large. The CDW regime, at medium C 2 g, indicates that the
diamagnetic contribution is dominant. The amplitude ratio reaches its maximum at
a value that depends on both (C, g) and the distance to the linear threshold. It then
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FIGURE 5. (Top) Correlation between electric and diamagnetic contributions to the Reynolds
stress C({1,, ITg). (Bottom) Amplitude ratio (T, /IT;"*) . (Left) Simulations with constant

source Sy (0) =104 (right) Simulations with adapted sources.

decreases towards one at large C. At low C, for cases at medium and large g, the
electric contribution is dominant, especially as the simulation is close to the linear
threshold (figure 5b).

The behavior of the tensors is consistent with the underlying turbulence. On the
one hand, getting closer to the adiabatic regime at very large C leads to N, ~ ¢,
leading to in-phase and roughly equal Reynolds stress contributions. On the other
hand, at low C and large g, interchange turbulence is characterized by amplitudes of
electric potential fluctuations greater than density fluctuations. This directly impacts
the resulting tensors with |ITg| > |I1,|. Similarly, CDW turbulence in Tokam1D
is characterized by |Ny| > |¢i|, which leads to a dominant diamagnetic Reynolds
stress contribution. The transition towards the adiabatic regime is obtained for lower
values of C in cases with adapted sources as compared with fixed sources cases. This
is consistent with Giircan (2024), that puts forward C/«, « being the logarithm of
the density gradient, as the correct parameter to study the transition towards adia-
baticity. Since simulations with an adapted source tend to have a lower steady-state
density gradient, they have a larger C/« for the same values of C. Interestingly, the
case g =5 x 10~* with an adapted source shifts from interchange dominated to adi-
abatic without transitioning to the CDW dominated regime. The resulting behavior
of I1,,, as a function of C and g can be summarized as follows:

(i) Interchange at small C, large g: IT;™ > II[™, contributions in phase opposi-
tion.

(i) CDW at medium C (or very low g): I1" > I1;™, contributions weakly cor-
related. The range of C values for this intermediate regime depends on the
forcing (constant vs adapted source), hence on the distance to the threshold.

(iii) Adiabatic at very large C: IT™ ~ 1™, contributions in phase.

One can get further insight into the origin of the correlation between I1; and I1,
by their analytical study. Bearing in mind that fluctuations can be decomposed into

. ) .
amplitude and phase, ¢, = |¢y|e’% , the electric component of the Reynolds stress
reads

Mg = =2k, |pc]?8.6). (3.4)

https://doi.org/10.1017/50022377825100603 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100603

Journal of Plasma Physics 11
(b)

(@) L35

|
= o &
.

—e— simulations
-6~ linear estimate
—o— g=10"*

—A— g=10"3 —4r —e— simulations

- g=5.10"2 H O -6~ linear estimate

1073 10™ 107t 1073 1072 107t
C c

3(TNi/ k)
|

R(TNi/pr)
w N

FIGURE 6. Real (@) and imaginary (b) parts of ratio T Ni /¢y for three scans as a function of C.
Simulations performed with a constant source Sy (0) = 10—

Similarly, the diamagnetic component reads

0y )
I, = =2k, T|Ni|| x| |:8x0,? cos Af; + |‘L¢T| sin A@k] , (3.5)
k
N, 0y
= —Zky|<1)k|28xt9,f’rM cos Ay — 2k, | Ni||¢x| sin A@krﬂ (3.6)

|| |l

with Af, = 0,? — 6 the cross-phase between the density and electric potential fluc-
tuations taken at the poloidal wavenumber k. The first term on the right-hand side
is proportional to the electrostatic component I1; of the Reynolds stress while the
second relates to the logarithmic gradient of the amplitude of the electric poten-
tial fluctuations and the turbulent flux of particles (17,, = —2k,|Ni||p| sin Ab).
The degree of correlation between the two components of the total Reynolds stress
depends on the relative weight of the second term with respect to the first. If the sec-
ond term is negligible, the two tensors are well correlated. In this situation, cos A6,
determines the sign of the phase coupling, i.e. whether 71, and [T are in phase or
in phase opposition.

The real and imaginary parts of tN,/¢, — which correspond respectively to
||/ | Ni| cos Ab, and |¢;|/|Ni| sin A6, — allow one to understand qualitatively the
correlation between [T and [I1,. It can be computed both from the nonlinear sim-
ulations and from linear analysis. The latter is obtained by performing the linear
analysis of the system using the r.m.s. value of the equilibrium density gradient at
steady state and discarding other equilibrium parameters: V,, =9,V,, = afNeq =0.
The real part of TN, /¢, is shown in figure 6(a), the imaginary part is displayed in
figure 6(b) for the cases with a constant source. In both figures, the linear estimate
is plotted with dotted lines.

Overall, for both the real and imaginary parts, the linear estimate is close to the
nonlinear one even though the analysis is performed without including flow shear.
First, in figure 6(b), the amplitude of the imaginary part of the fluctuation ratio is
small at large C and at small C for the case large g. Consistently, the correlation
between the tensors is large in these regimes. Second, the real part of the fluctuation
ratio is negative at low C whatever the value of g, indicating contributions in phase
opposition. It becomes positive and roughly equal to one at large C, in agreement
with ITg ~ I1, in figure 5(a).

The value of Af; and the sign of cos A6, depend on the underlying turbulence
regime. In particular, the sign of the frequency - or equivalently, phase velocity -
is shown to be crucial in determining the sign of the phase relationship between
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IT; and I1,. Consider the simple case of the density conservation equation with no
compressibility, source or diffusion. In the framework of Tokam1D, the equation
reduces to

N +{p, N} =C(¢ —N). (3.7)

In the limit of very small C, the density behaves as a passive scalar advected by the
electric drift. Then, the Fourier transform on the fluctuations leads to

)

Nkw = - d};kw, (38)
w
with w,, = —k,0,N,, the electron diamagnetic frequency. In the absence of com-

pressibility terms, whenever C is negligible, the density and electric potential
fluctuations are always correlated and either in phase or in phase opposition depend-
ing on the sign of the frequency with respect to w,,.. It is generally accepted that
electron-driven instabilities tend to have a frequency of the sign of the electron dia-
magnetic frequency while ion-driven instabilities have a frequency of the sign of
the ion diamagnetic frequency. In the present case, the CDW instability is driven
by electrons and w,./w > 0. The interchange instability can be driven either by the
ions or the electrons, and one cannot conclude which within the present model
only. However, it is commonly observed in Tokam1D that simulations driven by the
interchange instability have a frequency of the sign of the ion diamagnetic frequency.

All in all, the behavior of the Reynolds stress depends on the underlying turbulence
regime through the correlation and the relative amplitude of its two contributions:
electric and diamagnetic. Let us summarize the three different regimes characterized,

(i) Interchange: turbulence dominated by electric potential fluctuations in the ion
diamagnetic direction. Leads to electric and diamagnetic contributions to the
Reynolds stress in phase opposition with the former larger than the latter.

(ii)) CDW: turbulence dominated by density fluctuations in the electron diamag-
netic direction. Electric and diamagnetic contributions non-correlated with the
latter dominating the dynamics.

(iii) Adiabatic: fluctuations roughly in phase and of the same amplitude. Leads to
in-phase contributions to the Reynolds stress of the same amplitude.

3.3. ZF structure into staircases in interchange regimes close to the threshold

The second mechanism on which ZFs act on turbulence is by inducing a velocity
shear. The determining factor is not only the amplitude of the flows but whether
or not they are organized into well-defined sheared layers (Kosuga et al. 2014; Dif-
Pradalier er al. 2017). A strong shear is expected to tilt and elongate turbulent
structures, leading to their decorrelation, provided that the shear persists longer
than the lifetime of the turbulent eddies (Biglari et al. 1990).

The radial structure of ZFs in Tokam1D changes with the physics parameters
(C, g) and with the distance to the linear threshold. In figure 7, some examples
of steady-state flow profiles, as a function of time ¢ and radius X, are displayed
for different values of g. On the top row, the simulations are performed at con-
stant source Sy(0) =107* for low g =3 x 107 and large g = 1072. On the bottom
row, simulations have the same physics parameter but are performed with adapted
sources.
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FIGURE 7. Examples of equilibrium (zonal) velocity V., = —(E,) at steady state: (a, ¢) (C, g) =
(1073,3 x 107%); (b, d) (C, g) = (1073, 1072). Cases (a) and (b) are computed with a fixed
source Sy (0) = 10~% and (¢) and (d) are computed with an adapted source, respectively Sy (0) =
1.57 x 1072 and Sy (0) = 1.76 x 1077.

With constant source amplitude, the flows tend to structure radially at larger
values of g compared with cases with adapted sources. Furthermore, with adapted
sources — closer to the linear threshold - the flow radial structures are observed to
be more stable in time. This will be emphasized further when discussing figure 8.
When less structured, such as in figure 7(a), the flows exhibit a complex behavior
with splitting (X = 120) and merging (X = 60) events. Those events are correlated
with large turbulent flux bursts, as will be analyzed in §4.2. Note that simulations
with a constant source lead to flow amplitudes approximately two times larger than
for the adapted source cases. As a matter of fact, larger forcing for the constant
source cases leads to a larger turbulence intensity and a stronger ZF drive.

In the present version of Tokam1D, the flows originating from the plasma radial
force balance equation are discarded and only ZFs are considered (2.6). Efforts to
include this background radial electric field in the Tokam1D model have already
been reported in Panico et al. (2025). The present study focuses on the interplay
between turbulence and self-generated flows. Possible impacts of the equilibrium
E, field on the overall dynamics of the system are discussed in §4.2. Also, the
turbulence parameters C and g are set constant radially. Therefore, the resulting
flows are mostly sinusoidal around zero. One can use their energy spectral density,
Sy (k,), computed from the radial Fourier transform of the equilibrium velocity to
study their spatial structure. The radial Fourier transform ‘A/eq (k,, t) is computed for

n =100 time samples that are then averaged: Sy (k) = Z|‘A/eq|2 /n. The spectra are
displayed in figure 8 for the g-scan with constant and adapted sources.

Two groups of simulations can be distinguished in figure 8(a). The first, at low
g €[10* —107?], is dominated by CDW instability and exhibits a broad extremum
around k, ~ 0.015 with amplitude and decay qualitatively similar. The second, at
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FIGURE 8. Energy spectral density of the equilibrium velocity Sy as a function of k, for dif-
ferent values of the interchange parameter g. Each spectrum is the average of 100 independent
spectra. (a) Simulations using constant source Sy (0) = 10~%. (b) Simulations using adapted

sources.
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FIGURE 9. Equilibrium velocity shear 9, V., and equilibrium density gradient —dy;Ne4. (b)
Equilibrium velocity shear and effective diffusivity D.rf = —Iturp/0xNeg. Both are aver-
aged on w.s At =3 x 10% around time w,f = 1.985 x 10° and taken from the case C, o=
(1073, 10~2) with constant source.

large g > 1073, is driven by interchange and exhibits an overall larger spectral density
than the first one. For these simulations, the spectrum amplitudes increase together
with g. This is in agreement with figure 3: ZFs have a larger energy when g increases.
Importantly, a peak appears with its maximum shifting from k, = 0.02 to k, =~ 0.03
as g increases. The appearance of a peak in the spectrum indicates a clear structuring
of the ZFs for g > 1073, Structures have a size between 30 and 50 p, (slightly thinner
at large g). Simulation with adapted sources, in figure 8(b), always display a peak in
the energy spectral density. In most cases, the flows are structured and stable in time
with the exception of very small g cases where some merging and splitting events
occur. Similarly, larger overall spectrum amplitudes are found for cases at large
g >3 x 1073, Overall, a more stable in time flow structure is found for simulations
close to the linear threshold.

Simulations presenting ZFs radially structured lead to staircases in the form
of steps in the density profile. This is illustrated in figure 9 for case (C, g)=
(1073, 1072). The equilibrium density and velocity are plotted as a function of X for
t =1.985 x 10%. The effective diffusivity Dty = —Iu5/0x N,y is shown in figure 9(b).
To remove small-scale effects, both profiles are coarse grained on w,,t =3 x 10%. The
velocity shear oscillates around zero in an almost symmetric pattern. The equilibrium
density gradient is negative as a result of the particle source located at X = 0. When
the velocity pattern is stable in time, the density profile is modulated by the shear so
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that large (in absolute value) density gradients are located at velocity shear extrema,
independently of the sign of the shear. By contrast, all zeros of flow shear coincide
with minima of the absolute value of the density gradient, and therefore with max-
ima of transport. The combined structure of flow shear and ‘steps’ in the density
profile corresponds to the staircase regime described by Hornung et al. (2016) and
Dif-Pradalier et al. (2017). Note that there is a negative correlation between the
transport — effective diffusivity D, — and the absolute value of the density gradient.
This departure from a standard local flux vs gradient relation — which implies that
the gradient causes the flux — has also been pointed out by Villard et al. (2013)
for temperature gradient corrugations in global gyrokinetic simulations. Seemingly,
micro-barriers of transport are generated in location of large shear. From these
results only, we expect that the micro-barriers observed in the presence of staircases
lead to a better overall confinement. The role of staircases on confinement is further
analyzed in §4.3.

It is interesting to note that, in reduced models, such as Tokam1D or modified
Hasegawa-Wakatani, the generated ZFs have a sinusoidal pattern (see for example
Numata et al. 2007; Parker & Krommes 2013; Majda, Qi & Cerfon 2018; Grander
et al. 2024). Therefore, the distance between the staircase steps is similar to the
size of the velocity structures. In more complex models, including flux-driven 5D
gyrokinetic codes, the distance between staircase steps is larger than the steps them-
selves and closer to the avalanche size ~ 40 p, (Dif-Pradalier et al. 2017). A possible
explanation is the lack of g-profile and mode localization effects in those reduced
geometries. Including this, one could expect the turbulence, when dominated by
instabilities favoring k; ~ 0, to localize on rational surfaces and then to generate
ZF structures accordingly (Dominski et a/. 2017). This has been hinted at exper-
imentally on the TJ-II stellarator by Van Milligen et al. (2022). Finally, one can
mention the model - based on the wave kinetic equation accounting for the dynam-
ics of drift waves coupled to an equation governing the ZF dynamics — proposed
by Garbet et al. (2021) where different shapes of staircase patterns can be obtained.
There, it is found that staircases result from the interaction between propagating wave
packets (understood as avalanches) and waves that are trapped in zonal flow velocity
wells’. The detailed characteristics of the staircases (amplitude, shape and periodic-
ity) are determined by those of the background fluctuations, notably their spectra
and growth rates. In particular, structured ZFs appear to exhibit non-sinusoidal
radial profiles, peaked at their maxima (located at the O-points of the islands that
trap the drift waves in their phase space), when the growth rate of the drift waves is
maximum at vanishing radial wavenumber. Experimentally, work from Choi et al.
(2024) hints towards a Fréchet-like distribution of the staircase steps, in agreement
with Dif-Pradalier et al. (2017).

To sum up, ZFs are found to be radially structured in near-marginal, interchange-
driven plasmas. For all studied cases, a stable and radially localized flow shear always
leads to staircase steps in the density profile. The sign of the zonal shear does not
play a role and the density steps follow the flow sinusoidal pattern. This is associated
with the formation of a micro-barrier of transport in the form of a reduced effective
diffusivity.

3.4. Larger flows close to the instability threshold

In figure 3, the distance to the linear threshold plays a role in the energy partition
of the system. In this section, the objective is to compare two simulations that share
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FIGURE 10. Relative turbulent flux I7,,5/ 130, €nergy partition Eveq / (Eveq + E;urp) and dis-

tance to linear threshold as a function of the source S,: (a) CDW driven; g = 1074, C =
2 x 1072 and (b) interchange driven; g =5 x 1073, C=4x10"4.

similar flow with turbulence energy ratios but that have different control parameters
and hence different turbulence properties. The first, driven by CDW, has a large
C=2x10"% and small g =10"*, the flows are little structured with meandering
and splitting events. The second is driven by interchange. It has a large magnetic
curvature g = 5 x 107% and small adiabaticity parameter C =4 x 107, the flows are
highly structured and stable in time.

To vary the distance to the instability threshold, the source is slowly lowered,
ensuring that the simulation reaches a steady state at each step. When reducing
the source, the simulation approaches its nonlinear threshold, until turbulence is
lost. The relative distance to the linear threshold is quantified with the following
dimensionless parameter Aj;,:

3Ny — B NI

cri (39)
0, Néq !

lin =

To monitor the amount of ‘turbulence’, the ratio between the turbulent and diffu-
sive fluxes is computed along with the flow-turbulence energy partition. The result
is shown in figure 10 as a function of Aj;,. The horizontal error bars account for the
corrugation of the equilibrium density gradient, the vertical error bars indicate the
standard deviation for each dataset.

As the simulations get closer to the linear threshold, the turbulence intensity
decreases and so does I3,.,/iss: turbulence generates a smaller part of the total
transport. An important point to notice is the difference in stiffness for drift-wave
and interchange turbulence, the latter leading to a larger turbulent flux just above
the linear threshold. In both cases, the nonlinear threshold is very close to the linear
critical gradient and no significant upshift is found. However, the simulations being
flux driven, it is difficult to define properly the gradient and the threshold because
the profiles can be corrugated. In those cases, larger gradients can occur locally and
produce turbulence even though the averaged profile is below the linear threshold.
In agreement with figure 3, the case at (large g, small C) (figure 105) displays an
increased flow to turbulence energy ratio as the threshold is approached. In this
case, the flows store more energy close to the threshold.

The marginality — loosely defined as the distance to a linear/nonlinear instability
threshold - has already been considered important for both simulations Dif-Pradalier
et al. (2017) and experiments Hornung et al. (2016). In those contributions, it is
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reported that staircases are found in near-marginal ion drift-wave turbulence and are
not observed in the electron drift-wave regimes. In the present work, the statistics
offered by the large number of simulations stands in agreement with those previous
observations as the staircases are found in interchange close to the linear threshold.

4. Role of zonal flows on transport and avalanches

Ultimately, the generation of ZFs is crucial for a fusion machine because they
mitigate the turbulent transport (Lin ef al. 1998). Two mechanisms are at play: they
constitute a sink of energy for turbulence (and create no transport themselves) and
they induce a shearing (Biglari ef al. 1990; Diamond & Kim 1991). In particular, the
existence of radially localized time stable shear layers of flows is expected to lead to
a better confinement (Dif-Pradalier ef al. 2017). However, the transport itself is also
complex and self-organizes into various structures. In Tokam1D, the linear analysis
indicates that the growth rate is maximum for the lowest values of k, accessible by
the system. As a result, turbulence tends to develop radially extended vortices, often
called streamers, that mix large portions of the plasma. The flow shear is instrumen-
tal in breaking those extended structures into smaller cells. Transport also exhibits
complex structures in the form of avalanches: almost ballistic transport events of heat
and particles on long distances with respect to the turbulence correlation lengths. A
single, large transport barrier resulting from a large shear could possibly stop the
transport event (Fedorczak er al. 2009). However, the question of the interplay
between avalanches and staircases is still debated. Staircases can be expected to
either limit the radial extent of avalanches or arise as a result of avalanches them-
selves, see respectively work from Choi et al. (2024) and Kosuga et al. (2014). In
this section, the transport is analyzed in the drift-wave and interchange regimes. It
is shown that the confinement largely depends on the control parameters C and g.
Then, the role of avalanches is analyzed. They prove to be of importance both as
a means to carry particles and as quantities that interact with the dynamical zonal
structures. Finally, the influence of staircases on transport is assessed.

First, let us analyze the confinement in a statistical sense by looking at the con-
finement time of particles (2.10). Note that this quantity yields similar information
to the ratio of the turbulent to diffusive fluxes of particles at the steady state. In the
framework of Tokam1D, the ‘diffusive flux’ is linked to the term Dyd>N,, in (2.5).
At the steady state, a better confinement is obtained when the diffusive flux of par-
ticles accounts for a larger part of the transport. Actually, the theoretical ‘optimum’
confinement is when there is no turbulence, hence I}, ~0 and 9, N, ~ 3, Na//.
The particle confinement time at the steady state is displayed in figure 11.

The particle confinement time 7, relates to the steady-state density profile and the
source. It is mostly governed by the instability threshold and the system’s stiffness,
1.e. its ability to depart from the instability threshold. The threshold - defined loosely
as marginality — has already been pointed out as crucial for the overall confinement
by Diamond & Hahm (1995). In figure 11, the confinement times of the constant Sy
cases are mostly governed by the linear threshold. For the adapted source cases, the
linear instability threshold is taken into account in the source, and the confinement
depends on the system’s stiffness only. As such, it is easier to infer the role of
nonlinear quantities, such as ZFs or avalanches, on the particle confinement time.

In figure 11, the confinement time mostly increases with C for two main reasons:
the critical gradient increases with C (cf. figure 1) and the stiffness reduces with
C. The threshold is also larger at small C, small g, leading to an increased confine-
ment. Note that the cases with an adapted source yield a larger confinement time
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FIGURE 11. Confinement time of the particles 7, as a function of C for three values of g.

le6 Turbulent flux interchang

FIGURE 12. Examples of turbulent flux of particles Iy, = —Zky?s(qub}:) at steady state. (a)
(C,9)=(1073,3x107%). (b) (C, g) = (1073, 1072). Both are computed with a fixed source
at Sy (0) = 1074,

as they are closer to their linear threshold. They exhibit a larger flow to turbulence
energy ratio and a more stable in time radial structuring of ZFs. When the source is
larger, the excess of energy is stored into the turbulence which leads to an increased
transport.

4.1. Transition to avalanche-like transport in interchange turbulence

The turbulent transport is shown to transit towards avalanche-like transport when
increasing g at fixed C. Choosing the cases (a) and (b) of figure 7, the turbulent
flux of particles as a function of X and time is displayed in figure 12 with a low
g =23 x 107 on the left and a large g = 1072 on the right.

At larger g, the turbulent flux of particles displays diagonal stripes across large
portions of the simulation domain. Those correspond to ballistic transport events
of particles compatible with avalanches. Note that the information of the avalanche
travels both in and outwards while the flux is always positive, i.e. the transport of
particles is always outwards from the domain. The propagation of the avalanche is
often understood similarly to a sand pile avalanche (Diamond & Hahm 1995). A
local relaxation of the profile leads to two high gradients on each side of the plateau.
At those locations, the larger gradient induces a larger growth rate and a resulting
increased transport, which leads to a flattening of the steep regions. As such, the
perturbation moves in two directions: a bump propagates down gradient while a void
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FIGURE 13. Propagating avalanches on the equilibrium density profile, case (C, g) = (1073,
10~2) with constant source Sy (0) = 1074,

propagates up gradient. Actually, it is possible to verify on the equilibrium density
profile whether there is a propagation of voids and bumps by plotting N,,(x, ) —
(N,y):(x). This is done in figure 13 for the case (C, g) = (107, 1072). The diagonal
stripes indicative of avalanches appear clearly. This time, events traveling to the
right-hand side are positive perturbations — bumps - in red while events traveling to
the left are negative — voids - in blue.

Note that the avalanche patterns exhibit an almost symmetric bi-directional behav-
ior, i.e. as many avalanches propagate inward and outward at each radial position.
The direction of propagation of avalanches has been shown to depend on the sign of
the mean flow shear in earlier publications. Different mechanisms were proposed to
understand this behavior by Idomura et al. (2009) and McMillan et al. (2009). The
reason for equi-probable inward- and outward-moving avalanches in Tokam1D likely
stems from the absence of equilibrium radial electric field in the present version of
the code - the radial force balance is not enforced. As a result, the radial deriva-
tive of E, does not have a well-defined sign in large radial regions of the system.
Conversely, it oscillates with positive and negative values in response to turbulent
bursts. Studying the impact of such equilibrium E, on avalanche dynamics with
Tokam1D is left for future work. The avalanche-like pattern presented above occurs
in simulations with highly structured flow profiles. In the observed simulations, when
the ZFs are structured, there is always an avalanche-like dominated transport. The
avalanches are also visible directly on the flow pattern, as they perturb it when prop-
agating across. More details regarding the interaction with flows are given in the
next section.

Note that the two cases presented figure 12 are at both ends of the g-scan.
The intermediate values of g lead to intermediate behaviors with avalanches that
propagate on smaller parts of the domain. Avalanches can be studied statisti-
cally by computing the skewness S and kurtosis K, respectively third and fourth
moments of the probability density function (pdf) p of the turbulent flux of particle,

Z=Eurb(t)
3 4
S(Z)=E[(Z;“) } ; K(Z)=E[(%) } , (4.1)

https://doi.org/10.1017/50022377825100603 Published online by Cambridge University Press



https://doi.org/10.1017/S0022377825100603

20 O. Panico and others
(a) (b)

Statistics of Ity constant Sy
v T T

.
)

Statistics of Iy, adapted Sy
T v T

:
L | K=135213-1

=
o
~

kurtosis
kurtosis
=
o
2

10} . E
5 —e— AdaptedSy . g =3e03

g =1e-04 * g=6e03

g = 3e-04 * g=8e03

g=6e-04 + g=1e02

—@— Constant Sy . g=3e03
g =1e-04 . g=6e03
g =3e04 . g=8e03
g =6e-04 . g=1le02
g =9e-04 « g=3e02 g =9e-04 +  g=3e02

10°¢ g=1e03 K 10°¢ g=1e03 o

1 L T T <N 1 L T T
0 2 4 6 8 10 0 2 4 6 8 10
skewness skewness

FIGURE 14. Probability distribution function of the turbulent flux for simulations at constant
(a) and adapted (b) sources as a function of g. All the simulations are computed for C = 1073.
Statistics are computed at each radial position.

with p the statistical mean and o the standard deviation of the fluctuating sig-
nal Z(t) and E[F(Z)] = ffzo F(Z)p(Z)dZ. These functions measure respectively
the pdf asymmetry and width (weight of the tails). For a Gaussian statistics, S =0
and K = 3. In the present case, avalanches are radially extended and ‘rare’ events.
Therefore, we expect them to lead to important values for skewness and kurtosis.
For both cases with constant and adapted sources, S vs K is plotted in figure 14 for
the g-scans. Simulations with a constant source are indicated in red (left), the ones
with adapted sources are in blue (right).

The Kkurtosis increases with the skewness in an almost polynomial way.
Interestingly, the relation between kurtosis and skewness is similar to the one
reported in experiments Labit ef al. (2007). Also, both the skewness and the kur-
tosis are shown to increase with larger values of g, displaying a more skewed and
deviated pdf. Overall, the avalanches account for a larger part of the statistics as g is
increased and as the system is far from the linear threshold. Note that this behavior
is not universal, other contributions for example from Diamond & Hahm (1995)
and Sarazin et al. (2000) discuss the transport to be avalanche-like close to the linear
threshold.

4.2. Interplay between avalanches and zonal flows

As stated in the previous sections, staircases are observed mainly at large g where
they coexist with avalanches. To get more insight into the interaction between flows
and avalanches, we plot on top of the flow profiles the 90 % quantile of the turbulent
flux presented in figure 12. In other words, we add the largest events of the turbulent
flux of particles. The result is shown in figure 15 for the case at small g, dominated
by CDW and in figure 16 for the case at large g dominated by interchange.

In the first case, there are no avalanches per se but bursts of turbulent flux of
particles occuring throughout the simulation. The radial extent of those bursts is
roughly of the size of the flow structures themselves. Interestingly, the locations of
the bursts are correlated to modifications of the flow topology. This is the case both
for merging events (bottom left of the zoom) and for splitting events (top right).

On the second case, in figure 16, the avalanches are large enough so that they
propagate across the ZF structures. Here, two types of ZFs can be identified. The
first type consists of ZFs at finite frequency moving along the almost ballistic trajec-
tories of the avalanches of flux: these avalanches leave a faint imprint on the flow
pattern as can be seen on the color map. These ones exhibit the usual predator-prey
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of the particle flux. Case (C, g) = (1073, 10~2) with constant source Sy (0)=10""%. (right)
Reactivation of an existing ZF structure by passing avalanches. Temporal slice taken at X = 305.

dynamics (see Diamond et al. 1994 for a heuristic model, and e.g. Morel, Giircan &
Berionni 2013 for its observation in gyrokinetic simulations): ZFs feeding on turbu-
lence and contributing to its saturation. This mechanism is suspected to govern the
local time duration of an avalanche burst: the flux increases locally, leading to the
increase of ZFs with some time delay; the latter then act to reduce turbulence and
the associated flux. The second type is made of the structured ZF layers at almost
zero frequency which exhibit a peculiar behavior when an avalanche passes through.
To investigate the interaction, we display a slice at X = 305 as a function of time on
the right-hand side of figure 16. The flows decay exponentially in the absence of any
turbulent drive. This results from the imposed friction (—uV,,) in (2.6). Conversely,
when an avalanche passes through the layer, the flow structures are observed to
be reactivated. The particularity here is to have a staircase structure, where ZFs
are radially localized, that is maintained by the passing avalanches. In these local-
ized layers of strong ZFs, the flows (predator) are no longer tied to the avalanche
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(prey) dynamics as would be expected in a predator-prey model. Such a regime can
be expected when the system is efficient in converting turbulent energy into flow
energy (large predator population growth for a given prey population) and/or when
the life time of the flows (small damping) is long with respect to the time inter-
val between avalanche bursts (regeneration time of the prey). Note that this kind
of dynamics where bursts of turbulence, or proxy for avalanches, contribute to the
self-sustainment of long-lived ZFs layers has already been hinted at in both reduced
gradient-driven (Ivanov et al. 2020) and gyrokinetic (Dif-Pradalier et a/. 2017) mod-
els. This generation mechanism has been considered by Zhu, Zhou & Dodin (2020)
for a Hasegawa-Wakatani type of model and by Kosuga et al. (2014). In the latter
contribution, the key element is to consider a delay between the instantaneous and
the mean heat flux, thus leading to ‘jams’ of heat flux waves. A possible way of clos-
ing the gap with their model would be to compute the distribution of the avalanches
‘waiting time’ in the present simulations. This comparison is left for future
work.

4.3. Staircases improve the overall confinement

Do staircases improve the overall confinement? As stated in figure 11, the confine-
ment is mainly governed by the linear threshold and the system’s stiffness. While the
effect of the linear threshold is ‘neutralized’ in simulations with the adapted source,
the system’s stiffness results from both linear - instability growth rate, linear cross-
phase — and nonlinear — ZFs, avalanches - properties. Therefore, it is necessary to
normalize the particle confinement time to a linear estimate so that simulations with
different turbulence parameters can be compared.

In the framework of the quasilinear theory, the transverse transport is diffusive,
characterized by the diffusion coefficient Dy, = y; sin(Agy)/ k2, with y, the linear
growth rate and Ag, the linear cross-phase between density and electric potential
fluctuations, both taken at the poloidal wavenumber k,. Therefore, the confinement
time is simply defined as the square of the radial distance over which confinement
is required, namely L,, divided by this transport coefficient Dy, . It results that
simulations with a large growth rate and cross-phase lead to a small quasilinear
confinement time. The chosen estimate reads

kiL;

_ 4.2
—Vk sin A(pk ( )

ToL =

The minus sign comes from the fact that a negative sin Ag, leads to an outward tur-
bulent flux I7},.,. The linear quantities y; and sin Ag; are computed without taking
into account profile corrugations: only the averaged steady-state equilibrium den-
sity profile is considered. However, simulations that include staircases usually also
include density profile corrugations. Those lead to larger gradients locally and can
give a larger estimation of y,. However, the linear quantities are also computed
without taking into account any kind of equilibrium flows: V,, =0, V,, =0, because
the objective is to assess the role of the flows on the confinement. All in all, we
choose to keep the linear estimate simple by taking only a mean estimate of the
gradient and no flows. In the situation where the growth rate or the cross-phase van-
ishes, the mixing length estimate for the confinement time diverges as no transport is
expected. In practice, we choose 7, = min(tgy, Taiss) With T4 = [ Nj;ffdx/ [ Sydx
the maximum confinement time achievable in a Tokam1D simulation. The parti-
cle confinement time normalized by the linear estimate is shown in figure 17 as a
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7, =min(tgy, Taifr)- (b) As afunction of g for C = 10~3. Both for simulations with an adapted
source Sy (0) = 10~4.

function of C and g. The normalization is performed on cases with an adapted
source so that the forcing is the same across the parameter space.

In figure 17, the trend is different from the non-normalized particle confinement
time 7, in figure 11. Simulations leading to the largest 7, /7, are those at large values
of g. The normalized confinement time also increases with C at low and medium
g but then reaches a plateau. We argue that, in the framework of Tokam1D, the
normalized confinement time can be used to study the role of ZFs in improving
the confinement. To this end, we compare the above figure to the system’s energy
partition, figure 3, and to the flows radial structure figure 8. The largest flows in
terms of energy are found either at large value of C or at large value of g. The
second case also leads to radially structured ZFs that induce a more stable shear.
The normalized particle confinement time is larger for cases yielding a large flow to
turbulence energy ratio and even more so when they are strongly radially structured
(large g, small C). This supports the conclusion that flows, and in particular radially
structured flows, lead to a better overall confinement.

5. Conclusion

Three important topics have been assessed in this paper: (i) the generation of ZFs
in competing CDWs - interchange turbulence, (ii) their radial structure and (iii) the
role of ZFs and staircases in transport and avalanches.

To this end, the reduced flux-driven nonlinear model Tokam1D that features both
CDW and interchange instabilities has been used. The CDW instability is controlled
by the adiabatic parameter C which scales like the square of the turbulence parallel
wavenumber divided by the electron-ion collision frequency. Interchange is driven
by an effective curvature g which, in the framework of Tokam1D, relates to the
strength of the magnetic field inhomogeneity. The isothermal and electrostatic model
includes a finite ion temperature, so that both the electric and diamagnetic contri-
butions to the Reynolds stress are taken into account in the generation of ZFs. This
model is reduced to one dimension by separating the density and electric potential
into equilibrium - to be understood as flux-surface averages — and fluctuating com-
ponents. The latter is Fourier transformed and projected onto single poloidal k, and
parallel k; wavenumbers. As such, while mode-mode nonlinear coupling between
finite k, modes is discarded, nonlinear transfer to different radial wavenumbers k,
still occurs through the coupling with the equilibrium fields. Importantly the model
is flux driven and does not assume any scale separation between equilibrium and
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fluctuating components. This is crucial for the density and flow profiles to corru-
gate and form staircases (Panico et al. 2025). A total of 104 simulations have been
evolved on the particle confinement time while still resolving the turbulence time
and spatial scales. Two sets of simulations with different strategies for the source are
used with the same parameters C and g. The first is set with a constant amplitude at
Sy (0) = 10~ throughout the whole scanned parameter space. The second is adapted
for each simulation so that each one remains at a controlled distance from the linear
stability threshold.

Three main regimes are identified. The first, at low C and large g, is the inter-
change regime. The second, at medium C and low g, is the CDW regime. The third,
at very large C, is the adiabatic regime. Flows are shown to be generated and to effi-
ciently store a significant part of the turbulence energy in both the interchange and
the adiabatic regimes. Unlike previous publications that include only CDW insta-
bility, the presence of the interchange instability allows ZFs to still be generated
even when the adiabatic parameter is small. One of the consequences is that the
‘ZF collapse’ routinely observed in gradient-driven codes featuring the sole CDW
instability, is not present in the Tokam1D simulations. The interchange dominated
regime also exhibits radially structured ZFs — intimately associated with corrugations
in the equilibrium density profile — and avalanche transport.

The two regimes leading to large flow-to-turbulence energy ratio are understood
from the role of the underlying Reynolds stress. The interchange dominated regime
is dominated by the electric contribution to the Reynolds stress with the subdom-
inant diamagnetic contribution in phase opposition. As expected, the adiabatic
regime is characterized by similar amplitude and in-phase electric and diamagnetic
contributions. The third regime, dominated by CDW instability, is driven by the dia-
magnetic contribution to the Reynolds stress reaching roughly two times the electric
contribution.

The distance from the equilibrium density profile to the instability threshold plays
a role in generating the ZFs. First, flows tend to be more structured when close
to the instability threshold. Second, in interchange-driven plasmas, flows are able to
capture more turbulent energy close to the threshold. This second characteristic is
not observed in CDW-driven turbulence for the explored parameter range.

Finally, the role of ZFs in transport is assessed. First of all, the zonal structures
are shown to interact with the avalanches. In the CDW dominated case, the turbu-
lent flux of particles is shown to disturb the ZF structures, leading to modifications
of their topology. In the interchange-driven case, the large avalanches are shown
to reactivate the radially localized ZF structures — otherwise exhibiting an e-folding
decay in time due to collisional friction - by traveling through them. At last, using
a normalization that takes into account the linear properties of the system, the
cases with radially localized ZFs - in the form of staircases — exhibit a larger nor-
malized particle confinement time. Staircases are shown beneficial for the overall
confinement.

The results and trends reported in the present contribution, including the gen-
eration of ZFs and staircases in near-marginal interchange dominated turbulence,
should be understood as guides to conduct simulations and analyze the results of
more advanced models, which can ultimately validate these findings. The minimal
requirement for these models is to be flux driven and to include both contributions —
electric and diamagnetic - to the Reynolds stress.

We can think of at least two main physical ingredients that are missing in the
present Tokam1D model - apart from the nonlinear mode-mode coupling already
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discussed at length - and that may affect the reported dynamics. The first one
deals with geodesic acoustic modes, the high-frequency branch of the ZFs, that are
known to exchange energy with both turbulence and low-frequency ZFs (Miki &
Diamond 2010). Actually, there may be a way to incorporate their dynamics, at
least heuristically, in an extended version of Tokam1D by adding another mode at a
different k,. The second one relates to the intrinsically three-dimensional nature of
turbulence in tokamak plasmas. Especially, higher dimensions allow one to explore
the correlated role of the ballooning character of interchange turbulence and of
the radial localization of modes around rational flux surfaces, hence the role of
the safety factor g, possibly impacting the flow structures themselves, as recently
suggested (Van Milligen et al. 2022).

Regarding the Tokam1D model itself, obvious improvements can be envisaged to
enrich the addressed physics, hence the relevance of the model. Adding the temper-
ature equations would enable more experimentally relevant modes such as resistive
ballooning and ion temperature gradient modes. This would also allow one to study
the conditions for the possible decoupling between particle and heat transport chan-
nels — some works point towards the critical role the parallel electron heat flux (Manz
et al. 2020). Also, describing high-confinement regimes such as the H-mode requires
us to take into account electromagnetic effects which are known to affect the elec-
tron response in large gradient regimes (Scott 1997; Zholobenko et al. 2024). Also,
this would permit us to address the role of additional instabilities such as kinetic
ballooning modes. Last, Tokam1D can also be extended to the scrape-off layer by
providing an adequate closure for the parallel dynamics. These improvements are
ongoing and will be reported in future works.
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