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Varieties with quadratic entry locus, II

Paltin Ionescu and Francesco Russo

Abstract

We continue the study, begun in [Rus07], of secant defective manifolds having ‘simple entry
loci’. We prove that such manifolds are rational and describe them in terms of tangential
projections. Using also the work of [IR07], their classification is reduced to the case of Fano
manifolds of high index, whose Picard group is generated by the hyperplane section class.
Conjecturally, the former should be linear sections of rational homogeneous manifolds. We
also provide evidence that the classification of linearly normal dual defective manifolds
with Picard group generated by the hyperplane section should follow along the same lines.

Introduction

An n-dimensional closed submanifold X ⊂ P
N is secant defective if its secant variety SX ⊆ P

N

has dimension less than 2n + 1, the expected dimension. The secant defect of X is then δ =
δ(X) := 2n+ 1− dim(SX ). Secant defective manifolds naturally fall into two categories. Manifolds
admitting ‘non-trivial projections’ are those for which SX �= P

N , see [Sev01, Zak93], while manifolds
‘of small codimension’ correspond to the other case, SX = P

N , see [BL72]. Let x, y ∈ X be two
general points and let p be a general point on the line 〈x, y〉. Consider the closure of the locus
of secants to X passing through p. Its trace on X, denoted as Σp, is called the entry locus (with
respect to p) and has dimension δ. Our aim is to find classification results for secant defective
manifolds whose entry loci are simple enough. Consider embedded manifolds X ⊂ P

N as above,
such that through two general points x, y ∈ X there passes an r-dimensional quadric hypersurface,
say Qr, contained in X. Observe that Qr ⊆ Σp if p ∈ 〈x, y〉; in particular r � δ, see [KS02]. When
r = 1, we call such manifolds conic-connected (CCMs for short). The extremal case r = δ was called
‘manifolds with local quadratic entry locus’ (LQELMs), while the special case when Qr = Σp was
named ‘manifolds with quadratic entry locus’ (QELMs); see [KS02, Rus07, IR07]. Being rationally
connected, these special classes of secant defective manifolds may be studied in the context of Mori
theory; see [Mor79, Mor82, KMM92] and also [Deb01, Kol96, Hwa01]. The interested reader can
find further motivation and various examples in the introduction to [Rus07]. The present paper
continues the line of investigation started in [Rus07]; see also [IR07]. We acknowledge once more
our intellectual debt to the classical work by Scorza; see [Sco08, Sco09]. The content of the paper
is described below.

Tangential projections turned out to be a basic tool in the classical works (by Severi, Scorza,
Terracini, and others) on secant defective manifolds. In what follows, by the δ-partial tangential
projection we mean projection from a δ-codimensional linear subspace (passing through x) of the
projective tangent space at x ∈ X. In Theorem 2.1 we show that the generic δ-partial tangential
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projection of a QELM is birational. The proof is based on a degeneration technique introduced
in [CMR04] (see also [CR06]). The key point is that the general fibre of the (full) tangential pro-
jection is a degeneration of the general entry locus. Conversely, if the generic δ-partial tangential
projection of X is birational, then X is a LQELM. Moreover, we show that defective LQELMs are
rational, extending the theorem on the rationality of ‘manifolds with one apparent double point’,
proved in [CMR04]. In § 3 we compare various properties of LQELMs and CCMs; see Proposition 3.2.
Examples show that the former class is much larger than the first. In particular, using results by
Hwang and Kebekus [HK05] (see also [IR07]), we see that complete intersections (of high dimension
with respect to the multidegree) are CCM, while the only LQELM which are complete intersections
are the hyperquadrics; see Proposition 3.4. We also characterize LQELMs (when δ � 3) in terms of
the projective geometry of the variety of lines passing through a general point and contained in X;
see Proposition 3.5 and [Rus07, Theorem 2.3]. The main properties of LQELMs are collected in
Theorem 3.7. In particular, their classification is reduced to the case when the Picard group is gen-
erated by the class of the hyperplane section. Conjecturally, QELMs with Pic(X) ∼= Z〈OX(1)〉 are
linear sections of rational homogeneous manifolds (which are completely classified); see Remark 3.8.
The last section contains two applications. The first one, due to Fu [Fu08], gives a substantial im-
provement of one of the main results from [KS02] and is based on ideas developed in [Rus07, IR07]
and the present paper. The other application is a new proof of the classification, due to Ein [Ein86],
of manifolds with small dual. To the best of our knowledge, this is the first time that the classifi-
cation of dual defective manifolds has been connected to (and, conjecturally, even reduced to, cf.
Remark 4.5) that of secant defective mainfolds, via the key concept of (L)QELM.

1. Preliminaries

We work over the field of complex numbers. Notation and terminology are the same as in [Rus07];
we recall below some of the relevant facts.

Let X ⊂ P
N be an irreducible non-degenerate projective variety of dimension n. Let

SX =
⋃
x �=y
x,y∈X

〈x, y〉 ⊆ P
N

be the secant variety to X; see also the construction in (3).
Clearly dim(SX ) � min{N, 2n + 1}. If dim(SX ) < 2n + 1, then X ⊂ P

N is said to be secant
defective. The secant defect of X ⊂ P

N is equal to δ(X) := 2n+ 1 − dim(SX ).
For p ∈ SX \ X, the closure of the locus of couples of distinct points of X spanning secant

lines passing through p is called the entry locus of X with respect to p ∈ SX and it will be denoted
by Σp(X). The closure of the locus of secant lines to X passing through p is a cone over Σp(X); let
us call it Cp(X). If X ⊂ P

N is smooth, then Σp(X) = Cp(X) ∩X as schemes for general p ∈ SX ;
see, for example, [FR81, Lemma 4.5]. Moreover, it is easy to see that for general p ∈ SX , Σp(X) is
equidimensional of dimension equal to δ(X). Thus dim(Cp(X)) = δ(X) + 1. In general, Σp(X) may
be reducible.

Let X ⊂ P
N be an irreducible non-degenerate projective manifold of

dimension n and secant defect δ � 0.
(1)

In the following definition, we consider varieties having the simplest entry locus.

Definition 1.1 (cf. also [KS02, Rus07, IR07]). Let X be as in (1).

(i) X is said to be a quadratic entry locus manifold of type δ � 0, briefly a QELM of type δ, if for
general p ∈ SX the entry locus Σp(X) is a quadric hypersurface of dimension δ.
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(ii) X is said to be a local quadratic entry locus manifold of type δ � 0, briefly a LQELM of type δ,
if through two general points there passes a quadric hypersurface of dimension δ contained
in X.

(iii) X is said to be a conic-connected manifold, briefly a CCM, if through two general points of X
there passes an irreducible conic contained in X.

Note that, for δ = 0, being a LQELM imposes no restriction on X. Clearly, any QELM is LQEL
and any defective LQELM is CC.

Lemma 1.2 (cf. Lemma 1.2 in [Rus07]). Let X be a LQELM with δ > 0 and let x, y ∈ X be general
points. There is a unique quadric hypersurface of dimension δ, say Qx,y, passing through x, y and
contained in X. Moreover, Qx,y is irreducible.

The following proposition is easy to prove.

Proposition 1.3. Let X ⊂ P
N be an irreducible non-degenerate smooth projective variety.

(i) If X ′ ⊂ P
M , M � N − 1, is an isomorphic projection of X, then X ′ is a LQELM if and only

if X is a LQELM.

(ii) If X is a (L)QELM of type δ � 1, then a general hyperplane section is a (L)QELM of type
δ − 1.

(iii) If X is a QELM and SX = P
N , then X is linearly normal.

Proof. Parts (i) and (ii) are standard and left to the reader, so that we prove only part (iii). Suppose
that X ⊂ P

N were the isomorphic projection of X ⊂ P
N+1 from a point q ∈ P

N+1 \ SX. Since
N = dim(SX ) = dim(SX), SX would be a hypersurface of degree at least two. A general p ∈ SX
would be the projection from q of at least two different points p1, p2 belonging to 〈q, p〉 ∩ SX .
Then the projections of the entry loci Σp1(X) and Σp2(X) yield two irreducible components of
Σp(X). This is a contradiction, since Σp(X) is a smooth, hence irreducible, δ-dimensional quadric
hypersurface; see [FR81, pp. 964–966].

If x ∈ X ⊂ P
N is a smooth point, we denote by TxX the affine Zariski tangent space at x and

by TxX its projective closure in P
N .

The dimension of the image of the projection of X ⊂ P
N from a general tangent space to X,

called the tangential projection of X ⊂ P
N , is easily computed via the Terracini lemma (see, for

example, [Rus07, § 1]). Let x ∈ X ⊂ P
N be a general point and let

πx : X ��� Wx ⊆ P
N−n−1 (2)

be the projection of X from TxX. We have dim(Wx) = n− δ, so that a general fiber of πx is of pure
dimension δ.

Lemma 1.4 (cf. Lemma 1.6 in [Rus07]). LetX ⊂ P
N be a smooth irreducible non-degenerate variety,

and assume that δ > 0. The irreducible components of the closure of a general fibre of πx are not
linear.

2. Tangential projections and the geometry of LQELMs

The main result of this section is the following theorem, generalizing [CMR04, Corollary 4.2], where
the case of QELMs of type δ = 0 in P

2n+1, i.e. of varieties with one apparent double point, was
considered.

Theorem 2.1. Let X ⊂ P
N be as in (1) and let x ∈ X be a general point. Then the following

hold.
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(i) If X is a QELM of type δ � 0, the projection from a general δ-codimensional subspace of
TxX passing through x is birational onto its image. In particular, if SX = P

N , then X is
rational.

(ii) Conversely, if the projection from a general δ-codimensional subspace of TxX passing through
x is birational, then X is a LQELM of type δ.

(iii) If X ⊂ P
N is a LQELM of type δ > 0, then X is rational.

We recall some results from [CMR04] (see also [CR06]) in order to point out a relation between
the entry loci of a variety and a general fiber of the tangential projection. We believe this relation,
contained in Proposition 2.2 below, is interesting in itself.

Let X ⊂ P
N be an irreducible non-degenerate projective variety and let

SX := {(x, y, z) | x �= y, z ∈ 〈x, y〉} ⊂ X ×X × P
N

be the abstract secant variety of X ⊂ P
N , which is an irreducible projective variety of dimension

2n+ 1. Let us consider the projections of SX onto the factors X ×X and P
N .

SX
p1

�����
��

��
�� p2

���
��

��
��

�

X ×X P
N

(3)

With this notation we get

p2(SX) =
⋃
x �=y
x,y∈X

〈x, y〉 = SX ⊆ P
N .

Let L = 〈x, y〉 with x ∈ X and y ∈ X general points, i.e. L is a general secant line to X, and let
p ∈ 〈x, y〉 ⊆ SX ⊆ P

N be a general point. We fix coordinates on L so that the coordinate of x is 0;
let U be an open subset of A

1
C
⊂ L containing 0 = x. Let p2 : SX → SX ⊆ P

N be as above and let

ZU = p−1
2 (U) ⊂ SX .

By changing U , if necessary, we can suppose that p2 : ZU → U is flat over U \ {0} and that
dim(ZU )t = δ(X) for every t �= 0. The projection of p1((ZU )t) onto one of the factors is Σt, the
entry locus of X with respect to t for every t �= 0.

Moreover, by definition, a point (r, s) ∈ X × X, r �= s, belongs to (ZU )t, t �= 0, if and only if
t ∈ 〈r, s〉, that is if and only if (r, s) ∈ p−1

2 (t). Thus, if ψt : X ��� P
N−1 is the projection from t onto

a disjoint P
N−1, we can also suppose that ψt is a morphism for every t �= 0 and a rational map not

defined at x = 0 for t = 0. The above analysis says that the abstract entry locus (ZU )t, t �= 0, can
be considered as the closure in X ×X of the double point locus scheme of ψt, minus the diagonal
∆X ⊂ X ×X.

Let T = 〈TxX, y〉, so that T is a general P
n+1 containing TxX and a general point y ∈ X. By

definition π−1
x (πx(y)) = T ∩X \ (TxX ∩X), with the notation as in (2). Let

Fy = π−1
x (πx(y))

be the closure of the fiber of πx through y. Every irreducible component of Fy has dimension δ(X)
by the Terracini lemma and by the generality of y; see the discussion after (2). Generic smoothness
ensures also that there exists only one irreducible component of Fy through y.

By using the same ideas as in [CMR04], we have the following result, not explicitly stated
in loc. cit., because a slightly different degeneration was considered. For more details about the
construction recalled above and below, we refer to [CMR04, §§ 3 and 4] and [CR06, § 2].
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Proposition 2.2. Let the notation be as above. The closure of the fiber of πx through a general
point y ∈ X is contained in the flat limit of the family {(ZU )t}t�=0. In other words, the closure of a
general fiber of the tangential projection is a degeneration of the general entry locus of X.

Proof. We shall look at ψt as a family of morphisms and study the limit of the double point
scheme (ZU )t.

Consider the products X = X × U and PU = P
N−1 × U . The projections ψt, for t ∈ U , fit

together to give a rational map ψ : X ��� PU , which is defined everywhere except at the pair
(x, 0). In order to extend the projection not defined at x ∈ X, we have to blow up X at (x, 0). Let
σ : X̃ → X be this blowing-up and let Z 
 P

n be the exceptional divisor. Looking at the obvious
morphism ϕ : X̃ → U , we see that this is a flat family of varieties over U . The fiber X̃t over a point
t ∈ U \ {0} is isomorphic to X, whereas the fiber X̃0 over t = 0 is of the form X̃0 = X̃ ∪ Z, where
X̃ → X is the blowing-up of X at x, and X̃ ∩ Z = E is the exceptional divisor of this blowing-up,
the intersection being transverse. Reasoning as in [CMR04, Lemma 3.1], it is easy to see that ψ0

acts on X̃ as the projection from the point 0 = x, while it maps Z isomorphically onto the linear
space ψ0(T ) = P

n. This immediately implies that every point of T ∩X, different from x, appears
in the ‘double point scheme’ of ψ0 : X̃ ∪ Z → P

N−1. Therefore Fy, being of dimension δ(X), is
contained in the flat limit of {(ZU )t}t�=0, proving the assertion.

For an irreducible variety X ⊂ P
N we denote by µ(X) the number of secant lines passing through

a general point of SX . If δ(X) > 0, then µ(X) is infinite, while for δ(X) = 0 the above number is
finite and in this case

ν(X) = µ(X) · deg(SX )

is called the number of apparent double points of X ⊂ P
N . With these definitions we obtain the

following generalization of [CMR04, Theorem 4.1] (see also [CR06, Theorem 2.7]).

Theorem 2.3. Let X ⊂ P
N be as in (1). If δ(X) = 0, then

0 < deg(πx) � µ(X).

In particular, for a QELM of type δ = 0, the general tangential projection is birational.

If X ⊂ P
N is a QELM of type δ > 0, then the general fiber of πx is irreducible. More precisely

the closure of the fiber of πx passing through a general point y ∈ X is the entry locus of a general
point p ∈ 〈x, y〉, i.e. a smooth quadric hypersurface.

Proof. If δ(X) = 0, then for t ∈ U \ {0} the zero-dimensional scheme (ZU )t has length equal to
2µ(X). The zero-dimensional scheme Fy contains deg(πx) isolated points, yielding 2 deg(πx) points
in the flat limit of {(ZU )t}t�=0 by Proposition 2.2 and proving the first part.

Suppose X is a QELM of type δ > 0. Then for every t �= 0 the δ-dimensional scheme (ZU )t
is a smooth quadric hypersurface by definition of QELMs. The fiber Fy contains the entry locus
Σp of a general point p ∈ 〈x, y〉, which is a smooth quadric hypersurface of dimension δ passing
through x and y. By Proposition 2.2 the variety Fy is also contained in the flat limit of {(ZU )t}t�=0.
Therefore, Fy coincides with Σp. In fact, in this case the family {(ZU )t}t�=0 is constant.

Proof of Theorem 2.1. Suppose that X ⊂ P
N is a QELM of type δ � 0. If δ = 0 then the first part

of Theorem 2.3 yields that πx is birational onto its image (see also [CMR04, Corollary 4.2]).
Suppose from now on that δ > 0. The projection from a general codimension δ linear subspace

L ⊆ TxX passing through x is a rational map πL : X ��� P
N−n+δ−1. For general y ∈ X, the linear

space 〈L, y〉 is obtained by cutting 〈TxX, y〉 with δ general hyperplanes Hy
1 , . . . ,H

y
δ passing through

x and y. From the second part of Theorem 2.3, it follows that, for general y ∈ X, π−1
x (πx(y)) is a
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δ-dimensional quadric Qx,y. Then

π−1
L (πL(y)) ⊆ Qx,y ∩Hy

1 ∩ · · · ∩Hy
δ = {x, y},

yielding the birationality of πL onto its image. If SX = P
N , then N −n+ δ− 1 = n. Part (i) is now

completely proved.

Suppose we are in the hypothesis of part (ii). Let L = P
n−δ ⊂ TxX be a general linear sub-

space passing through x. Then L is the tangent space of a general codimension δ linear section
of X ⊂ P

N passing through x, let us say Z. Thus the restriction of πL to Z, πL|Z : Z ���
P
N−δ−dim(Z)−1 = P

N−n−1, is the projection from L = TxZ. Since πL restricted to X is birational
onto its image, then πL|Z is easily seen to also be birational onto its image. Moreover, looking at
πL|Z as the projection from TxZ, we get πL|Z(Z) = πx(X) = Wx ⊆ P

N−n−1. Each irreducible
component of a general fiber of πx produces at least one point in a general fiber of πL|Z . Hence
πx : X ��� Wx ⊆ P

N−n−1 has irreducible general fibers of dimension δ by the birationality of
πL|Z .

We shall prove inductively that Fy = π−1
x (πx(y)) is a δ-dimensional quadric for general y ∈ X.

So there is no loss of generality in supposing that δ = 1, by passing to a general linear section;
see Proposition 1.3. We claim that set theoretically L ∩ Fy = {x}. We have Fy ⊂ 〈TxX, y〉 so that
TxX ∩ Fy consists of a finite number of points. By the generality of L we get L ∩ Fy ⊆ {x}. Let
t = πx(y). Since 〈L, t〉 is a hyperplane in 〈TxX, y〉 = 〈TxX, t〉, intersecting π−1

x (πx(y)) transversally
at a unique point, we get that either we are in the case of the claim or Fy is a line. This last case
is excluded by Lemma 1.4.

Let q = π−1
L|Z(t) = 〈L, t〉 ∩ Z \ (L ∩ Z). By definition,

〈L, t〉 = 〈L, q〉. (4)

Consider the projection from t onto TxX, let us say ψt : 〈TxX, t〉 ��� TxX. Let F̃y = ψt(Fy). By
definition x ∈ F̃y because x ∈ Fy. Moreover, we claim that L ∩ F̃y is supported at x, so that F̃y is
a line through x. Indeed, if z ∈ L ∩ F̃y, then there exists w ∈ 〈z, t〉 ∩ Fy ⊂ 〈L, t〉 ∩ Fy = 〈L, q〉 ∩ Fy,
where the last equality follows from (4). Thus either w = x or w = q and in any case x = ψt(w) = z.
Therefore, Fy ⊂ 〈F̃y, t〉 
 P

2; moreover, the Trisecant lemma implies that the line 〈x, y〉 cuts
transversally X, hence also a fortiori Fy, at x and at y. The line 〈x, y〉 is contained in the plane
〈F̃y, t〉, so that deg(Fy) = 2 and Fy is a smooth conic passing through x and y, concluding the
proof.

Let us prove part (iii). Fix a general point x ∈ X and denote by Qx (an irreducible compo-
nent of) the family of δ-dimensional quadric hypersurfaces contained in X and passing through
x. Let π : Fx → Qx be the universal family and let ϕ : Fx → X be the tautological mor-
phism.

Assume first that δ = 1. Then ϕ is surjective by definition of a LQELM and birational by
Lemma 1.2. Note that π has a section, corresponding to the point x. Denote by E ⊂ Fx the image
of this section. Consider the blowing-up σ : X ′ → X of X at x. Since both Qx and π are generi-
cally smooth, the birational map ψ = σ−1 ◦ ϕ is defined at a general point of E . Moreover, as E is
contracted by ϕ to the point x, then ψ sends E to E, the exceptional divisor of σ. So we have the
following diagram.

Fx
π

��

ϕ

���
��

��
��

�
ψ ����� X ′

σ

��
Qx X
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By the Zariski main theorem the map ψ−1 is defined at a general point of E, and hence ψ induces
a birational map ψ0 : E ��� E = P

n−1. Thus Fx is birational to P
n, being birational to a family of

conics with a section over a rational base, and X is a rational variety, as claimed. A general version
of the above argument appears in [IN03, Proposition 3.1].

Suppose now that δ � 2 and fixH a general hyperplane section ofX through x. Using Lemma 1.2,
we see that sending a quadric hypersurface through x to its trace on H yields a birational map be-
tween the families Qx(X) and Qx(H). So, we see inductively that Qx(X) is a rational variety of
dimension n − δ. Therefore, Fx is rational, as the family Fx → Qx has a section. Being birational
to Fx by Lemma 1.2, X is rational too.

Remark 2.4. Bronowski claims in [Bro32] that X ⊂ P
2n+1 is a variety with one apparent double

point if and only if the projection of X to P
n from a general tangent space to X is a birational

map; he also formulates a generalization to arbitrary secant k-planes; see [CR06] for more details.
Unfortunately, Bronowski’s argument is unclear and we do not know of any convincing proof for
this statement. Ciliberto et al. [CMR04, Corollary 4.2] (see also Theorem 2.1) prove one implication
showing the rationality of varieties with one apparent double point. The open implication would be
a very useful tool for constructing examples.

We can generalize the Bronowski conjecture to the following: a smooth irreducible n-dimensional
variety X ⊂ P

2n+1−δ(X) is a QELM if and only if the projection from a general codimension δ(X)
linear subspace of TxX passing through x is birational. Theorem 2.1 proves one implication, yielding
the rationality of QELMs and extending [CMR04, Corollary 4.2]. One may consult [CR06] for other
generalizations of the above conjecture to higher secant varieties.

It is worth mentioning that the above results reveal the following interesting picture for the
tangential projections of QELMs of type δ � 0 with SX = P

N : for δ = 0 we project from the whole
space and we have varieties with one apparent double point; at the other extreme we found the
stereographic projection of quadric hypersurfaces, the only QELMs of type equal to their dimension.

3. LQEL versus CC

We recall the following definition from [BBI00].

Definition 3.1 [BBI00]. A smooth rational curve C ⊂ X, where X is a projective manifold of
dimension n, is a quasi-line if NC|X 
 ⊕n−1

1 OP1(1).

The relation between the notions LQELM and CCM is clarified in the following.

Proposition 3.2. Let X ⊂ P
N be a CCM of secant defect δ. Let C = Cx,y be a general conic

through the general points x, y ∈ X and let c be the point representing C in the Hilbert scheme
of X. Let Cx be the unique irreducible component of the Hilbert scheme of conics passing through
x which contains the point c.

(i) We have n+ δ � −KX · C = dim(Cx) + 2 � n+ 1.

(ii) The equality −KX · C = n+ δ holds if and only if X ⊂ P
N is a LQELM.

(iii) The following conditions are equivalent:

(a) dim(Cx) = n− 1;
(b) C is a quasi-line;
(c) all conics through x, y are non-degenerate.

(iv) If δ � 3, then X ⊂ P
N is a Fano manifold with Pic(X) 
 Z〈OX(1)〉 and index i(X) =

(dim(Cx)/2) + 1.
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Proof. We have the universal family g : Fx → Cx and the tautological morphism f : Fx → X, which
is surjective. SinceC ∈ Cx is a general conic and since x ∈ X is general, we get dim(Cx) = −KX ·C−2.

Take a general point y ∈ X and a general p ∈ 〈x, y〉. The conics passing through x and y are
parameterized by g(f−1(y)), which has pure dimension

dim(Fx) − n = dim(Cx) + 1 − n = −KX · C − 1 − n.

We claim that the locus of conics through x and y, denoted by Lx,y, has dimension −KX · C − n
and is clearly contained in the irreducible component of the entry locus (with respect to p) through
x and y. Indeed, conics through x, y and another general point z ∈ Lx,y have to be finitely many.
Otherwise, their locus would fill up the plane 〈x, y, z〉 and this would imply that the line 〈x, y〉 is
contained in X. However, we have excluded linear spaces from the definition of CCMs and LQELMs.
Therefore, δ � −KX · C − n, that is, −KX · C � n+ δ.

The locus of conics through x and y is contained in 〈TxX, y〉 ∩ 〈x, TyX〉, which is a linear space
of dimension δ + 1. Indeed, by the Terracini lemma,

dim(TxX ∩ TyX) = 2n− dim(SX ) = δ − 1.

By the Trisecant lemma, x �∈ TyX and y �∈ TxX, so that

dim(〈TxX, y〉 ∩ 〈x, TyX〉) = δ + 1.

If −KX · C = n + δ, then, for p ∈ 〈x, y〉 general, the irreducible component Σp
x,y of the entry

locus passing through x and y coincides with the locus of conics through x and y. Thus Σp
x,y is a

quadric hypersurface by the Trisecant lemma and by the generality of x and y (if δ = n, X ⊂ P
n+1

is a quadric hypersurface). So, part (ii) is proved.
Next we see part (iii). Conditions (a) and (b) are equivalent, since the normal bundle of C in X

is ample, of degree dim(Cx).
Assume that condition (a) holds. The dimension of the subfamily consisting of reducible conics

from Cx has dimension at most n− 2. Hence their locus is of dimension at most n− 1 and does not
contain the general point y. So we have condition (c).

Assume that condition (c) holds. Then, by bend and break there are finitely many conics through
x and y, giving condition (a).

Finally, part (iv) follows from the Barth–Larsen theorem, the fact that X contains moving conics
and part (i).

Examples 3.3. (i) For n � 3, let X be a smooth cubic hypersurface in P
n+1 or the smooth complete

intersection of two hyperquadrics in P
n+2. Use, for example, [BBI00, Theorem 3.2] and induction

on n to see that X is CC. In the first case, X is a hypersurface of degree three so it cannot be a
LQELM. In the second case, δ(X) = n − 1; as the Picard group is generated by the hyperplane
section, X cannot contain hyperquadrics of dimension n− 1.

(ii) CCMs X ⊂ P
N+1 of secant defect δ(X) = δ − 1 � 2, constructed from QELMs Z ⊂ P

N of
type δ � 3.

Let Z ⊂ P
N be a QELM of type δ � 3. Consider P

N as a hyperplane in P
N+1, take q ∈ P

N+1\P
N

and let W = Cq(Z) ⊂ P
N+1 be the cone over Z of vertex q. Let X = Cq(Z) ∩ Q ⊂ P

N+1, where
Q ⊂ P

N+1 is a general quadric hypersurface. Then SX = Cq(SZ), yielding δ(X) = δ(Z) − 1 � 2.
Moreover, Pic(X) 
 Z〈OX(1)〉 and X ⊂ P

N+1 is a CCM of index i(X) = (n+ δ(X) − 1)/2.
Indeed, let π : T = P(OZ ⊕ OZ(1)) → Z and let E ⊂ T be the section at infinity of π. If

ϕ : T = P(OZ ⊕ OZ(1)) → P
N+1 is the tautological morphism given by (a sublinear system of)

|OT (1)|, then ϕ(T ) = W and X ⊂ P
N+1 can be naturally thought of as an element of |OT (2)|.

Recall that ϕ restricts to an isomorphism between T \ E and W \ {q}. By adjunction we get that
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ωX = OX(1 − i(Z)), that is,

i(X) = i(Z) − 1 =
n+ δ

2
− 1 =

n+ δ(X) − 1
2

.

In particular, X ⊂ P
N+1 is a Fano manifold. Adjunction formula also says that the double cover

πq : X → Z, induced by the projection from q, πq : P
N+1\{q} ��� P

N , is ramified along a hyperplane
section of Z ⊂ P

N .
Take two general points x, y ∈ X and let x′ = πq(x) and y′ = πq(y). Through x′ and y′ there

passes a smooth quadric hypersurface Q′ ⊂ P
δ+1 of dimension δ � 3. Let Q̃ = Cq(Q′) ⊂ P

δ+2 and
let X̃ = Cq(Q′) ∩ Q ⊂ P

δ+2. Then X̃ ⊂ P
δ+2 is a (smooth) complete intersection of two quadric

hypersurfaces passing through x and y, so that X ⊂ P
N+1 is a CCM since X̃ ⊂ P

δ+2 is CC by
part (i) above.

(iii) When δ = 1, CCMs and LQELMs are the same. In this case a general conic through two
general points is a quasi-line. Examples are easy to construct, e.g. X = G∩H1 ∩H2 ∩H3, where G
is the Grassmannian of lines in P

m, m � 4, and Hi are general hyperplane sections of its Plücker
embedding.

(iv) Assume that δ = 2 and X is CC. Let C be a general conic passing through two general
points. Then X is a LQELM if and only if C is not a quasi-line; see Proposition 3.2. Examples of the
LQEL case are given by taking X = G ∩ H1 ∩ H2, where G and Hi are as above. Examples
of the case where X contains quasi-lines are got by applying the construction in part (ii) above
starting with Z = G ∩H, a hyperplane section of the same Grassmannian.

Many examples of CCMs which are not LQEL come from the following.

Proposition 3.4 (cf. Corollary 2.5 in [IR07]).

(i) If X ⊂ P
n+r is a smooth non-degenerate complete intersection of multi-degree (d1, d2, . . . , dr)

with n > 3(
∑r

1 di − r − 1), then X is a CCM.

(ii) If X is a secant defective LQELM and a complete intersection, then X is a hyperquadric.

Proof. Part (i) is exactly [IR07, Corollary 2.5].
We show part (ii). If n = 2 use [Rus07, Proposition 3.3] to conclude. If n � 3, by the Lefschetz

theorem, we have Pic(X) ∼= Z〈OX(1)〉 and Proposition 3.2 gives i(X) = (n+ δ)/2. Let r = N − n.
We have 2n + 1 − δ = dim(SX ) � N = n + r, so δ � n + 1 − r. Assuming X to be a complete
intersection of type (d1, . . . , dr), with di � 2 for all i, we get i(X) = n+ r + 1 − ∑r

1 di; hence

n+ 2r + 2 − 2
r∑
1

di = 2i(X) − n = δ � n+ 1 − r and 4r � 2
r∑
1

di � 3r + 1,

so r = 1.

The proof of the following criterion for recognizing LQELMs illustrates the role of CCMs. Recall
from [Rus07] that, if x ∈ X is a general point, we denote by Yx ⊂ P(T∗

xX) the variety of lines
through x, contained in X.

Proposition 3.5. Let X ⊂ P
N be as in (1) and assume that δ � 3. The following assertions are

equivalent:

(i) X is a LQELM;

(ii) if x ∈ X is a general point, then dim(Yx) � (n+ δ)/2 − 2 and SYx = P
n−1.
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Proof. The fact that part (i) implies (ii) was shown in [Rus07, Theorem 2.3] and, in fact, equality
holds in part (ii).

Assume part (ii). δ � 3 implies via the Barth–Larsen theorem that Pic(X) ∼= Z〈OX(1)〉.
Moreover,

i(X) = dim(Yx) + 2 � n+ δ

2
� n+ 3

2
.

So we may apply [HK05, Theorem 3.14] to deduce that X is a CCM. In the notation of Proposi-
tion 3.2, we have 2i(X) = −KX ·C � n+ δ. Therefore, X is a LQELM by combining parts (i) and
(ii) of Proposition 3.2.

The following proposition is an application of [Rus07, Theorem 2.3].

Proposition 3.6. Assume that X is a LQELM of type δ < n.

(i) If δ > n/2 then δ � 6 and n � 10. These cases are classified in [Rus07, Corollary 3.1].

(ii) If δ > n/3 then δ � 10 and n � 26. These cases may also be classified by the same method.

(iii) If k � 4, δ > n/k, then δ � 2(k + 2).

Proof. See [Rus07, Corollary 3.1] for part (i).
Assume n/3 < δ � n/2. Using [Rus07, Theorem 2.8], we find δ � 10 and the following possibil-

ities for the pairs (n, δ): (2, 1), (4, 2), (5, 2), (7, 3), (8, 4), (10, 4), (13, 5), (14, 6), (15, 7), (16, 8), (25, 9)
and (26, 10).

To prove part (iii) we proceed by induction on k � 3. We may suppose that δ � 10. Assume that
we have n/k � δ > n/(k + 1) and k � 4. In the notation of [Rus07, Theorem 2.4], we let X1 = Yx,
δ1 = δ(X1) = δ − 2, n1 = dim(X1) = (n + δ)/2 − 2. If δ1 > n1/k we get δ � 2(k + 3), completing
the induction. If δ1 � n1/k it follows that

δ � n+ 4(k − 1)
2k − 1

, so
n

k + 1
<
n+ 4(k − 1)

2k − 1
.

This gives

10k � δk � n <
4(k2 − 1)
k − 2

,

so 3k2 − 10k + 2 < 0. Therefore, k = 3; a contradiction.

Consider the following list of examples of QELMs.

(i) ν2(Pn) ⊂ P
n(n+3)/2.

(ii) The projection of ν2(Pn) from the linear space 〈ν2(Ps)〉, where P
s ⊂ P

n is a linear subspace;
equivalently X 
 BlPs(Pn) embedded in P

N by the linear system of quadric hypersurfaces of P
n

passing through P
s; alternatively X 
 PPr(E) with E 
 OPr(1)⊕n−r⊕OPr(2), r = 1, 2, . . . , n−1,

embedded by |OP(E)(1)|. Here N = n(n+3)/2−(s+2
2

)
and s is an integer such that 0 � s � n−2.

(iii) A hyperplane section of the Segre embedding P
a×P

b ⊂ P
N+1. Here n � 3 and N = ab+a+b−1,

where a � 2 and b � 2 are such that a+ b = n+ 1.
(iv) P

a × P
b ⊂ P

ab+a+b Segre embedded, where a, b are positive integers such that a+ b = n.

The essential properties of LQELMs are collected in the next theorem. It follows by putting
together Theorem 2.1(iii), [IR07, Theorem 2.2] and [Rus07, Theorem 2.3(4d)].

Theorem 3.7. Let X ⊂ P
N be a defective LQELM. Then X is Fano and rational. Moreover,

either X is an isomorphic projection of one of the manifolds listed immediately above or Pic(X) ∼=
Z〈OX(1)〉 and i(X) = (n + δ)/2. If δ � 3, then Yx ⊂ P

n−1 is a QELM of type δ − 2, dimension
(n+ δ)/2 − 2 and such that SYx = P

n−1.

958

https://doi.org/10.1112/S0010437X08003539 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003539


Varieties with quadratic entry locus, II

Remark 3.8. Via the above theorem, the classification of secant defective QELMs is reduced to the
case where the Picard group is Z. Let us say that X ⊂ P

N is maximal if X is not a hyperplane
section of some (non-degenerate) manifold X ′ ⊂ P

N+1. The following tempting conjecture would, if
true, lead to a complete classification of defective QELMs.

Conjecture. Any maximal defective QELM with Picard group Z is homogeneous.

Note that homogeneous manifolds arising from irreducible representations of (semi)simple com-
plex algebraic groups are QELMs (see [Zak93, ch. III] and [Kaj99]), and the secant defective ones
are classified completely (see loc. cit.). Moreover, the results in [Rus07, § 3] confirm the conjecture
for δ > n/2. The next two finiteness results for QELMs with δ < n would follow from the above
conjecture:

(i) δ � 8;

(ii) if δ � 5, then n � 16.

Proposition 3.6 may be seen as supporting these finiteness expectations. Also, in [Fu08, Corollary 2],
it is proved that δ � (n + 8)/3 holds for any LQELM with δ < n. In particular, result (i) follows
from result (ii).

4. Two applications

The first application is due to Fu [Fu08], who found it by relying on the ideas and techniques
from [Rus07], [IR07] and Proposition 3.2. We mention his result in order to illustrate the usefulness
of our point of view.

Theorem 4.1 (cf. Theorem 2 in [Fu08]). Let X be as in (1) and assume that X is swept out by
hyperquadrics of dimension greater than [n/2] + 1, all passing through a fixed point x ∈ X. Then
X is a hyperquadric.

This result substantially improves the main application in [KS02], with a much shorter proof.
Our second application concerns the classification of manifolds with small duals.
For an irreducible variety Z ⊂ P

N , we define def(Z) = N − 1 − dim(Z∗) as the dual defect of
Z ⊂ P

N , where Z∗ ⊂ P
N∗ is the dual variety of Z ⊂ P

N . In [Ein86, Theorem 2.4] it is proved that if
def(X) > 0, then def(X) ≡ n(mod 2), a result usually attributed to Landman; see the Introduction
of [Ein86]. Moreover, the Zak theorem on tangencies implies that dim(X∗) � dim(X) for a smooth
non-degenerate variety X ⊂ P

N ; see [Zak93, I.2.5].
We combine the geometry of CCMs and LQELMs to give a new proof of [Ein86, Theorem 4.5].

Our approach avoids the use of Beilinson spectral sequences and more sophisticated computations
as in [Ein86, Lemmas 4.2, 4.3 and Theorem 4.4].

We begin by recalling some basic facts from [Ein86].

Proposition 4.2. Let X ⊂ P
N be as in (1) and assume that def(X) > 0. Then:

(i) [Ein86, Theorem 2.4] through a general point x ∈ X there passes a line Lx ⊂ X such that
−KX · Lx = (n+ def(X) + 2)/2, so that def(X) ≡ n(mod 2);

(ii) [Ein86, Theorem 3.2] def(X) = n − 2 if and only if X ⊂ P
N is a scroll over a smooth curve,

i.e. it is a P
n−1-bundle over a smooth curve, whose fibers are linearly embedded.

The following proposition reinterprets the result of Hwang and Kebekus [HK05, Theorem 3.14]
on Fano manifolds with large index.
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Proposition 4.3 (cf. [HK05]; see also Proposition 2.4 in [IR07]). Let X ⊂ P
N be as in (1). Assume

that X is a Fano manifold with Pic(X) ∼= Z〈OX(1)〉 and let x ∈ X be a general point.

(i) If i(X) > 2n/3, then X is a CCM with δ > n/3.

(ii) If def(X) > 0 and def(X) > (n − 6)/3, then X is a CCM with δ � def(X) + 2. Moreover, if
δ = def(X) + 2, then X is a LQELM of type δ = def(X) + 2.

(iii) If X is a LQELM of type δ and def(X) > 0, then δ = def(X) + 2.

Proof. See [IR07, Proposition 2.4] for the proof of part (i).
In the hypothesis of part (ii), [Ein86, Theorem 2.4] yields i(X) = (n + def(X) + 2)/2 > 2n/3

so that X is a CCM by part (i). Proposition 3.2 yields δ � def(X) + 2 and also the remaining
assertions of parts (ii) and (iii).

We recall that according to the Hartshorne conjecture, if n > 2
3N , then X ⊂ P

N should be
a complete intersection and that complete intersections have no dual defect. Thus, assuming the
Hartshorne conjecture, the following result yields the complete list of manifolds X ⊂ P

N such that
dim(X∗) = dim(X). The second part says that under the LQEL hypothesis the same results hold
without any restriction (see also Remark 4.5 below).

Theorem 4.4. Let X ⊂ P
N be as in (1) and assume that dim(X) = dim(X∗).

(i) [Ein86, Theorem 4.5] If N � 3n/2, then X is projectively equivalent to one of the following:

(a) a smooth hypersurface X ⊂ P
n+1, n = 1, 2;

(b) a Segre variety P
1 × P

n−1 ⊂ P
2n−1;

(c) the Plücker embedding G(1, 4) ⊂ P
9;

(d) the 10-dimensional spinor variety S10 ⊂ P
15.

(ii) If X is a LQELM, then it is projectively equivalent either to a smooth quadric hypersurface
Q ⊂ P

n+1 or to a variety as in (b), (c), (d) above.

Proof. Clearly def(X) = 0 if and only if X ⊂ P
n+1 is a hypersurface, giving respectively case (a) or

that of a smooth quadric hypersurface. From now on we suppose that def(X) > 0 and hence n � 3.
By parts (i) and (ii) of Proposition 4.2, def(X) = n − 2 and N = 2n − 1 if and only if we are in
case (b); see also [Ein86, Theorem 3.3, part c].

Thus, we may assume that 0 < def(X) � n− 4, that is, N � 2n− 3. Therefore, δ � 4 and X is
a Fano manifold with Pic(X) ∼= Z〈OX(1)〉. Moreover, in case (i), def(X) = N − n− 1 > (n − 6)/3
by hypothesis. Thus Proposition 4.3 yields that X is also a CCM with δ � def(X) + 2. Also taking
into account the last part of Proposition 4.3, from now on we can suppose that X is a CCM with
δ � def(X) + 2 � 3.

We have n − δ � N − 1 − n = def(X) � δ − 2, that is, δ � n/2 + 1. The Zak linear normality
theorem implies SX = P

N , so that

N = dim(SX ) = 2n+ 1 − δ � 3n
2
.

Since N � 3n/2, we get N = 3n/2, δ = n/2 + 1 = def(X) + 2 and n even. Therefore, X is a
LQELM of type δ = n/2 + 1 by Proposition 4.3. Using [Rus07, Corollary 3.1] concludes the proof,
yielding cases (c) and (d).

Remark 4.5. Let X ⊂ P
N be as in (1). Assume that def(X) > 0 and Pic(X) ∼= Z〈OX(1)〉. We

conjecture that X is a LQELM and even a QELM if, moreover, it is assumed to be linearly normal.
Combined with Remark 3.8, this would imply that maximal dual defective manifolds with Pic(X) ∼=
Z〈OX(1)〉 are homogeneous, as already conjectured in [BS95].
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Our last application is the following.

Proposition 4.6. Let X ⊂ P
N be as in (1), with Pic(X) ∼= Z〈OX(1)〉 and def(X) > 0. Assume,

moreover, that def(X) > (n− 6)/3 and N � (5n + 2)/3. Then SX �= P
N .

Proof. By Proposition 4.3, X is a CCM. Assume that SX = P
N . We get

N = dim(SX ) = 2n+ 1 − δ � 5n+ 2
3

,

so δ � (n+ 1)/3. It follows that 3 def(X) � n− 5 � 3δ − 6. By Proposition 4.3, X is a LQELM of
type δ = (n + 1)/3 and def(X) = δ − 2. From the list in the proof of Proposition 3.6(ii) it follows
that δ � 2, so def(X) = 0. This is a contradiction.
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