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CHAINS WITH UNBOUNDED VARIABLE
LENGTH MEMORY: PERFECT SIMULATION
AND A VISIBLE REGENERATION SCHEME

SANDRO GALLO,∗ University of Campinas

Abstract

We present a new perfect simulation algorithm for stationary chains having unbounded
variable length memory. This is the class of infinite memory chains for which the family
of transition probabilities is represented by a probabilistic context tree. We do not assume
any continuity condition: our condition is expressed in terms of the structure of the context
tree. More precisely, the length of the contexts is a deterministic function of the distance
to the last occurrence of some determined string of symbols. It turns out that the resulting
class of chains can be seen as a natural extension of the class of chains having a renewal
string. In particular, our chains exhibit a visible regeneration scheme.
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1. Introduction

We introduce a new class of discrete time stochastic chains X = (Xn)n∈Z, taking values in
a countable alphabet A. These chains have unbounded variable length memory. This means
that the state of the chain at time 0 depends on an unbounded suffix of the past · · ·X−2X−1,
whose length depends on the values assumed by the chain in the past. In the present case, the
length of this suffix depends on the distance to the last occurrence of a given finite reference
string a−i · · · a−1 of symbols of A. More precisely, there exists a function f : N→ N such that
if the last occurrence of a−i · · · a−1 is at distance k in the past, that is, if X−k−i · · ·X−k−1 =
a−i · · · a−1, and, for j = i, . . . , k + i − 1, we have X−j · · ·X−j+i−1 �= a−i · · · a−1, then we
need to know X−f (k)−i−k · · ·X−k−i−1X−k−i · · ·X−1 in order to decide the state of the chain
at time 0:

· · ·
suffix of the past we need to know to decide X0︷ ︸︸ ︷

X−f (k)−i−k · · ·X−k−i−1︸ ︷︷ ︸
length =f (k)

X−k−i · · ·X−k−1︸ ︷︷ ︸
last occurrence of a−1

−i

X−k · · ·X−1 .

In other words, the family of transition probabilities P for these chains is such that

P(· | · · · b−2b−1) = P(· | · · · c−2c−1)
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736 S. GALLO

whenever the last occurrence of a−i · · · a−1 is at distance k in · · · b−2b−1 and

b−f (k)−1−k · · · b−2b−1 = c−f (k)−1−k · · · c−2c−1.

Observe that, on A = {1, 2}, if the reference string is the symbol 2, and the function f is
identically 0, we obtain the renewal chain with symbol 2 as the renewal symbol. For this reason,
we say that this class of stochastic chains generalizes the class of chains having a renewal string.

We highlight three main parameters for the study of this class of chains: the size of the
reference string, the set of transition probabilities to the symbols of this reference string, and
the deterministic function f .

We ask the following questions. (i) What assumptions should we place on these parameters in
order to guarantee that there exists a stationary chain compatible with such a family of transition
probabilities? (ii) Is this stationary chain unique? (iii) What are the statistical properties of this
chain? (iv) Does the chain exhibit a regeneration scheme, as in the renewal case?

In order to avoid confusion, we insist on the fact that the denomination ‘variable length’does
not refer to the case of ‘random length’ or ‘random Markov’ as considered in [7] or [17]. In the
present case, the length of the past we need to know in order to decide the next symbol depends
on the past itself, whereas in the ‘random Markov’ models, the length is decided randomly and
independently of the past.

It is important to observe that the results in the literature on chains of infinite order cannot
answer these questions which, in our view, are quite natural. The main reason for this is the
fact that, since the seminal paper [19], the literature has focused on the so-called continuity
assumption, which is not assumed here. In fact, the way we describe the family of transition
probabilities of our chains fits exactly into the notion of probabilistic context trees, introduced
in [21]. It follows that the best framework for our study is probabilistic context trees and not a
continuous family. This also implies that the method of ‘random Markov’ representation, used
implicitly in [7], cannot be used here, since it was proved in [17] that such a representation is
possible if and only if the family is continuous. Moreover, there is, so far, no ‘well-adapted’ (in
a sense that we will make clear later) criteria for the existence and uniqueness of the stationary
chain compatible with a given probabilistic context tree.

Consequently, the main method we use in order to answer the above questions is the
constructive method, that is, we give sufficient conditions on our parameters which ensure
that we can perfectly simulate the chain from the stationary distribution. This is our first main
result (Algorithms 1 and 2 and Theorem 1). To the author’s knowledge, to date, the only
perfect simulation algorithm for chains of infinite order was presented in [7], which applies
in the continuous framework. The theory of renovating events, introduced by Borovkov (see,
for example, [2]) for stochastic recursive sequences and extended in [11] to generic stochastic
chains, gives an interesting framework, closely related to the present work. It is based on the
existence of an event which, when it occurs with positive probability, can be used to perfectly
simulate the chain. However, the definition of this event, its positiveness, and the way we can
detect it, are issues we have to address for each particular class of processes. Also, instead of
using the results of this theory, and in order to be self-contained, we explain precisely how our
perfect simulation algorithm works. This algorithm shares several features with the algorithm
of [7], mainly due to the fact that both algorithms use the coupling-from-the-past method (CFTP
method) introduced in [20] to perfectly simulate Markov chains.

As a byproduct of Theorem 1, we have sufficient conditions for the existence and the
uniqueness of the stationary chain (Corollary 1). We also show that this stationary chain has a
hidden regeneration scheme, and that the expected size between two consecutive regeneration
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Perfect simulation for unbounded variable length memory chains 737

times is finite (Corollary 2). The denomination hidden means that we cannot detect it on the
realization of the chain. This regeneration scheme arises from the perfect simulation algorithm,
and is similar to the scheme introduced in [7].

The last main result of this paper is the existence, under the same conditions, of a visible
regeneration scheme (Theorem 2). This regeneration scheme can be detected directly on
the realization of the chain. But since our chains are not necessarily renewal, detecting the
regeneration scheme means, in general, knowing the entire future of the chain.

We would like to emphasize that the continuity assumption was originally introduced by
Doeblin and Fortet [8] as a technical assumption (see the discussion therein). As they state, it is
quite natural in this optic to assume that the probability transition from a−1−∞ to a does not depend
too much on the remote symbols of a−1−∞. However, continuity is one way to mathematically
interpret this assumption. The present paper gives a different interpretation. The success of the
continuity assumption appeared three decades later (in the 1960s), in part because it is related
to some well-behaved dynamical systems and statistical mechanic models, through the Gibbs
formalism (see, for example, [3, Chapter 1]). However, from an application point of view, it is
not clear that the real phenomena have to be represented through the continuous framework. It
seems to us quite natural (and also of mathematical interest) to explore the noncontinuous world.

The aim of the present work is threefold. First, we extend the class of renewal chains to a
class of stochastic chains having a visible regeneration scheme which is not a renewal scheme.
Second, we give an appropriate condition on the form of the context tree to guarantee the
possibility to make a perfect simulation of the unique stationary chain compatible. Finally, we
make what seems to be the first attempt in the literature of chains of infinite memory to study
the noncontinuous case.

This paper is organized as follows. In Section 2 we give the basic definitions and notation,
introducing in particular the context tree framework. In Section 3 we give an example which
motivates the above discussion and explains why we consider such a class of stochastic chains.
In Section 4 we explain more precisely our assumptions using the context tree framework.
In Section 5 we sketch the perfect simulation algorithm and state the results of this paper.
Sections 6, 7, and 8 are dedicated to the proofs of the results. In Section 9 we present the
complete perfect simulation algorithm, plus some simulations of the example of Section 3. We
finish the paper with some references on the involved areas.

2. Basic definitions

Let A be a countable alphabet. Given two integers m ≤ n, we denote by an
m the string

am · · · an of symbols in A. For any m ≤ n, the length of the string an
m is denoted by |an

m| and is
defined by |an

m| = n−m+ 1. For any n ∈ Z, we will use the convention that an
n+1 = ∅, and,

naturally, |an
n+1| = 0. Given two strings v and v′, we denote by vv′ the string of length |v|+|v′|

obtained by concatenating the two strings. The concatenation of strings is also extended to the
case in which v denotes a semi-infinite sequence, that is, v = v−1−∞. If n is a positive integer
and v a finite string of symbols in A, we denote by vn = vv · · · v the concatenation of n times
the string v. We define

A−N = A{...,−2,−1} and A� =
+∞⋃
j=0

A{−j,...,−1},

which respectively denote the set of all infinite strings of past symbols and the set of all finite
strings of past symbols. The case in which j = 0 corresponds to the empty string ∅.
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2.1. Probabilistic context tree

We say that a string s is a suffix or prefix of another string v if |s| ≤ |v| and v−1
−|s| = s or,

respectively, v
−|v|+|s|−1
−|v| = s.

Definition 1. A subset τ of A� ∪ A−N is a tree if no string s ∈ τ is a suffix of another string
v ∈ τ . This property is called the suffix property.

Definition 2. A tree τ is complete if any element a−1−∞ of A−N has a suffix belonging to τ .
The suffix property implies that this suffix is unique. We call it the context of the sequence
a−1−∞ and it is denoted by cτ (a

−1−∞). A complete tree is called a context tree. When we have
sup{|v| : v ∈ τ } = +∞, we say that the tree τ is unbounded.

We also extend the notion of context for finite strings: for any an
m ∈ A�, m ≤ n, we set

cτ (a
n
m) = v if v is a suffix of an

m belonging to τ . If no context of τ is a suffix of an
m, we use the

convention cτ (a
n
m) = ∅. In particular, cτ (∅) = ∅.

Definition 3. A probabilistic context tree on A is an ordered pair (τ, p) such that

1. τ is a context tree;

2. p = {p(· | v); v ∈ τ } is a family of transition probabilities over A.

Examples of probabilistic context trees are shown in Figure 1(a) (for the bounded case)
and 1(b) (for the unbounded case).

We call the attention of the reader to the following notation: if v = v−|v|, . . . , v−1 is a
context of a context tree τ , then v−i , i = 1, . . . , |v|, denotes the path from the root to the leaf
in the tree representation of τ . In the conditional probability p(a | v), we will swap the order
of the symbols of the context v to keep the overall temporal order, i.e.

p(a | v) = p(a | v−1 · · · v−|v|)
is the probability of having the symbol a at time n, say, given that at time n− 1 we have v−1,
at time n− 2 we have v−2, etc.

(a) (b)

2 3

1 2 3
Root

11 21

131 231 331

Root
21

0.0 0.50.50.0 0.90.1

0.1 0.10.80.6 0.20.20.3 0.30.4

0.2 0.40.40.5 0.30.2

21111 p41 p

2111 p3

211 p2

21 p1

2 p0

Figure 1: Examples of probabilistic context trees.
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The context tree illustrated in Figure 1(a) is defined on {1, 2, 3}, and to each context v, we
assign in the boxes the transition probabilities p(1 | v), p(2 | v), and p(3 | v). In this paper we
only consider unbounded context trees, but we mention this example to highlight that the model
has been introduced in [21] in the bounded case. The context tree illustrated in Figure 1(b) is
defined on {1, 2}; it corresponds to the discrete renewal chain, with renewal symbol 2. This
means that the successive occurrences of 2 ‘split’ the realization of the chain into independent
and identically distributed (i.i.d.) blocks. For any i ≥ 0, pi denotes the transition probability
p(2 | 1i2). The transition probability p(1 | 1i2) is 1− pi .

More general examples of unbounded context trees (without specifying the transition prob-
abilities) are given in Figures 2, 3(a), and 3(b) in Sections 3.2 and 4.2.

Definition 4. We say that a probabilistic context tree (τ, p) is weakly non-null if∑
a∈A

inf
v∈τ p(a | v) > 0.

We define α(a) := infv∈τ p(a | v) for any a ∈ A, and α :=∑
a∈A α(a). For any finite size

string w := w−|w|, . . . , w−1 ∈ A�, we also define α(w) :=∏|w|
i=1 α(i). Finally, if there exists

ε > 0 such that α(w) = ε, we say that w is ε-regular.

2.2. Unbounded variable length memory chains

Definition 5. We say that a stationary stochastic chain X = (Xn)n∈Z of law µ is compatible
with a probabilistic context tree (τ, p) if, for µ-almost every pasts a−1−∞ ∈ A−N and any a ∈ A,
we have

µ(X0 = a | X−1−∞ = a−1−∞) = p(a | cτ (a
−1−∞)). (1)

We call these chains variable length memory chains. If τ is unbounded, we call them unbounded
variable length memory chains.

It remains to define what we call the ‘reference’ string in this framework. This will be done
in Section 4, but first, let us give an example.

3. Discussion and examples

3.1. Motivation for the present work

Let us explain why the existing results of the literature cannot help us in our study. First,
let us show that our chains need not be continuous. A family of transition probabilities P on a
countable alphabet (equipped with the discrete topology) is continuous if

βk := sup{|P(a | a−1−∞)− P(a | b−1−∞)| : a ∈ A, a−1−∞, b−1−∞ ∈ A−N, a−1
−k = b−1

−k}
converges to 0 when k diverges. Thus, it is enough to consider the probabilistic context tree on
{1, 2} illustrated in Figure 1(b), with the probability transitions

pi = ε11{i is odd} + ε21{i is even} and p∞ := p(2 | 1+∞) = ε3,

where ε1, ε2, and ε3 are different real numbers in (0, 1). Then it is straightforward to check
that

βk = sup{|ε1 − ε2|, |ε2 − ε3|, |ε1 − ε3|}
for any k ≥ 0. It follows from this simple observation that none of the chains in the class we
consider have to be continuous.
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The second motivation for the present work is that the perfect simulation algorithm given
in [7] is not well adapted to probabilistic context trees. This follows from the fact that it does
not use the information of the context tree. In order to illustrate this fact, let us consider the
simplest possible case: (τ, p) is such that

• τ is the context tree illustrated in Figure 1(b);

• p satisfies the continuity condition of [7]; and

• symbol 2 is such that α(2) = ε > 0.

In this case, there exists a very simple procedure to construct a sampleXn
0 of the chain compatible

with (τ, p) from the stationary measure. We use the fact that α(2) = ε > 0 to couple
the constructed chain with an i.i.d. sequence U of random variables uniformly distributed in
[0, 1) in such a way that we set Xi = 2 whenever Ui < ε. We generate backward in time,
i.e. U0, U−1, . . . , and stop the procedure at the first time −k such that U−k < ε. We write
−k = θ [0, n], a regeneration time for [0, n], and we setX−k = 2. Then, we construct the sample
recursively from time−k+ 1 up to n: for any i ≥ −k+ 1, we sample Xi from the distribution
(p(· | Xi−1 · · ·Xk)− ε)/(1− ε). Observe that p(· | Xi−1 · · ·Xk) is always well defined since
Xk = 2. The constructed sample is stationary and compatible with (τ, p). The way we defined
θ [0, n] implies that−θ [0, n]+1 has a geometric distribution with parameter ε. This procedure
is well known in the perfect simulation literature; such a chain is said to be uniformly minorized
by ε (see, for example, [12]). The perfect simulation algorithm we present in this paper works
for much more general chains, and is an extension of the procedure we just described.

Now, suppose that we perform the above algorithm and the algorithm of Comets et al. [7] at
the same time, using the same sequence U , to perfectly simulate a window Xn

0 . Let θCFF[0, n]
be the regeneration time obtained using Comets et al.’s algorithm. The most objective way to
compare both algorithms is to check which algorithm is faster. The random variable θCFF[0, n]
is defined by

θCFF[0, n] = max{k ≤ 0 : Ui < ai−k, i = k, . . . , n},
where (aj )j≥0 is a [0, 1]-valued sequence increasing to 1. The way it increases depends on
the continuity assumption Comets et al. make. For a comparison with the above algorithm,
we need to compare a0 := inf

a−1−∞
p(1 | a−1−∞)+ inf

a−1−∞
p(2 | a−1−∞) with ε. So, defining

ε := inf
a−1−∞

p(2 | a−1−∞), we obtain a0 = ε + inf
a−1−∞

p(1 | a−1−∞). The only way the algorithm
of [7] could be faster than the above algorithm would be if its regeneration time occurs before
the first time U−k < ε (which is the definition of θ [0, n]). Denoting by Pr the law of U , we
have to estimate

Pr(θ [0, n] < θCFF[0, n]).
It is difficult to find a good upper bound for this probability in general. We just mention two
simple cases. In the case where inf

a−1−∞
p(1 | a−1−∞) = 0, it is clear that we have Pr(θ [0, n] <

θCFF[0, n]) = 0. The other case we can study easily is when pi ↘ p∞ = ε. It is an exercise
(see Section 7.2 of [10]) to show that in this case the context tree (τ, p) admits the following
‘random Markov’ representation:

p(a | cτ (a
−1−∞)) = a0p0(a)+

∑
k≥1

(ak − ak−1)p
[k](a | a−1

−k ) for all a ∈ A and a−1−∞ ∈ A−N.

Here p0(·) is a probability distribution over A and, for any k ≥ 1, the Markov kernel p[k] is
defined by p[k](2 | a−1

−k ) = 0 if a−1
−k = 1k and p[k](2 | a−1

−k ) = 1 otherwise. It follows that if
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θ [0, n] < θCFF[0, n] then the reconstructed sample is all 1: Xn
θ [0,n] = 1|θ [0,n]|+n+1. Let us

compute

Pr(θ [0, n] < θCFF[0, n]) =
∑
i≥0

Pr(θ [0, n] = −i, θCFF[0, n] > −i)

=
∑
i≥0

i−1∑
j=0

Pr(θ [0, n] = −i, θCFF[0, n] = −j).

Since the event {θCFF[0, n] = −j} depends only on Un
−j , it follows that the latter term is

bounded above by ∑
i≥0

i−1∑
j=0

ε(1− ε)i−j+1 Pr(Xn
−j = 1n+j+1).

Using the fact that α(2) = ε > 0, the probability Pr(Xn
−j = 1n+j+1) is bounded above by

(1− ε)n+j+1. It follows that, for some constant C > 0,

Pr(θ [0, n] < θCFF[0, n]) ≤ C(1− ε)n,

which goes very fast to 0. These facts are a consequence of the following general remark. Since
Comets et al.’s algorithm does not use the form of the context tree, it leads to regeneration times
that have, a priori, nothing to do with the natural regeneration times one could expect: the
successive occurrences of 2 along the realization of the chain. This leads to another misleading
situation: the regeneration times of Comets et al.’s algorithm cannot be seen on the realization
of the chain.

3.2. Example

As mentioned previously, the symbol 2 is renewal for the chain compatible with the context
tree of Figure 1(b). Therefore, an example of an extension of this model is the following. If the
last 2 occurred a distance i in the past (that is, if the last i symbols are all 1s) then look back i

sites before this occurrence. In other words, the finite size contexts have the form

a−i−2
−2i−1 2 1i for all i ≥ 0 and a−i−2

−2i−1 ∈ Ai,

and the context tree is

τ = 1−N ∪
⋃
i≥0

⋃
c∈Ai

c21i; (2)

see Figure 2, for a representation.
Our results state that, assuming that infv∈τ p(2 | v) ≥ ε > 0, we can perfectly simulate

the unique stationary chain X compatible with (τ, p) (Theorem 1). The perfect simulation
algorithm extends the algorithm we briefly described in Section 3.1 for the renewal chain. The
main difference is in the definition of the regeneration time. In Section 9 we will give an explicit
perfect simulation of this chain. We also show in this work that, almost surely, infinitely many
occurrences of 2 split the realization of X into i.i.d. strings (Theorem 2). However, since any
occurrence of 2 can be bypassed by a context at a future time index with positive probability,
this ‘regeneration scheme’ differs substantially from the ‘renewal scheme’.
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2

221121

22211

Distance to the
reference string

Occurrence of the
reference string

Additional length
we need to look at 

Figure 2: The upper part of the context tree τ defined by (2). We only specify some of the contexts.

4. On the form of our context trees

The examples of the preceding section gave us an idea of how our families can be described
in terms of probabilistic context trees. The aim of the following definitions is to define, using
the probabilistic context tree framework, what we called a ‘reference string’. At the end of this
section, we give several examples explaining these definitions.

Suppose that we are given an unbounded context tree τ . For any finite string w of A�, we
define the function mw which associates to any context v ∈ τ the integer number

mw(v) := inf{j : 0 ≤ j ≤ |v| − |w| such that v
−j−1
−j−|w| = w}, (3)

with the convention that mw(v) = +∞ if the set of indices is empty. In the context tree, mw(v)

is the distance between the root and the first occurrence of w in the context v. If a context v is
such that mw(v) = k then it can be written as the concatenation

v = v−|v| · · · v−k−|w|−1wv−k · · · v−1,

where v
−j+|w|−1
−j �= w for j = |w|, . . . , k+|w|−1. The context trees considered in the present

work have the following form. There exist a finite string w of A� and, related to this string, a
function �w : N→ N satisfying �w(k) < +∞ for any k ≥ 0 such that, for any v ∈ τ ,

|v| = mw(v)+ |w| + �w(mw(v)).

The string w is the reference string for the context tree τ . The function �w tells us how much
further back from the last occurrence of w we need to look. It is precisely the notion of a
reference string which generalizes the notion of a renewal string.

4.1. Example of Figure 1(b)

The reference string is the symbol 2. The function �2 is identically 0, which is equivalent to
stating that 2 is a renewal symbol.
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4.2. Example of Figures 2 and 3(a)

The reference string is also the symbol 2 in Figures 2 and 3(a). In Figure 2, �2 is the identity
funtion. Comparing Figures 1(b) and 2, it is clear that the notion of a reference string generalizes
the notion of a renewal symbol.

To simplify Figure 3, we used small triangles to depict subtrees. These subtrees are context
trees of finite height since 2 is a reference string. Suppose that the context tree illustrated in
Figure 3(a) is such that �w(k) = 1+k2. It follows that any context of the context tree of τFigure 2
is a suffix of a context of τFigure 3(a). In this case, we write τFigure 2 ≤ τFigure 3(a), and observe
that

τFigure 1(b) ≤ τFigure 2 ≤ τFigure 3(a).

�2( ) 5=2

�2( ) 1=0

�2( ) 2=1

�2( ) 10=31∞

� ( ) 202 =1

1112 2112 1212 2212
� 2( )01

� 2( )11

� 2( )21

� 2( )31
∞2 111

∞2 11
∞2 1

∞2
1∞

(a)

(b)

� 2( )31

� 2( )21

� 2( )31

� 2( )11

� 2( )21

� 2( )31

12 22

Figure 3: The upper parts of two unbounded context trees, with reference string (a) 2 and (b) 12.

https://doi.org/10.1239/aap/1316792668 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792668


744 S. GALLO

There is a difference between τFigure 3(a) and the two others: the reference string 2 is not a
context.

4.3. Example of Figure 3(b)

The reference string is 12 and it is not a context. We can see five infinite size contexts, but
there are infinitely many of them.

5. Perfect simulation algorithm and statement of the results

We will assume without loss of generality that A = {1, 2, . . .}. We introduce a partition
of [0, 1), illustrated in Figure 4, which will be used for the construction of the chain. Let
J (1 | ∅) := [0, α(1)), and, for any a ≥ 2, let

J (a | ∅) =
[a−1∑

i=1

α(i),

a∑
i=1

α(i)

)
.

We also define, for any a ∈ A and v ∈ τ ,

J (a | v) :=
[
α +

a−1∑
i=1

(p(i | v)− α(i)), α +
a∑

i=1

(p(i | v)− α(i))

)
,

and the union K(a | v) := J (a | ∅) ∪ J (a | v). Note that if α(a) = 0 then K(a | v) =
J (a | v) since J (a | ∅) = ∅. Moreover, for any v ∈ τ ,

J (1 | ∅), J (2 | ∅), . . . , J (1 | v), J (2 | v), . . .

defines a partition of [0, 1) (see Figure 4), and, for any a ∈ A and any v ∈ τ ,

λ(K(a | v)) = p(a | v),

where λ denotes the Lebesgue measure on [0, 1).

α

1 1 3 4

λ(J(2 v)) � p(2 v) � 0

λ(J(3  v)) � p(3 v) � α(3)

λ(J(4  v)) � p(4  v)

0 1[0,1)

n

λ(J(1 v)) � p(1 v) � α(1)

α (1) α (3) α (8) α (n). . . . . .

2

λ(J(n  v)) � p(n  v) � α(n)

. . . . . .

3 8 n . . .. . .

1 � α

Figure 4: Illustration of the partition of [0, 1) with the disjoint intervals {J (a | ∅)}a∈A and {J (a | v)}a∈A
for some v ∈ τ . In this particular case we have, for example, α(a) = 0 for a = 2, 4, 5, 6, 7.
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Let U = (Un)n∈Z be a sequence of i.i.d. random variables uniformly distributed in [0, 1)

and defined on some probability space (	, F , Pr). All the chains considered in what follows
will be constructed using this sequence U .

We construct a deterministic measurable function X : [0, 1)Z → AZ such that the law
Pr(X(U) ∈ ·) is compatible with (τ, p). The construction of this function is carried out in such
a way that, for any n ∈ Z, [X(U)]n = a whenever Un ∈ J (a | ∅). Suppose that, for some
time index n ∈ Z, there exists a string a−1

−k ∈ Ak such that Un−i ∈ J (a−i | ∅), i = 1, . . . , k

(it is understood that |J (a−i | ∅)| > 0 for these symbols). In this case, we set

[X(U)]n−1
n−k = a−1

−k .

This is a sample that has been spontaneously constructed. We have three situations at this point:
(i) Un belongs to [0, α), (ii) Un belongs to [α, 1) and cτ (a

−1
−k ) = v ∈ τ , and (iii) Un belongs to

[α, 1) and cτ (a
−1
−k ) = ∅. In situation (iii), we are not able to construct [X(U)]n knowing only

[X(U)]n−1
n−k , and, therefore, we need to determine more past symbols. In situations (i) and (ii),

we can construct [X(U)]n independently of [X(U)]n−k−1−∞ and we set, for any a ∈ A,

[X(U)]n = a if Un ∈ K(a | v).

Observe that [X(U)]nn−k has been constructed independently of Un−k−1−∞ and U+∞n+1 . Suppose
that we want to sample the value of the stationary chain at time 0. The idea of the algorithm is
to generate the Uis backward in time until the first time k ≤ 0 such that we can carry out the
above construction from k to 0, without using Uk−1−∞ and U+∞1 . This is a CFTP algorithm.

The size of the suffix of the past we need to know in order to construct the next symbol
depends here on the previously constructed past itself (except for the time indices where the
symbol is spontaneously constructed). In the CFTP algorithm introduced in [7], the size of
this suffix of the past is defined by an i.i.d. random variable, totally independent of the values
assumed by the chain. This is the main difference between both works from a technical point
of view, and it is what makes our perfect simulation algorithm a little bit more complicated.

Situations (i), (ii), and (iii) given above are formally described by the measurable function
F : [0, 1)× (A� ∪ A−N)→ A ∪ {�}, which we define as follows. For any an

m ∈ A� ∪ A−N,

−∞ ≤ m ≤ n+ 1,

F(u, an
m) =

∑
a∈A

a 1{u ∈ K(a | cτ (a
n
m))} + � 1{u ∈ [α, 1), cτ (a

n
m) = ∅},

with the conventions that an
n+1 = ∅ and cτ (∅) = ∅. When cτ (a

n
m) �= ∅, we have

Pr(F (Un+1, a
n
m) = a) = Pr(Un+1 ∈ K(a | cτ (a

n
m))) = λ(K(a | cτ (a

n
m))) = p(a | cτ (a

n
m)).

(4)
This function is an update function. Since we consider chains of infinite order, this update
function may return the symbol ‘�’, meaning that we do not have sufficient knowledge of the
past to continue the construction.

We define, for any m ≤ n, the F (Un
m)-measurable function L : [0, 1)n−m+1 → {0, 1},

which takes value 1 if and only if we can construct [X(U)]nm independently of Um−1−∞ and U+∞n+1
using the construction described above. Formally,

{L(Un
m) = 1} :=

⋃
an
m∈An−m+1

n⋂
i=m

{F(Ui, a
i−1
m ) = ai}.
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Finally, we define, for any m ≤ n ≤ +∞,

θ [m, n] := max{k ≤ m : L(Un
k ) = 1} (5)

with the convention that θ [m] := θ [m, m]. We call this time the regeneration time for the
window [m, n], and it is the first time before m such that the construction described above is
successful until time n.

We now state our main results and present a ‘simplistic’ perfect simulation algorithm (Algo-
rithm 1) for the construction of a sample [X(U)]nm. A more ‘realistic’ algorithm (Algorithm 2)
is given in Section 9 together with an explicit perfect simulation in the particular case of the
example given in Section 3.

Algorithm 1. (‘Simplistic’ perfect simulation algorithm of the sample [X(U)]nm.)

1. Inputs: m and n. Outputs: θ [m, n] and ([X(U)]θ [m,n], . . . , [X(U)]n).
2. Sample Um, . . . , Un uniformly in [0, 1).

3. i ← m, θ [m, n] ← m, [X(U)]nm← �n−m+1, L(Un
m)← 0

4. while L(Un
i ) �= 1 do

5. i ← i − 1

Choose Ui uniformly in [0, 1)

6. end while

7. θ [m, n] ← i

8. while [X(U)]n = � do

9. [X(U)]i ← F(Ui, [X(U)]i−1
θ [m,n])

i ← i + 1

10. end while

11. return θ [m, n], ([X(U)]θ [m,n], . . . , [X(U)]n)
Theorem 1. (Perfect simulation.) Consider a probabilistic context tree (τ, p) having a refer-
ence string w which is ε-regular for some ε > 0. If

lim sup
k→∞

log(�w(k))

Cεk
< 1 and Cε := − 1

|w| log(1− ε) > 0,

then Algorithm 1 (and Algorithm 2 in Section 9) stops almost surely after a finite number of
steps, i.e. we have, for any −∞ < m ≤ n ≤ +∞,

Pr(θ [m, n] > −∞) = 1.

Moreover, Pr(θ [0, n] < −l) is summable in l for any 0 ≤ n < +∞, and, therefore, the
number of steps has finite expectation. Under the stronger requirement that �w is linear,
Pr(θ [0, n] < −l) decreases exponentially fast for any 0 ≤ n ≤ +∞.

In the sequel, we will often write Xi for [X(U)]i (and X for X(U)) in order to avoid
overloaded notation, keeping in mind the fact that, for any i, Xi is constructed as a deterministic
function of U . Actually, by Theorem 1, Xi depends only on a Pr-almost surely finite part of
this sequence: Xi := [X(. . . , uθ [i]−1, Uθ [i], . . . , Ui, ui+1, . . .)]i for any u ∈ [0, 1)Z.
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Corollary 1. (Existence and uniqueness.) The output of Algorithm 1 (and Algorithm 2 in
Section 9) is a sample of the unique stationary chain compatible with (τ, p). We will call µ the
stationary measure of X:

µ := Pr(X(U) ∈ ·).
Moreover, this measure has support on the finite size contexts, that is,

µ({|cτ ([X(U)]−1−∞)| < +∞}) = 1.

This implies that the set of discontinuous pasts has µ-measure 0.

The assumption that w is ε-regular for some ε > 0 is weaker than the regularity (also called
strongly non-nullness) assumption of the literature. Also, we know that this latter condition
neither implies existence nor uniqueness of the stationary measure (see, for example, [4]). Our
assumption is comparable to the weakly non-nullness assumption, which is also assumed, for
example, in [7]. In fact, this condition is very useful for our construction: it allows us to have
symbols which appear spontaneously, and makes the CFTP easier to perform.

The proof of the first statement of Corollary 1 using the CFTP algorithm and Theorem 1 can
be found in [7] (Proposition 6.1 for the existence statement and Corollary 4.1 for the uniqueness
statement). We omit these proofs in the present work in order to save space, but we mention the
main lines. The existence statement follows once we observe that Theorem 1 implies that we can
construct a bi-infinite sequence X verifying, for any n ∈ Z, Xn = F(Un, X

n−1−∞). By (4), this
chain is therefore compatible in the sense of (1). It is stationary by construction. The uniqueness
statement follows from the loss of memory the chain inherits because of the existence of almost
surely finite regeneration times for finite length windows. The proof of the second statement
of Corollary 1 follows simply from the fact that, in the constructed chain, the context observed
at time 0 has a length which is a function of the distance to the last occurrence of w in the past,
and this function is finite whenever the distance is finite. But this distance is clearly finite since
it is bounded above by the smallest j such that U−i ∈ J (w−i | ∅), i = 1, . . . , |w|.

We call time t a regeneration time for the chain X if θ [t,+∞] = t . Define the chain ξ

on {0, 1} by ξj := 1{j = θ [j,+∞]}. Then, consider the sequence of time indices T defined
by ξj = 1 if and only if j = Tl for some l in Z, where Tl < Tl+1, and with the convention
T0 ≤ 0 < T1. We say that X has a regeneration scheme if the chain ξ is renewal (that is, if the
increments (Ti+1 − Ti)i∈Z are independent, and are identically distributed for i �= 0).

Corollary 2. (Regeneration scheme.) Under the conditions of Theorem 1, the chain X has
a regeneration scheme. The random strings ([X(U)]Ti

, . . . , [X(U)]Ti+1−1)i �=0 are i.i.d. and
have finite expected size. Under the stronger requirement that �w is linear, the length of this
strings has an exponential tail.

In words, Corollary 2 states that the unique stationary chain compatible with (τ, p) under
the conditions of Theorem 1 can be viewed as an i.i.d. concatenation of strings of symbols of
A having finite expected size. A similar result was first obtained in [18] for one-dimensional
Gibbs states under appropriate conditions on the continuity rate, and then in [7] under weaker
conditions than those of [18]. It is a hidden regeneration scheme, because it uses the sequence U .
The main reason why we give this result is that it arises naturally from our perfect simulation
approach.

The visible regeneration scheme involves several technical complications, even if in spirit,
it is similar to the preceding scheme. We postpone the precise definitions to Section 8, and give
the following simplified statement.
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Theorem 2. (Visible regeneration scheme.) Suppose that (τ, p) satisfies the conditions of
Theorem 1. Then, for µ-almost every realization of the chain X compatible with (τ, p), there
exists a sequence of random times T X such that

• for any i ∈ Z, the event {T X
i = k} is measurable with respect to the σ -algebra generated

by X+∞k ; and

• conditionally onT X, the strings (XT X
i

, . . . , XT X
i+1−1)i �=0 are i.i.d. and have finite expected

size.

It is worth mentioning that, while there exists a visible regeneration scheme with proba-
bility 1, part of the regeneration times are invisible. In fact, the set of visible and invisible
regeneration times are generally different, because {t ∈ T } � {t ∈ T X} and {t ∈ T X} �

{t ∈ T }. We conclude with the following important observation.

Observation 1. (Monotonicity.) Suppose that the probabilistic context tree (τ, p) satisfies the
conditions of the above results. Then, all the above results hold true for any probabilistic context
tree (τ ′, p′) such that τ ′ ≤ τ and for which w is ε-regular.

6. Proof of Theorem 1

Suppose that we are given a probabilistic context tree (τ, p) having an ε-regular reference
string w to which corresponds the function �w. Owing to Observation 1, there is no loss
of generality in restricting the proof to the case where (i) only the branches having w as a
subsequence have finite length and (ii) �w increases and goes to∞.

We present a detailed proof for the |w| = 1 case only because the |w| ≥ 1 case presents
several notational complications which could hinder the comprehension of the reader, whereas
there is no conceptual difference with the |w| = 1 case. In Section 6.5 we explain the main
differences between both cases.

A slight complication arises from the fact that the random variable θ depends on the values
assumed by the chain X along its construction. We first introduce in Section 6.1 the random
variable �[0, n] (see (7)), which has the following properties: (i) it depends only on the
spontaneous occurrences of w along the construction; (ii) it can be used to define a lower bound
for θ [0, n].

In Sections 6.2 and 6.3 we relate the distribution of �[0, n] to the probability of return to the
state 0 for an N-valued auxiliary process which also depends on the spontaneous occurrences
of w. At this point, there is a clear similarity with the proof given in [7], the principal difference
being that our auxiliary process is not the house-of-cards process, since it is not Markovian.

The proof of Theorem 1 for the |w| = 1 case is given in Section 6.4. In Section 6.5 we detail
how the |w| = 1 proof is modified for the generic |w| ≥ 1 case.

6.1. Definition of a new random variable �[0, n] for the |w| = 1 case

In order to simplify the notation, we will write � and m for �w and mw. We define a new
stochastic chain Z: for any i ∈ Z, Zi = w if Ui belongs to J (w | ∅), and Zi = � otherwise.
This chain takes into account the spontaneous occurrences of w in X: Xi = w whenever
Zi = w. We also define the N-valued random variables mi(U) = mi and Li(U) = Li by

mi = inf{k ≥ 0 : Zi−k−1 = w},
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which is the distance to the last occurrence of w in Zi−1−∞, and

Li =
{

0 if Ui ∈ [0, α),

mi + 1+ �(mi) otherwise.
(6)

We introduce these random variables because if we have L(Un
m) = 1 for−∞ < m < n < +∞

and 0 < Ln+1 ≤ n − m + 1, then Ln+1 is an upper bound for the number of sites in the past
that we need to know in order to decide the state at time n + 1 using the perfect simulation
algorithm. To see this, observe that, since

Zi = w⇒ Xi = w for all i ∈ Z,

it follows that the distance to the last occurrence of w in Zn
m is larger than in Xn

m:

mn+1 ≥ m(cτ (X
n
m)).

Recall that here m stands for mw, defined in (3). We also recall that, for any v ∈ τ in which
the string w appears, we have

|v| = m(v)+ 1+ �(m(v));
therefore, by definition (6), whenever Ln+1 > 0, Ln+1 is an upper bound for the size of the
context needed at time n+ 1:

|cτ (X
n
m)| ≤ Ln+1.

Observe also that Ln+1 = 0 if and only if the symbol appears spontaneously at time n+ 1. We
are now ready to define the new random variable: for any n ≥ 0,

�[0, n] := max{j ≤ 0 : Li ≤ i − j, i = j, . . . , n}. (7)

The following lemma justifies the introduction of this new random variable.

Lemma 1. For any n ≥ 0, we have, in the set {U : �[0, n] > −∞},
�[0, n] ≤ θ [0, n]. (8)

Proof. To each time i ∈ {�[0, n], . . . , n}, we associate an arrow going from time i to time
i −Li . The definition of �[0, n] says that no arrows starting from {�[0, n], . . . , n} go beyond
time �[0, n]. This means that the construction of Xn

�[0,n] can be performed recursively from
time �[0, n] to time n using only Un

�[0,n], and, therefore, that L(Un
�[0,n]) = 1. Since θ [0, n]

is the maximum over {k ≤ 0 : L(Un
k ) = 1}, it follows that (8) holds.

6.2. An auxiliary chain to study �[0, n] for the |w| = 1 case

The definition of �[0, n] given in (7), which uses the chain L, is analogous to the definition
of the regeneration time given in [7, Equation (3.5)], which uses another N-valued chain K

(which basically plays the same role as L). Thus, as in Comets et al. [7], we can define an
auxiliary N-valued stochastic chain W (n). We set W

(n)
i = 0 for any i ≤ n and

W
(n)
i = (W

(n)
i−1 + 1)1{Li < i − n} for all i ≥ n+ 1. (9)

In our case, this chain is not exactly a house-of-cards process as it is not Markovian, whereas
in the case of [7], it is Markovian. This difference is due to the fact that L is not i.i.d., whereas
their chain K is i.i.d. Nevertheless, the sequence of equivalences given in Equation (5.6) of [7]
also holds in our case, and we obtain

�[0, n] < −l ⇐⇒ there exists j ∈ {0, . . . , n} such that W
(−l−1)
j = 0. (10)
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6.3. Study of Pr(W(0)
k

= 0) for the |w| = 1 case

Define the inverse function of � by

�−1(i) = inf{k ≥ 1 : �(k) > i} for all i ≥ 0. (11)

Our objective here is to prove the following proposition.

Proposition 1. Let W (0) be the chain defined through (9) using an N-valued function � and the
i.i.d. chain Z on {1, �} with distribution (ε, 1− ε). Then, the sequence uk := Pr(W(0)

k = 0)

1. is summable when (1− ε)�
−1(i) is summable;

2. decreases exponentially fast when (1− ε)�
−1(i) decreases exponentially fast.

Proof. Part of the present proof is inspired by the proof of Proposition 2 of [5] for the house-
of-cards process. Denote by ζ the first time W (0) returns to state 0, and by fk the probability
Pr(ζ = k). First, we observe that the state 0 is a renewal state for the chain W (0). It follows
that the sequences (uk)k≥1 and (fk)k≥1 satisfy

uk =
k∑

i=1

fiuk−i . (12)

By (12), the series
F(s) :=

∑
n≥1

fns
n and U(s) :=

∑
n≥1

uns
n

are related through

U(s) = 1

1− F(s)
(13)

for s ≥ 1 such that F(s) < 1 (see, for example, Theorem 1 of [9, Chapter XIII.10]). In order to
prove statement 1, all we need to prove is that state 0 is transient, that is, F(1) < 1, whenever
(1− ε)�

−1(i) is summable. Suppose that, for some M > 0, we have ZM
1 = 1M , so that in

particular W
(0)
M = M . The first possible arrow which can go until or beyond time 0 could be

that of M + �−1(M − 1). This follows from definition (11) of �−1(M − 1). Then, in order that
the chain W (0) touches 0 at the first possible time after M , it is necessary that �−1(M− 1) stars
appear in Z from time M + 1 to time M + �−1(M − 1). More specifically, we have, for any
integer M ≥ 1,⋃

i≥1

{ζ = i} ∩ {ZM
1 = 1M} =

⋃
i≥M

{Zi+�−1(i−1)
i+1 = ��−1(i−1)} ∩ {ZM

1 = 1M}.

It follows that, using the partition⋃
i≥1

{ζ = i} =
⋃
i≥1

{ζ = i} ∩ {ZM
1 = 1M} ∪

⋃
i≥1

{ζ = i} ∩ {ZM
1 �= 1M} for all M ≥ 1,

we obtain the simple upper bound

Pr

(⋃
i≥1

{ζ = i}
)
≤ Pr

( ⋃
i≥M

{Zi+�−1(i−1)
i+1 = ��−1(i−1)} ∩ {ZM

1 = 1M}
)
+ Pr(ZM

1 �= 1M).
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The events
⋃

i≥M{Zi+�−1(i−1)
i+1 = ��−1(i−1)} and {ZM

1 = 1M} are independent since the Zis are
i.i.d. Therefore, for any M ≥ 1,

Pr

(⋃
i≥1

{ζ = i}
)
≤ εM

∑
i≥M−1

(1− ε)�
−1(i) + 1− εM.

If
∑

i≥0(1− ε)�
−1(i) < +∞, we can take M sufficiently large to ensure that

∑
i≥M−1(1−

ε)�
−1(i) < 1. Thus,

∑
i≥0(1− ε)�

−1(i) < +∞ implies that
∑

i≥1 fi < 1, concluding the proof
of statement 1.

For the proof of statement 2, let us suppose that (1− ε)�
−1(i) decreases exponentially fast.

Then, on the one hand, W (0) is transient and, therefore, F and U are related through (13); on
the other hand, �−1(i) ∼ i. It follows that

fn = Pr

(
W

(0)
i > 0, i = 1, . . .

n

2
− 1

)
ε(1− ε)n/2,

and fn/(1− ε)n/2 → Pr(ζ = +∞) > 0 as n→+∞. Thus, the radius of convergence of F is

lim
n→+∞((1− ε)n/2)−1/n = (1− ε)−1/2,

which is strictly larger than 1. Since F(1) = Pr(ζ < +∞) < 1, it follows that, by continuity,
there exists a real number s0 > 1 such that F(s0) = 1. By (13), this means that U(s) < +∞ for
s < s0, and, by the definition of U , it implies that un decreases faster than rn for r ∈ (s−1

0 , 1).

6.4. Proof of Theorem 1 for the |w| = 1 case

The proof of the theorem is now simple. By Lemma 1 and (10), we have

Pr(θ [0, n] < −l) ≤
l+n+1∑
k=l+1

uk. (14)

Under the conditions of Theorem 1, when |w| = 1, we have

lim sup
k→∞

log �(k)

log(1/(1− ε))k
< 1;

therefore, there exists a real number γ > 0 such that, for any sufficiently large k, �(k) ≤
(1/(1− ε))k/(1+γ ). It follows that �(k) ≤ (1/(1− ε))(k+1)/(1+γ ) for sufficiently large k and,
by definition (11) of �−1,

�−1(n) ≥ 1+ γ

log(1/(1− ε))
log n− 1

for any sufficiently large n. Therefore, there exists n� such that

∑
n≥0

(1− ε)�
−1(n) ≤

n�−1∑
n=0

(1− ε)�
−1(n) + (1− ε)−1

∑
n≥n�

n−1−γ ,

which is finite since γ is strictly positive. By item 1 of Proposition 1, (uk)k≥1 is summable.
Thus, by (14), we obtain

∑
l≥0

Pr(θ [0, n] < −l) ≤
∑
l≥0

l+n+1∑
k=l+1

uk ≤ (n+ 1)
∑
l≥1

ul,
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implying that Pr(θ [0, n] < −l) is summable in l for any n, 0 ≤ n < +∞, and that Pr(θ [0,

+∞] < −l) goes to 0 when l diverges. For the second statement of Theorem 1, if � is
linear then �−1 is linear, and by item 2 of Proposition 1, uk decreases exponentially fast to 0.
By (14), this implies that Pr(θ [0, n] < −l) decreases exponentially fast as l increases for any n,
0 ≤ n ≤ +∞. This concludes the proof of Theorem 1.

6.5. Proof of Theorem 1 for the generic |w| ≥ 1 case

To keep the same form as �[0, n] defined in (7), for the general case, |w| ≥ 1, we introduce
the time rescaled chain Z̄ and the function �̄ which respectively play the roles of Z and � in the
preceding proof, and which are defined by

Z̄m =
{

1 if Um|w|−i+1 ∈ J (w−i | ∅), i = 0, . . . , |w| − 1,

� otherwise,

and

�̄(i) :=
⌈

�w((i + 1)|w| − 1)

|w|
⌉
.

For any r ∈ R, �r� denotes the smallest integer greater than or equal to r . Using these new
definitions, we introduce the rescaled random variables

m̄i = inf{k ≥ 0 : Z̄i−k−1 = 1},
which is the distance to the last occurrence of 1 in Z̄i−1−∞, and

L̄i =
{

0 if Z̄i = 1,

m̄i + 1+ �̄(m̄i) otherwise.

We are now able to define our new random time:

�̄[0, n] := max{j ≤ 0 : L̄i ≤ i − j, i = j, . . . , n}. (15)

Note that �[0, n] defined by (7) and �[0, n] defined by (15) have exactly the same form. We
now state the following lemma, the analogue of Lemma 1, but for the generic case. Its proof is
omitted, as the only complexity arises from the notation.

Lemma 2. For any n ≥ 0, we have, in the set {U : �̄[0, n] > −∞},
θ [0, n|w|] ≥ |w|(�̄[0, n] − 1)+ 1.

Now define a process W̄ (0) using L̄ and �̄, defined in the same way as W (0) using L and �.
Equivalence (10) still holds, substituting W (−l−1) with W̄ (−l−1) and �[0, n]with �̄[0, n]. Note
that Z̄ is i.i.d. on {1, �} with distribution (ε, 1 − ε); thus, Proposition 1 also holds for W̄ (0) if
we replace � by �̄ in the statement. To conclude the proof in the generic case, first observe that

Pr(θ [0, n] < −l) ≤ Pr

(
θ

[
0, |w|

⌈
n

|w|
⌉]

< −|w|
⌊

l

|w|
⌋)

,

where �r� denotes the integer part of r . By Lemma 2 and the transformed version of (10), we
obtain

Pr(θ [0, n] < −l) ≤
�l/|w|�+�n/|w|�∑

k=�l/|w|�
ūk

for any l such that �l/|w|� ≥ 1, where ūk := Pr(W̄ (0)
k = 0). The rest of the proof is identical

https://doi.org/10.1239/aap/1316792668 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792668


Perfect simulation for unbounded variable length memory chains 753

to the proof given in Section 6.4, upon making the necessary changes to the notation and using
the transformed version of Proposition 1.

7. Proof of Corollary 2

We refer the reader to Section 8 of [7] for a complete proof of the statements of Corollary 2.
The lines of the proof given therein are as follows.

7.1. Existence of a regeneration scheme

On the one hand, we have Pr(θ [0,+∞] = 0) > 0, which follows from the fact that

Pr(θ [0,+∞] = 0) ≥ Pr

(⋂
i≥1

{W(0)
i ≥ 1}

)
,

which is strictly positive, since the state 0 is transient in the conditions of Theorem 1 (this is
shown in the proof of Proposition 1). On the other hand, we have to check that the chain ξ ,
defined by ξj := 1{j = θ [j,+∞]}, is renewal. This follows from the fact that, by definition (5)
of the random variable θ , we have

n⋂
l=1

{θ [tl ,+∞] = tl} =
n⋂

l=1

{θ [tl , tl+1 − 1] = tl}

(where we have used the convention tn+1 = +∞), which is an intersection of independent
events, since {θ [tl , tl+1 − 1] = tl} is F (U

tl+1−1
tl

)-measurable for l = 1, . . . , n. To conclude,
the fact that the random strings ([X(U)]Ti

, . . . , [X(U)]Ti+1−1)i �=0 are i.i.d. follows from the
construction using Algorithm 1 or Algorithm 2 (see Section 9.1).

7.2. On the tail distribution of the length of the i.i.d. strings

To show that the expected size between two consecutive 1s in ξ is finite, we observe that,
by stationarity and definition (5) of the random variable θ ,

Pr(Tl+1 − Tl ≥ m) = Pr(θ [1,+∞] ≤ −m | θ [0,+∞] = 0) = Pr(θ [0] < −m+ 1),

which has been proved to be summable in Section 6.4. It has an exponential tail when �w is
linear.

8. Proof of Theorem 2

Suppose that (τ, p) satisfies the conditions of Theorem 1. Denote by X the unique stationary
chain which has been constructed with Algorithm 1 or Algorithm 2 (see Section 9.1). Define the
random variable LX

i := |cτ (X
i−1−∞)|, and define σ := ��w(|w| − 1)/|w|� + 1. For any integers

m and n such that −∞ < m+ σ |w| ≤ n ≤ +∞, the visible regeneration time of the window
[m, n] is

θX[m, n] := max{k ≤ m : Xk+σ |w|−1
k = wσ and LX

i ≤ i − k, i = k + σ |w|, . . . , n}. (16)

Observe that, although LX
i := |cτ (X

i−1−∞)|, the event {θX[m, n] = k} is measurable with respect
to the σ -algebra generated by Xn

k . To require that X
k+σ |w|−1
k = wσ ensures that there exist

realizations of X such that θX[m, n] > −∞. To see this, observe that we can concatenate
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one more w to these σ consecutive ws without needing to know more than wσ : for i =
0, . . . , |w| − 2,

|cτ (w
σ−1ww−|w| · · ·w−|w|+i )| = �w(i + 1)+ |w| + i + 1

≤ �w(|w| − 1)+ |w| + i + 1

≤ σ |w| + i + 1.

We say that the time t is a visible regeneration time for the chain X if θX[t,+∞] = t .
Finally, define ξX and T X using θX[t,+∞], in the same way ξ and T using θ [t,+∞] were
defined. We want to show that (i) θX[0,+∞] is almost surely finite and (ii) ξX is renewal,
with finite expected distance between two consecutive 1s.

We use the sequence Z, which tells us where we are sure that w occurs in X. The proof of
item (i) is quite similar to the proof of Theorem 1. The main difference is in the following new
definitions:

L′i := mi + |w| + �w(mi),

which is always strictly larger than 0, and, for any n ≥ σ |w|,

θ ′[0, n] := max{k ≤ 0 : Zk+σ |w|−1
k = wσ and L′i ≤ i − k for i = k + σ |w|, . . . , n}.

We can use the proofs given in Section 6 to show that θ ′[0, n] ≤ θX[0, n], that Pr(θ ′[0, n] <
−l) goes to 0 as l diverges for any n ≤ +∞, and that Pr(θ ′[0] < −l) is summable in l. In
order to prove item (ii), we can adapt the proof of [7]. Define v := wσ , and define, for any
−∞ < m ≤ n < +∞, the events

h[m, n] :=
|w|−1⋂
i=0

{|cτ (X
n
mw−|w| · · ·w−|w|+i )| ≤ n+ i + 1−m},

which says that one more w can be concatenated to Xn
m without needing to look back before

time m, and

H [m, n] := {Xm+σ |w|−1
m = v, |cτ (X

i
m)| ≤ i −m, i ∈ {m+ σ |w|, . . . , n}} ∩ h[m, n].

Both events are measurable with respect to the σ -algebra generated by Xn
m. Finally, define

H [m,+∞] := {Xm+σ |w|−1
m = v, |cτ (X

i
m)| ≤ i −m, i ≥ m+ σ |w|},

which is measurable with respect to the σ -algebra generated by X+∞m . By definition (16) of
θX[m, n], −∞ < m ≤ n ≤ +∞, we know that if

t1 + σ |w| ≤ t2 + σ |w| ≤ · · · ≤ tn−1 + σ |w| ≤ tn (17)

then
n⋂

l=1

{θX[tl ,+∞] = tl} =
n⋂

l=1

H [tl , tl+1 − 1], (18)

where tn+1 := +∞. This is an intersection of independent events. Then, we observe that, by
stationarity,

Pr(H [j,+∞]) = Pr(H [0,+∞])
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and
Pr(H [−j,−1]) = Pr(H [−j,+∞] | H [0,+∞]) for all j ≥ σ |w|.

Together with (18), this yields, for any sequence of integers t1, . . . , tn verifying (17),

Pr(ξX
tl
= 1, l = 1, . . . , n) = Pr(ξX

0 = 1)

n−1∏
l=1

Pr(ξX
−(tl+1)−tl

= 1 | ξX
0 = 1),

and, therefore, the chain ξX is renewal, proving the existence of the visible regeneration scheme.
By stationarity and definition (16) of the random variable θX, we have, for any m ≥ σ |w|,
Pr(T X

l+1 − T X
l ≥ m) = Pr(θX[1,+∞] ≤ −m | θX[0,+∞] = 0) = Pr(θX[0] < −m+ 1),

which is summable in m, concluding the proof of Theorem 2.

9. The complete perfect simulation algorithm: simulation and discussion

9.1. The algorithm

Algorithm 1 is ‘simplistic’ in the sense that in order to compute θ [m, n] it uses the function
L, which is not explicit. A more complete algorithm is given below (Algorithm 2). We recall
that, for any an

m ∈ An−m+1 and u ∈ [0, 1),

F(u, an
m) :=

∑
a∈A

a 1{u ∈ K(a | cτ (a
n
m))} + � 1{u ∈ [α, 1), cτ (a

n
m) = ∅},

where if m = n+ 1 then cτ (a
n
m) = cτ (∅) = ∅. This function contains all the information we

need about the probabilistic context tree (τ, p), and we suppose that it is already implemented
in the software used for programing the algorithm.

Algorithm 2. (‘Explicit’ perfect simulation algorithm of the sample [X(U)]nm.)

1. Inputs: m, n, and F . Outputs: θ [m, n] and ([X(U)]θ [m,n], . . . , [X(U)]n).
2. Sample Um, . . . , Un uniformly in [0, 1).

3. i ← m, B = {m, . . . , n}, θ [m, n] ← m, [X(U)]nm← �n−m+1

4. while F(Ui, [X(U)]i−1
m ) ∈ A and B �= ∅ do

5. [X(U)]i ← F(Ui, [X(U)]i−1
m )

6. B ← B \ {i}
7. i ← i + 1

8. end while

9. i ← m

10. while B �= ∅ do

11. i ← i − 1

12. B ← B ∪ {i}
13. Sample Ui uniformly in [0, 1)
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14. while Ui ∈ [α, 1) do

15. i ← i − 1

16. B ← B ∪ {i}
17. Sample Ui uniformly in [0, 1)

18. end while

19. [X(U)]i ← F(Ui, ∅)

20. B ← B \ {i}
21. t ← min B

22. while F(Ut , [X(U)]t−1
i ) ∈ A and B �= ∅ do

23. [X(U)]t ← F(Ut , [X(U)]t−1
i )

24. B ← B \ {t}
25. t ← min B

26. end while

27. end while

28. θ [m, n] ← i

29. return θ [m, n], ([X(U)]θ [m,n], . . . , [X(U)]n)
Algorithm 2 uses two variables: i, which is a time index, and B, which is a set of time indices.

The set B keeps track of the set of sites which have to be constructed. It is initialized with
B = {m, . . . , n}, which is the set of time indices to be constructed, and the algorithm terminates
when B = {∅}. In the first ‘while’ loop (lines 2 to 8), we sample Un

m, and directly attempt
to construct [X(U)]nm using this information. If the algorithm manages to do this, it returns
θ [m, n] = m and the constructed sample [X(U)]nm. Otherwise, it enters the second ‘while’
loop (lines 10 to 27). In this loop, each time the algorithm cannot construct the next site of B,
it generates a new uniform random variable backward in time. At each new generated random
variable, the algorithm attempts to go as far as possible in the construction of the remaining
sites of B using the uniforms that have been previously generated.

9.2. Simulation

We will say that the algorithm makes a step each time it ‘enters’ a ‘while’ loop. In Figure 5,
this corresponds to the number of arrows, plus 1. The total number of steps N [m, n] needed
for the construction of a sample Xn

m is

N [m, n] = (n−m+ 1)+ 2(m− θ [m, n]).
Let us denote by C the maximum number of operations necessary to make a step. Suppose
that we want to construct a sample Xn−1

0 . Then the expected number of operations is bounded
above by

C(n+ 2× E |θ [0, n− 1]|).
Figure 5 illustrates an explicit perfect simulation of this chain using a finite sample of U , in the
case where α(1) = α(2) = 0.2.
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{ 6, 5, 3, 2, 1,2}− − − − −
{ 9, 6, 5, 3, 2, 1,2}− − − − − −
{ 9, 6, 5, 3, 2, 1,2}− − − − − −
{ 6, 5, 3, 2, 1,2}− − − − −
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221121

2

11211

2112111

Partition given a context τv∈
0.2 0.2

p ( )1 0.2v −
p ( )2 0.2v −

Figure 5: An explicit perfect simulation, using a sample U2−12. The transition probabilities of the context
tree are given in the bottom diagram. To recall what the small intervals represent, we refer the reader
to Figure 4. Both symbols 1 and 2 are 0.2-regulars. The probability transitions are p(2 | 2) = 0.7,

p(2 | 121) = 0.3, p(2 | 122) = 0.5, p(2 | 11211) = 0.3, and p(2 | 1112112) = 0.5.
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Figure 6: Graph representing the influence of the value of ε on the quantity E |θ [0]|. The x-axis represents
the successive values of ε, from 0.2 to 1. The y-axis represents E |θε[0]|, the expected value of θ [0], when

this latter value is computed using ε.

The results of the present paper tell us that, under the conditions of Theorem 1, this
expectation is finite. However, no insight is given into how large it can be. This is due to
the fact that we did not manage to obtain sufficiently good explicit bounds for the probability of
return to 0 of the chain W (0). This is also the case in [7]. However, this should strongly depend
on the parameter ε, as in [7] (see Equations (2.4) and (2.5) therein, where their a0 corresponds
basically to our α). In the absence of such bounds, we implemented the above pseudocode in
the case of the context tree of Section 3. We assumed that p(2 | v) = ε for any v ∈ τ . Note
that this case corresponds to the i.i.d. chain on {1, 2}, where the symbol 2 has probability ε of
occurring. This assumption considerably simplifies the implementation of the algorithm and
gives us the largest possible regeneration times within the class of probabilistic context trees
for which the symbol 2 is ε-regular. We used increasing values of ε, from 0.2 to 1, and, for each
value, we took the mean over 10 000 iterations of Algorithm 2. The resulting graph is given in
Figure 6. We can derive the corresponding expected number of steps E N [0] realized by the
algorithm, and the expected number of operations too.

10. Final comments and references

The first study of chains of infinite order seems to have been by Onicescu and Mihoc [19].
They called these chains ‘chaînes à liaison complètes’ (chains with complete connections).
Then, in [8], the authors proved the results on the speed of convergence towards the invariant
measure under the continuity conditions. Other relevant works include [1], [5], [14], [16],
and [18], among others. We refer the reader to [15] for a complete review of this topic, and
to [10] for an introduction to the constructive approach.

Chains with variable length were introduced in [21] as a universal model for data com-
pression. This model has been shown to have a great applicability in statistical inference and
modeling. For a review and further references, we refer the reader to [13].

On perfect simulation using the CFTP method, we refer the reader to the webpage of Prof.
David Bruce Wilson (http://dbwilson.com/exact/). The reader will find therein an extensive list
of publications in this area.
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A very interesting issue related to our work is whether or not the ε-regularity (or the weakly
non-nullness) assumption is necessary for the existence of a (not necessarily practical) CFTP
algorithm. We mention that necessary conditions exist for Markov chains: in [12], it was shown
that such a coupling exists if and only if the Markov chain is geometrically ergodic.

A new and interesting direction of study has been opened in [6]: the interpretation into
dynamical system terms (using mapping of the interval) of the probabilistic context tree sources.
In [6], the authors considered two particular cases which are also particular cases of the context
trees considered in the present work. It seems to be natural to try to extend such results to the
new class of processes introduced here.
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