
1

Background

This book describes some recent developments in scalable Monte Carlo
algorithms and their applications within Bayesian learning: what exactly
does this mean?

Monte Carlo methods are a class of computational methods that involve
repeated sampling to numerically approximate quantities of interest. We
specifically focus on Monte Carlo integration methods, which are sampling-
based methods for evaluating or approximating the value of integrals. Such
methods are widely used across science and engineering, but our motiva-
tion comes particularly from Bayesian statistics. One of the key quantities
in Bayesian statistics is the posterior distribution, which encapsulates our
belief regarding unknown parameters, of a model given our prior belief
and an observed dataset. We can then obtain estimates of the parameters,
or quantify our uncertainty about the parameters, in terms of expectations
with respect to the posterior distribution. For example, a common estimate
of a parameter is the posterior expectation of that parameter; the predictive
probability of future observations is the expectation of the density/mass
function of the future observation taken with respect to the posterior distri-
bution. Calculating these expectations involves evaluating an integral, and
the idea of Monte Carlo is to use samples from the posterior to estimate
such integrals.

The main challenge with using Monte Carlo in Bayesian statistics is often
in deriving an efficient algorithm to sample from the posterior distribution.
Markov chain Monte Carlo (MCMC) is a general and widely used class of
methods for sampling from a distribution, based on simulating a Markov
process that has the posterior distribution as its stationary distribution.

In recent years, there has been interest in applying MCMC to ever-
increasingly complex and challenging problems. For example, the dimen-
sion, 𝑑, say, of the parameter space of the models we wish to fit to data,
or the number of data points, 𝑁 , say, in our dataset can be large. As either

1

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

2 Background

𝑑 or 𝑁 increases, the efficiency of MCMC methods may reduce. For ex-
ample, as 𝑑 increases, we may need to have more iterations of our MCMC
algorithm to achieve the required level of accuracy, while as 𝑁 increases,
the computational cost per iteration of a standard algorithm will increase.
Scalable MCMC methods are specifically those methods that can scale well
as either or both 𝑑 and 𝑁 increase.

The remainder of this introductory chapter will cover background rele-
vant to scalable MCMC. Section 1.1 will introduce Monte Carlo methods,
explain why Monte Carlo integration is widely used, and explain how it
is relevant to Bayesian statistics. This will be followed by an introduc-
tion to some of the statistical models and applications that will be used
to demonstrate the methods in this book, as well as an informal and brief
introduction to some of the concepts from stochastic processes that will be
used in later chapters. Finally, the chapter ends with a short introduction to
kernel methods in preparation for a deeper exposition in Chapter 6.

1.1 Monte Carlo Methods
1.1.1 What Is Monte Carlo Integration?

Assume we have a distribution of interest. For simplicity of presentation,
here and for the remainder of this chapter, we assume that the distribution
is continuous on R𝑑 . Let X denote a random variable with this distribution,
and let 𝜋(x) denote the corresponding probability density function for X;
we will also use 𝜋 to refer to the distribution itself when that is necessary.
Then the expectation of some function ℎ of X is an integral

𝐼 = E [ℎ(X)] =
∫

ℎ(x)𝜋(x) dx.

This expectation is well-defined; that is, ℎ is integrable with respect to 𝜋
if

∫
|ℎ(x) |𝜋(x) dx < ∞. We abbreviate this to ℎ ∈ L1(𝜋), and throughout

this section, we assume that this holds true. If we can sample from 𝜋(·),
then we can estimate this expectation/integral by (i) drawing 𝑛 independent
realisations, x1, . . . , x𝑛, from 𝜋(·) and (ii) calculating the sample average
of the values ℎ(x1), . . . , ℎ(x𝑛). This gives an estimate of 𝐼, namely

𝐼 =
1
𝑛

𝑛∑︁
𝑘=1

ℎ(x𝑘).

This is called a Monte Carlo estimate of 𝐼, as it is obtained from independent,
random samples from 𝜋(·).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.1 Monte Carlo Methods 3

The Monte Carlo estimator can be interpreted as being based on 𝑛 inde-
pendent random variables X1, . . . ,X𝑛, of which x1, . . . , x𝑛 are realisations.
Is it a good estimator? This is impossible to answer in generality, but we can
at least describe some good properties that the estimator can admit. First,
since the X𝑖 are i.i.d., E

[
𝐼
]
= E [ℎ(X1)] = 𝐼, so the estimator is unbiased.

Second, and more importantly, the strong law of large numbers tells us
that we can make our estimate arbitrarily accurate, with high probability,
if we choose 𝑛 large enough. Formally, provided 𝐼 is well-defined, that is,
ℎ ∈ L1(𝜋), and our samples from 𝜋(·) are independent, then as 𝑛→∞,

1
𝑛

𝑛∑︁
𝑘=1

ℎ(X𝑘) → 𝐼 almost surely. (1.1)

Almost sure convergence means that the collection of outcomes where the
convergence does not occur has a combined probability of 0.

Thus, with high probability, our Monte Carlo estimator will be accurate
if we choose 𝑛 large enough, but the result does not tell us how large 𝑛
needs to be, nor how accurate the estimator will be for a given value of
𝑛. However, provided that

∫
ℎ(x)2𝜋(x) dx < ∞, which we abbreviate to

ℎ ∈ L2(𝜋), we can use the central limit theorem to answer these questions.
Again assume that our samples from 𝜋(·) are independent, and define

𝑉 =

∫
{ℎ(x) − 𝐼}2𝜋(x) dx.

Then, the central limit theorem states that

√
𝑛

(
1
𝑛

∑𝑛
𝑘=1 ℎ(X𝑘) − 𝐼√

𝑉

)
D→ N(0, 1),

as 𝑛→∞. Here the convergence is in distribution, and we have convergence
to a standard normal distribution in the limit.

One way of interpreting this result is that, for large enough 𝑛, approxi-
mately,

1
𝑛

𝑛∑︁
𝑘=1

ℎ(X𝑘) ∼ N
(
𝐼,
𝑉

𝑛

)
.

That is our estimator will be approximately normally distributed, with
mean equal to the integral, 𝐼, and a variance that is𝑉/𝑛. This shows that the
quantity𝑉 governs how easy it is to estimate 𝐼 via Monte Carlo integration,
and the accuracy depends on both 𝑉 and 𝑛. The order of the error of a
Monte Carlo estimator is

√︁
𝑉/𝑛, and thus, the Monte Carlo error decays

with sample size at a rate of 𝑛−1/2.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

4 Background

1.1.2 Importance Sampling
What if we are interested in calculating or approximating a more general
integral, 𝐼 =

∫
Ω
𝑔(x)dx, of some function 𝑔 over a region Ω? We can use

Monte Carlo sampling to estimate this integral by rewriting the integral as
an expectation with respect to some density function 𝑞(·) defined on Ω as
follows,

𝐼 =

∫
Ω

𝑔(x)
𝑞(x) 𝑞(x) dx = E [ℎ(X)] ,

where ℎ(x) = 𝑔(x)/𝑞(x). If 𝐼 is well-defined, that is,
∫
|𝑔(x) |dx < ∞,

then ℎ ∈ L1(𝑞), and 𝐼 can be estimated using Monte Carlo integration as
mentioned above, based on independent realised samples x1, . . . , x𝑛 from
𝑞(·) by calculating the arithmetic mean of ℎ(x1), . . . , ℎ(x𝑛). This process is
called importance sampling, and 𝑞(·) is known as the proposal distribution.

For this Monte Carlo estimator to be feasible, we have two constraints
on 𝑞. First, we need 𝑞(x) > 0 whenever 𝑔(x) > 0, in order for ℎ(x) to be
well-defined. Second, we need to be able to easily sample from 𝑞(·). The
choice of 𝑞(·) will affect the accuracy of the estimator, with the variance of
our estimator for a Monte Carlo sample of size 𝑛 being 𝑉/𝑛, where

𝑉 =

∫ (
𝑔(x)
𝑞(x) − 𝐼

)2

𝑞(x) dx.

This variance will be small if 𝑔(x)/𝑞(x) is roughly constant, and one can
show that the optimal choice of 𝑞(·) in terms of minimising 𝑉 is 𝑞(x) ∝
|𝑔(x) |. If 𝑔(x) is non-negative everywhere (or non-positive everywhere),
then such a choice of 𝑞 will give an estimator that has zero-variance, that
is, an exact estimator. More generally, the variance 𝑉 will be large if there
are values of x for which 𝑔(x)/𝑞(x) is large. This leads to a rule of thumb
that, if Ω is unbounded, one wants 𝑞(x) to have heavier tails than |𝑔(x) | to
avoid this ratio blowing up as ∥x∥ → ∞.

1.1.3 Monte Carlo or Quadrature?
It is natural to ask why one should use Monte Carlo integration when
there are alternative numerical integration methods, such as quadrature. To
see the potential benefits of Monte Carlo methods, consider estimating an
integral on the unit hypercube [0, 1]𝑑 . We can then compare quadrature
with Monte Carlo integration based on samples from a uniform distribution
on [0, 1]𝑑 .

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.1 Monte Carlo Methods 5

Figure 1.1 Example of trapezoid rule. We can estimate the
integral by (i) setting 𝑥1, . . . , 𝑥𝑛 to be evenly spaced points on
[0, 1], (ii) creating 𝑛 − 1 trapezoids based on joining up the points
(𝑥𝑘 , ℎ(𝑥𝑘)) (shaded in regions), and (iii) estimating the integral by
the sum of the areas of the trapezoids.

First, consider 𝑑 = 1. In this case, quadrature methods tend to be much
more accurate than the Monte Carlo methods. We have seen that the Monte
Carlo variance, if we have 𝑛Monte Carlo samples, is𝑂 (1/𝑛), which means
that the error of our Monte Carlo estimator will be 𝑂 𝑝 (𝑛−1/2).

By comparison, a simple numerical method is the trapezoidal rule. This
involves evaluating the integrand, ℎ(𝑥), at a set of equally spaced points,
𝑥1, . . . , 𝑥𝑛, on [0, 1], and approximating the integral using the total area of
the trapezoids formed by joining up the points (𝑥𝑘 , ℎ(𝑥𝑘)) for 𝑘 = 1, . . . , 𝑛
(Figure 1.1). Assuming our integrand has a bounded second derivative
|ℎ′′ (𝑥) | < 𝐿 for some 𝐿, then we can bound the error in the estimate of
the integral as 𝐿𝛿2/12, where 𝛿 = 1/(𝑛 − 1) is the width of each trapezoid.
This gives an error that decays like 𝑂 (1/𝑛2), which is much better than the
Monte Carlo method. Furthermore, higher-order quadrature methods, such
as Simpson’s rule, can obtain even faster decay of the approximate error
with 𝑛, if the integrand is sufficiently smooth.

So, quadrature methods can be more accurate for one-dimensional inte-
grals, at least for functions whose second derivatives are bounded. How-

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

6 Background

ever, now consider higher-dimensional integrals involving functions ℎ(x),
the only information about which we have is that the second-order (partial)
derivatives are bounded. Then we can apply a cubature rule based on a grid
of 𝑚 + 1 equally spaced points in each dimension. The spacing of these
points will be 𝛿 = 1/𝑚, and there will be 𝑛 = (𝑚 + 1)𝑑 points in total.
If we have a cubature whose error decays like 𝛿𝑟 , for some power 𝑟 , for
example, 𝑟 = 2 for the trapezoidal rule, then the error decays at a rate of
𝑚−𝑟 ≈ 𝑛−𝑟/𝑑 . For large 𝑑, this convergence will be slower than the 𝑛−1/2

rate of Monte Carlo integration, explaining why Monte Carlo is often the
default method for numerically approximating high-dimensional integrals.
To overcome this curse of dimension in cubature, it is usually necessary to
identify a sense in which the integrand ℎ(x) is effectively low-dimensional,
which can be difficult or impossible depending on the applied context.

1.1.4 Control Variates
Let us return to the problem of estimating the expectation of some function
of a random variable,

𝐼 = E [ℎ(X)] =
∫

ℎ(x)𝜋(x) dx,

where 𝜋(x) is the density of X. We have seen how we can estimate this using
a sample from 𝜋(·), and that the accuracy of this estimator is proportional
to

𝑉 =

∫
{ℎ(x) − 𝐼}2 𝜋(x) dx =

∫
ℎ(x)2𝜋(x) dx − 𝐼2.

The latter expression is just the standard expression for the variance of
ℎ(X). This shows that it is easier to estimate expectations of functions that
vary less when evaluated at X.

Assume that we know the expectation of a set of random variables
𝑔1(X), . . . , 𝑔𝐽 (X), each a transformation of X. Without loss of generality,
we can assume that these random variables have mean zero, that is,

E
[
𝑔 𝑗 (X)

]
= 0, for 𝑗 = 1, . . . , 𝐽,

as, if this is not the case, we can define new random variables equal to
the old random variables minus their expectations. Then, for any constants
𝛾1, . . . , 𝛾𝑛,

𝐼 = E [ℎ(X)] −
𝐽∑︁
𝑗=1

𝛾 𝑗E
[
𝑔 𝑗 (X)

]
= E

[
ℎ(X) −

𝐽∑︁
𝑗=1

𝛾 𝑗𝑔𝐽 (X)
]
. (1.2)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.1 Monte Carlo Methods 7

Figure 1.2 Example of control variates for estimating E [sin(𝑋)],
where 𝑋 has a standard normal distribution N(0, 1). Each plot
shows the function whose expectation is being estimated and 50
values used in the Monte Carlo estimate (dots). The functions are
as follows: (a) ℎ(𝑥) = sin(𝑥), (b) ℎ(𝑥) = sin(𝑥) − 𝑥, and (c)
ℎ(𝑥) = sin(𝑥) − 𝜋𝑥/2 + (𝑥2 − 1)/2. The expectation of each
function is constructed to be the same. The effect of introducing
control variates in the middle and right-hand plot is to flatten out
the function we are integrating – in the middle plot, this happens
for 𝑥 ≈ 0 and for the right-hand plot for 𝑥 ≈ 𝜋/2. The variability
of the function values, that is, the dots, is smallest for the middle
plot and largest for the right-hand plot.

By suitable choice of the constants 𝛾1, . . . , 𝛾𝐽 , the variability of the random
variable ℎ(X) −∑𝐽

𝑗=1 𝛾 𝑗𝑔 𝑗 (X) can be made smaller than that of ℎ(X), and
thus a Monte Carlo estimate of 𝐼 based on (1.2) will have smaller Monte
Carlo variance than the basic Monte Carlo estimator. We call

∑𝐽
𝑗=1 𝛾 𝑗𝑔 𝑗 (X)

a control variate for ℎ(X). Heuristically, we want to choose 𝛾1, . . . , 𝛾𝐽 so
that ℎ(X) ≈ 𝛾0 +

∑𝐽
𝑗=1 𝛾 𝑗𝑔 𝑗 (X), which means that ℎ(X) −∑𝐽

𝑗=1 𝛾 𝑗𝑔 𝑗 (X) is
approximately constant.

As a simple example, consider estimating the expectation of sin(𝑋),
where 𝑋 has a standard normal distribution N(0, 1). We know that this
expectation is 0 as the distribution of 𝑋 is symmetric about 0 and sin(−𝑥) =
− sin(𝑥). We will compare the simple Monte Carlo estimator of the expec-
tation with estimates using control variates with the functions 𝑔1(𝑥) = 𝑥

and 𝑔2(𝑥) = 𝑥2 − 1. By using a Taylor expansion of sin(𝑥) at 𝑥 = 0, we have
sin(𝑥) ≈ 𝑥 for small 𝑥, and thus a simple choice of control variate is 𝑔1(𝑥).

We show pictorially the benefit of using this control variate in Figure
1.2, where we see that sin(𝑥) − 𝑥 ≈ 0 for most 𝑥 values sampled from the
standard normal distribution. This reduces the Monte Carlo variance of the
estimate of E [ℎ(𝑋)] by close to a factor of 2.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

8 Background

Care must be taken with control variates, however. For example, if we
perform a Taylor expansion of sin(𝑥) at 𝑥 = 𝜋/2, we get sin(𝑥) ≈ 1 − (𝑥 −
𝜋/2)2/2, which suggests using −𝑔2(𝑥)/2 + 𝜋𝑔1(𝑥)/2 as a control variate.
However, this choice leads to an increase in the Monte Carlo variance by
over a factor of 3. Figure 1.2 shows that the function sin(𝑥)−𝜋𝑥/2+(𝑥2−1)/2
is roughly constant for 𝑥 ≈ 𝜋/2, but overall it is more variable across the
range 𝑥 ∈ [−2, 2], where most of the probability mass of N(0, 1) lies.

This example shows that the choice of 𝛾1, . . . , 𝛾𝐽 is important when
using control variates. In some situations, there may be a natural way of
choosing these – for example, based on a Taylor expansion of the function
of interest around the mode of the distribution of X. However, it is also
possible to choose these values based on simulation. Ideally, we would
choose 𝛾1, . . . , 𝛾𝐽 to minimise the Monte Carlo variance∫ {

ℎ(x) −
𝐽∑︁
𝑗=1

𝛾 𝑗𝑔 𝑗 (x)
}2

𝜋(x) dx − 𝐼2,

and we can obtain a Monte Carlo estimate of this. If x1, . . . , x𝑛 are realised
samples from 𝜋(·), then we can choose 𝛾1, . . . , 𝛾𝐽 to minimise

𝑛∑︁
𝑘=1

(
ℎ(x𝑘) −

𝐽∑︁
𝑗=1

𝛾 𝑗𝑔 𝑗 (x𝑘)
)2

,

which just involves minimising a sum of squares criterion. If we let h be
the 𝑛 × 1 vector whose 𝑖th entry is ℎ(x𝑖), 𝜸 be the 𝐽 × 1 vector whose 𝑖th
entry is 𝛾𝑖, and Z be the 𝑛 × 𝐽 matrix whose (𝑖, 𝑗)th entry is 𝑔 𝑗 (x𝑖), then,
assuming Z is of full rank, the least-squares estimate of 𝜸 is

�̂� = (Z⊤Z)−1Z⊤h.

These estimates �̂� depend on the Monte Carlo samples, and thus for the
Monte Carlo estimate of 𝐼 to be unbiased, we need to use a new set of Monte
Carlo samples from X for estimating 𝐼 using the �̂�.

While we have presented the idea of control variates for estimating ex-
pectations of functions, similar ideas can be used with importance sampling
for estimating general integrals.

1.1.5 Monte Carlo Integration and Bayesian Statistics
One of the most important applications of Monte Carlo methods occurs
within Bayesian statistics. To explain why, consider the problem of making
inferences, from data, about the parameter of a statistical model. We will

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.1 Monte Carlo Methods 9

use the notation D to denote data in general. In some situations, we will
need to distinguish individual data points, and in those settings, we will
assumeD = {y1, . . . , y𝑁 }, with y𝑖 being the 𝑖th data point and 𝑁 being the
size of our dataset.

We further assume that we have a model for the data. Let the model
depend on a parameter 𝜽 , and denote the likelihood of the data under
our model by 𝐿 (𝜽;D). The likelihood is the probability, or probability
density, of observing data D under our model if the parameter is 𝜽 . In
Bayesian statistics, we represent beliefs, or uncertainty, about the parameter,
𝜽 , through probability distributions. Our beliefs about 𝜽 before seeing the
data are given by a prior, 𝜋0 (𝜽), and, once we observe data, Bayes’ theorem
provides the update to the posterior distribution

𝜋(𝜽 | D) ∝ 𝜋0 (𝜽) 𝐿 (𝜽;D) . (1.3)

Where it will not cause confusion, we may drop the explicit conditioning
on the data in the posterior and write 𝜋(𝜽) rather than 𝜋(𝜽 | D).

Assuming the correctness of our model, the posterior distribution con-
tains all information about the parameter, 𝜽 , that can be logically deduced
from our prior belief and the dataset. From it, we can then obtain a point
estimate for 𝜽 , such as its posterior mean, and quantify uncertainty in terms
of the posterior probability of 𝜽 lying in a given set of values. However, in
most applications, the posterior distribution is intractable, meaning that it
cannot be explicitly calculated. The central challenge is that the posterior
density 𝜋(𝜽 | D) is known, via Bayes’ theorem, only up to a normalising
constant.

The intractability of the posterior distribution is a key motivator for
Monte Carlo methods. If we can draw samples from 𝜋(𝜽 | D), then we
can obtain simple, and often accurate, Monte Carlo estimates of posterior
quantities of interest. Given realisations 𝜽1, . . . , 𝜽𝑛 sampled from 𝜋(𝜽 | D)
and a function ℎ(𝜽) whose expectation

𝐼 : = E𝜋 [ℎ(𝜽)] =
∫

ℎ(𝜽)𝜋(𝜽 | D) d𝜽

is of interest, define

�̂�𝑛 (ℎ) : =
1
𝑛

𝑛∑︁
𝑘=1

ℎ(𝜽 𝑘). (1.4)

As mentioned earlier, for any function ℎ ∈ L1(𝜋), the strong law of large
numbers (1.1) tells us that we can estimate E𝜋 [ℎ(𝜽)] as accurately as

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

10 Background

we desire using Monte Carlo integration, and provided enough samples
are taken: �̂�𝑛 (ℎ) → E𝜋 [ℎ(𝜽)] almost surely as 𝑛 → ∞. Moreover, if
ℎ ∈ L2(𝜋), then the central limit theorem states that the Monte Carlo error,
�̂�𝑛 (ℎ) − E𝜋 [ℎ(𝜽)], is 𝑂 𝑝 (𝑛−1/2).

For example, the vector of posterior means can be estimated by

�̂� =
1
𝑛

𝑛∑︁
𝑘=1

𝜽 𝑘 ,

and the posterior probability of 𝜽 ∈ B for some set B can be estimated by
the proportion of Monte Carlo samples in B

P̂ (𝜽 ∈ B) = 1
𝑛

𝑛∑︁
𝑘=1

I {𝜽 𝑘 ∈ B} ,

where I {𝜽 𝑘 ∈ B} is the indicator function of the event 𝜽 𝑘 ∈ B.
The challenge with this Monte Carlo approach to Bayesian statistics is the

difficulty in sampling from 𝜋(𝜽), particularly if 𝜽 is high-dimensional. Of
the Monte Carlo integration methods we have mentioned so far, importance
sampling offers an alternative when we are unable to sample from 𝜋 directly.
Consider estimating the posterior expectation for some function ℎ(𝜽), so
ℎ(𝜽) = 𝜽 would give us the posterior mean of 𝜽 and ℎ(𝜽) = I {𝜽 ∈ B}
would give us the posterior probability of 𝜽 ∈ B. Let 𝑞(𝜽) be a proposal
distribution with the same support as the posterior. Then we have

E [ℎ(𝜽) | D] =
∫

ℎ(𝜽)𝜋(𝜽) d𝜽 =

∫
ℎ(𝜽)𝜋(𝜽)
𝑞(𝜽) 𝑞(𝜽) d𝜽 .

It is common to define weights 𝑤(𝜽) : = 𝜋(𝜽)/𝑞(𝜽). Then given an in-
dependent sample 𝜽1, . . . , 𝜽𝑛 from 𝑞(𝜽), we can estimate the posterior
expectation by the importance sampling estimator

1
𝑛

𝑛∑︁
𝑘=1

𝑤(𝜽 𝑘)ℎ(𝜽 𝑘).

There are two issues with this estimator. The first is that as we only
know the posterior up to a constant of proportionality, we only know the
weights up to a constant of proportionality. However, the constant of pro-
portionality can be estimated by setting ℎ(𝜽) = 1, whence E [ℎ(𝜽)] = 1 as
the expectation of a constant is the constant. Thus we can use the unnor-
malised posterior density in the definition of the weights and estimate the

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.2 Example Applications 11

normalising constant as (1/𝑛)∑𝑛
𝑘=1 𝑤(𝜽 𝑘). The posterior expectation of

ℎ(𝜽) is then estimated as
𝑛∑︁
𝑘=1

𝑤(𝜽 𝑘)∑𝑛
𝑗=1 𝑤(𝜽 𝑗)

ℎ(𝜽 𝑘),

which requires knowing the posterior density only up to a constant of propor-
tionality. Often we define normalised weights,𝑤∗(𝜽 𝑘) = 𝑤(𝜽 𝑘)/

∑𝑛
𝑗=1 𝑤(𝜽 𝑗),

and we can then view the weighted samples (𝜽 𝑘 , 𝑤∗(𝜽 𝑘)), for 𝑘 = 1, . . . , 𝑛,
as a discrete approximation to the posterior.

The second issue is that the Monte Carlo variances of our estimators of
posterior expectations depend on the variability of the weights. Often this
will be large if 𝜽 is high-dimensional. To see this, consider a toy example
where the posterior has independent components. Assume each compo-
nent is normal with mean 0 and variance 𝜎2, and the importance-sampling
proposal distribution is also independent over components, but with a stan-
dard normal distribution, that is, with mean zero and unit variance, for
each component. The importance sampling weight for a realisation
𝜽 = (𝜃1, . . . , 𝜃𝑑) is

𝑤(𝜽) = 𝜎−𝑑 exp

{
𝜎2 − 1

2𝜎2

𝑑∑︁
𝑖=1

𝜃2
𝑖

}
.

Now
∑𝑑
𝑖=1 𝜃

2
𝑖 has a 𝜒2

𝑑
distribution under the proposal, and using the mo-

ment generating function of a 𝜒2
𝑑

distribution, we obtain the Monte Carlo
variance of the weight:

var{𝑤(𝜽)} = 𝜎−𝑑
(
2 − 𝜎2)−𝑑/2 − 1.

Writing 𝜎2 = 1 + 𝜖 , for some 𝜖 > 0, this variance is (1/
√

1 − 𝜖2)𝑑 − 1,
which increases exponentially with 𝑑. The focus of MCMC methods that
we introduce in Chapter 2 is to produce sampling algorithms that avoid this
exponential curse of dimensionality.

1.2 Example Applications
In later chapters, we will demonstrate the Monte Carlo methods on some
example models that we now introduce. Whilst these models are somewhat
simple to describe, their posteriors exhibit many of the features of more
challenging posterior distributions, in particular, with respect to scalable
sampling.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

12 Background

1.2.1 Logistic Regression
Logistic regression models the relationship between a binary response and
a set of covariates. Denote the responses by 𝑦1, . . . , 𝑦𝑁 and the covariates
by 𝑑-dimensional vectors x1, . . . , x𝑁 . Then, logistic regression models the
data (the responses) as conditionally independent, given a 𝑑-dimensional
parameter 𝜽 and the covariates, and that

P
(
𝑌 = 𝑦 𝑗 |x 𝑗 , 𝜽

)
=

exp{𝑦 𝑗x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽} .

An intercept term can be included in the model by setting the first coordinate
of each of x1, . . . , x𝑁 to be 1.

Our interest will be in sampling from the posterior distribution of 𝜽 . To
define the posterior, we need to specify a prior 𝜋0(𝜽), and we will assume
that our prior is Gaussian with mean 0 and variance 𝚺𝜽 . This leads to a
posterior distribution, 𝜋(𝜽 |D), which can be written succinctly up to a
multiplicative constant as

𝜋(𝜽 |D) ∝ exp
{
−1

2
𝜽⊤𝚺−1

𝜽 𝜽

} 𝑁∏
𝑗=1

exp{𝑦 𝑗x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽} .

This is a canonical, albeit relatively simple, test problem for sampling
methodologies. When we consider sampling methods for this model, we
will drop the explicit conditioning on data D and use 𝜋(𝜽) to denote the
target distribution of the sampler. The samplers we consider will often use
gradient information about their target distribution, and we have

𝜕 log 𝜋(𝜽)
𝜕𝜃𝑖

= −
[
𝜽⊤𝚺−1

𝜽

]
𝑖
+

𝑁∑︁
𝑗=1

𝑥
(𝑖)
𝑗

{
𝑦 𝑗 −

exp{x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽}

}
, (1.5)

where 𝑥 (𝑖)
𝑗

indicates the 𝑖th component of x 𝑗 .

1.2.2 Bayesian Matrix Factorisation
Bayesian matrix factorisation attempts to find a representation of a high-
dimensional matrix as the product of two lower-dimensional matrices. Con-
sider an 𝑛 × 𝑚 matrix Y, and let 𝜽 = {U,V}, where U and V are 𝑛 × 𝑑
and 𝑑 × 𝑚 matrices, respectively. Then the approximation is Y ≈ UV. If
𝑑 ≪ min{𝑚, 𝑛}, then this can lead to a substantial reduction in dimen-
sion, and the model can be viewed as attempting to find low-dimensional
structure in Y.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.2 Example Applications 13

The interpretation of this model is that each row of V is a factor, and we
aim to approximate each row of Y as a linear combination of these factors.
The entries in U are called factor loadings and give the relative weight of
each factor for each row of Y.

One common approach to fitting these models is to use a Gaussian
working model; thus, up to additive constants, the log-likelihood is

𝐿 (𝜽;D) = −𝑛𝑚 log𝜎 − 1
2𝜎2

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑌𝑖, 𝑗 −

𝑑∑︁
𝑘=1

𝑈𝑖,𝑘𝑉𝑘, 𝑗

)2 ,
where 𝜎2 is the variance of the difference between entries of Y and UV. In
Bayesian matrix factorisation, we then introduce a prior on the parameters
U and V. Often, the prior for each entry is Gaussian, or is a mixture of a
Gaussian and a point mass at zero, as this encourages sparsity in the factors,
which potentially aids the interpretation of U and V. It is also possible to
introduce a prior over the number of factors, 𝑑, with the priors for the entries
of U and V potentially depending on 𝑑.

1.2.3 Bayesian Neural Networks for Classification
Artificial neural networks are a flexible and popular class of models used
in machine learning for solving supervised learning problems, such as
regression and classification tasks. In the case of classification, assume that
𝑦1, 𝑦2, . . . , 𝑦𝑁 are observed data, where each 𝑦 𝑗 represents one of𝐺 classes,
that is, 𝑦 𝑗 ∈ {1, 2, . . . , 𝐺}. Assuming 𝑑-dimensional vectors x1, x2, . . . , x𝑁
for the covariates, then under a simple two-layer neural network model, the
probability of a particular class 𝑦 𝑗 is

P(𝑌 = 𝑦 𝑗 |x 𝑗 , 𝜽) ∝ exp(A⊤𝑦 𝑗𝜎(B
⊤x 𝑗 + b) + 𝑎𝑦 𝑗), (1.6)

where b is a 𝑑ℎ-dimensional vector and B is a 𝑑 × 𝑑ℎ matrix, with 𝑑ℎ the
dimension of the variables in the hidden layer. The function 𝜎 : R𝑑ℎ →
(0, 1)𝑑ℎ is a vector softmax function with 𝜎(z)𝑖 = exp(𝑧𝑖)/{

∑𝑑ℎ
𝑗=1 exp(𝑧 𝑗)}

for 𝑖 = 1, . . . , 𝑑ℎ. The notation A𝑖 refers to the 𝑖th column of the 𝑑ℎ × 𝐺
matrix A. The parameters of the model 𝜽 = vec(a,A, b,B) are represented
by vectors a and b, commonly referred to as biases, and matrices A and B,
commonly referred to as weights.

Taking a Bayesian approach to parameter estimation, we can place inde-
pendent Gaussian priors on each of the elements of the biases and weights
in 𝜽 . Monte Carlo algorithms can be used to sample from the posterior,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

14 Background

𝜋(𝜽 |D) ∝ 𝜋0(𝜽)
𝑁∏
𝑗=1

P(𝑦 𝑗 |x 𝑗 , 𝜽). (1.7)

For Bayesian neural network models, the dataset sizes tend to be very
large, and approximating the posterior distribution requires Monte Carlo
methods, which are scalable to large datasets. In Chapter 3, we will use
stochastic gradient MCMC algorithms to approximate the posterior distri-
bution of the Bayesian neural network model.

1.3 Markov Chains
This section describes discrete-time Markov chains, focusing on the con-
cepts that will be required to understand the MCMC method and its ef-
ficiency: the stationary distribution, reversibility, convergence to the sta-
tionary distribution, ergodic averages, integrated auto-correlation time, and
effective sample size.

Definition 1.1. A discrete-time Markov chain on a state space X is a
collection of random variables {𝑋𝑘}∞𝑘=0 with each 𝑋𝑘 ∈ X, such that for any
A ⊆ X,

P (𝑋𝑘+1 ∈ A | 𝑋𝑘 = 𝑥𝑘 , . . . , 𝑋0 = 𝑥0) = P (𝑋𝑘+1 ∈ A | 𝑋𝑘 = 𝑥𝑘) ; (1.8)

conditional on the current state, the distribution of the next state is inde-
pendent of all previous states.

In this chapter, we will only consider homogeneous Markov chains, where
the distribution of the next state given the current state does not depend on
the value of 𝑘 . Such a chain has a stationary distribution, 𝜈, if 𝑋𝑘 ∼ 𝜈 =⇒
𝑋𝑘+1 ∼ 𝜈. If the chain also has a unique limiting distribution, then this must
be 𝜈, since, by repeated induction, if 𝑋 𝑗 ∼ 𝜈, then 𝑋𝑘 ∼ 𝜈 for all 𝑘 > 𝑗 ,
including as 𝑘 →∞.

The following two examples of Markov chains on the vertices of an 𝑚-
sided polygon illustrate different ways that a chain can be stationary. We
label the vertices of the polygon from 0 to 𝑚 − 1, increasing in a clockwise
direction; thus, X = {0, 1, . . . , 𝑚 − 1}.

Example 1.2. (See Figure 1.3a.) Let {𝑋𝑘}∞𝑘=0 be a Markov chain on the
vertices of an 𝑚-sided polygon where the state at time 𝑘 + 1 is obtained
from the state at time 𝑘 by moving to the next vertex in a clockwise direction.
If at time 𝑘 the chain is equally likely to be at each of the vertices, then this is

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.3 Markov Chains 15

𝐴
𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

𝐼
𝐴

𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

𝐼
1/31/3

1/3

(a) (b)

Figure 1.3 Nine-sided polygon where the Markov chain only
moves clockwise (a), as in Example 1.2, or moves either a
clockwise or anti-clockwise direction with probability 1/3 (b), as
in Example 1.3.

still the case at time 𝑘 +1. The stationary distribution has P (𝑋𝑘 = 𝑥) = 1/𝑚
for 𝑥 ∈ X.

Example 1.3. (See Figure 1.3b.) Let {𝑋𝑘}∞𝑘=0 be a Markov chain on the
vertices of an 𝑛-sided polygon where the state at time 𝑘 + 1 is obtained
from the state at time 𝑘 by performing one of the following moves, each of
which has a probability of 1/3: move to the next vertex in an anti-clockwise
direction; do not move; move to the next vertex in a clockwise direction.
As with Example 1.2, the stationary distribution has P (𝑋𝑘 = 𝑥) = 1/𝑚 for
𝑥 ∈ X.

1.3.1 Reversible Markov Chains
Example 1.2 has a clear flow in a clockwise direction and, because of this,
is an example of a non-reversible Markov chain; these will be discussed in
detail in Chapter 4. By contrast, in Example 1.3, consider any two adjacent
vertices: at stationarity, the probability of being at the first and moving to
the second is the same as the probability of being at the second and moving
to the first. Indeed, this is true of any pair of vertices, with the probability
being 0 if they are not adjacent. This is an example of a reversible Markov
chain.

Definition 1.4. A Markov chain {𝑋𝑘}∞𝑘=1 with a state space ofX is reversible
with respect to a distribution 𝜈 when, for any two sets B, C ⊆ X, if 𝑋𝑘 ∼ 𝜈,
then P (𝑋𝑘 ∈ B, 𝑋𝑘+1 ∈ C) = P (𝑋𝑘 ∈ C, 𝑋𝑘+1 ∈ B).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

16 Background

Consider the decomposition

P (𝑋𝑘 ∈ B, 𝑋𝑘+1 ∈ C) = P (𝑋𝑘 ∈ B) P (𝑋𝑘+1 ∈ C|𝑋𝑘 ∈ B).

The first term on the right-hand side is the amount of probability mass in B
at time 𝑘 and the second term is the fraction of that mass that moves to C at
time 𝑘 +1, so the product is the amount of probability mass moving from B
to C. If the chain is reversible with respect to 𝜈 and 𝑋𝑘 ∼ 𝜈, then this is also
the amount of mass moving from C to B. Given this balance, referred to as
detailed balance, we would expect the total amount of probability mass in
any set to remain constant. Indeed, setting C = X in Definition 1.4, we see
that reversibility implies that if 𝑋𝑘 ∼ 𝜈, P (𝑋𝑘 ∈ B) = P (X𝑘+1 ∈ B). Since
this is also true for all B, 𝑋𝑘+1 ∼ 𝜈.

1.3.2 Convergence, Averages, and Variances
In Example 1.3, whatever the value or distribution of 𝑋0, as 𝑘 → ∞, the
distribution of 𝑋𝑘 converges to the stationary distribution. For simplicity
of presentation, we show this when 𝑚 = 2𝑚′ + 1 is odd. For all 𝑥0, 𝑥 ∈
X, P (𝑋𝑚′ = 𝑥 |𝑋0 = 𝑥0) ≥ 1/3𝑚′ since it takes at most 𝑚′ moves in a
single direction to reach 𝑥, and if the chain arrives earlier, we include the
probability of it staying at 𝑥 until time 𝑚′. Thus, the transition probability
after 𝑚′ steps can be written as a mixture

P (𝑋𝑚′ = 𝑥 |𝑋0 = 𝑥0) = 𝛿𝜈(𝑥) + (1 − 𝛿)𝑞(𝑥 |𝑥0), (1.9)

for some conditional probability mass function 𝑞 and with 𝛿 = 𝑚/3𝑚′ . The
distribution at the start of a given iteration can always be thought of as a
mixture of 𝜈 and some other distribution, where the mixture probability for
𝜈 could be 0. We can imagine that there is a hidden coin, and if it is showing
‘heads’, then the distribution of the chain is 𝜈. Since 𝜈 is the stationary
distribution, if the coin is currently showing ‘heads’, it will still be showing
heads after a further 𝑚′ moves. If the coin is showing ‘tails’, then (1.9) tells
us that there is a probability of at least 𝛿 that it will be showing heads after
the next 𝑚′ moves. Equivalently, the mixture probability of the component
that is not 𝜈 has been multiplied by 1 − 𝛿 or less. After 𝑘𝑚′ iterations, it is,
therefore, at most (1 − 𝛿)𝑘 → 0 as 𝑘 →∞.

However, convergence to a stationary distribution does not occur for all
Markov chains. The chain in Example 1.2 is deterministic: if 𝑋0 = 0, then
𝑋𝑘𝑚 = 0 for all integers, 𝑘 . The following examples illustrate two further
cases.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.3 Markov Chains 17

𝐴
𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

𝐼
1/21/2

Figure 1.4 Nine-sided polygon with Markov transitions
described in Example 1.5.

Example 1.5. (See Figure 1.4.) Alter Example 1.3 so that the chain cannot
remain at its current vertex but must move either clockwise or anti-clockwise
by a single vertex, each with a probability of 1/2. As with the Examples
1.2 and 1.3, the stationary distribution has P (𝑋𝑘 = 𝑥) = 1/𝑚 for 𝑥 ∈ X.

If 𝑛 is an even number and 𝑋0 is even, then the chain in Example 1.5 only
visits even-numbered states at even-numbered times and odd-numbered
states at odd-numbered times. Such chains are termed periodic and clearly
do not converge to their stationary distribution.

Example 1.6. Consider a Markov chain of the form in Example 1.3, but
on two separate 𝑚-sided polygons with no movement between the two. A
chain with separate regions between which there can be no movement is
termed reducible because it can be reduced to simpler component parts.

A reducible chain does not even have a single stationary distribution. In
Example 1.6 for any 𝛽 ∈ [0, 1], the distribution with probabilities 𝛽/𝑚 for
each vertex on the first polygon and (1− 𝛽)/𝑚 for each vertex on the second
polygon is stationary.

A chain which is not reducible is termed irreducible, and a chain which
is not periodic is termed aperiodic.

Ergodic Averages
The ergodic theorem for a Markov chain on a general state space, X, states
that provided the chain satisfies natural generalisations of irreducibility and
aperiodicity and has a proper stationary distribution, 𝜈, then as 𝑘 → ∞,
the distribution of 𝑋𝑘 converges to that stationary distribution. Furthermore,
subject to the same conditions, for any ℎ ∈ L1(𝜈), samples from the Markov
chain satisfy a strong law of large numbers

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

18 Background

�̂�𝑛 (ℎ) : =
1
𝑛

𝑛∑︁
𝑘=1

ℎ(𝑋𝑘) → E𝜈 [ℎ(𝑋)], (1.10)

almost surely as 𝑛→∞.

Integrated Auto-Correlation Time and Effective Sample Size
Let us assume that 𝑋0 is, in fact, drawn from the stationary distribution. De-
fine 𝜎2

ℎ
: = Var𝜈 [ℎ(𝑋)] and assume 𝜎2

ℎ
< ∞. For 𝑘 ∈ {0, 1, 2, . . . }, the lag-

𝑘 auto-correlation is 𝜌𝑘 : = Cor [ℎ(𝑋0), ℎ(𝑋𝑘)] = Cor
[
ℎ(𝑋 𝑗), ℎ(𝑋 𝑗+𝑘)

]
since the Markov chain is time-homogeneous. If the 𝑋 𝑗 were independent
samples from 𝜈, then 𝑛Var

[
�̂�𝑛 (ℎ)

]
= 𝜎2

ℎ
. For a stationary Markov chain

with
∞∑︁
𝑘=1

|𝜌𝑘 | < ∞, (1.11)

it holds that

lim
𝑛→∞

𝑛Var
[
�̂�𝑛 (ℎ)

]
= 𝜎2

ℎ IACTℎ, (1.12)

where

IACTℎ : = 1 + 2
∞∑︁
𝑘=1

𝜌𝑘 (1.13)

is the integrated auto-correlation time. To see why this is the case, first,
without loss of generality, take ℎ to have E𝜈 [ℎ(𝑋)] = 0; if this is not
true initially, we subtract off the expectation: the variance properties are
unchanged. Then

𝑛Var
[
�̂�𝑛 (ℎ)

]
=

1
𝑛
E

[
𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

ℎ(𝑋 𝑗)ℎ(𝑋𝑘)
]
=
𝜎2
ℎ

𝑛

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝜌 |𝑘− 𝑗 | . (1.14)

But
∑𝑛
𝑘=1

∑𝑛
𝑗=1 𝜌 |𝑘− 𝑗 | = 𝑛𝜌0 + 2

∑𝑛
𝑘=1(𝑛 − 𝑘)𝜌𝑘 , so

𝑛

𝜎2
ℎ

Var
[
�̂�𝑛 (ℎ)

]
= 1 + 2

𝑛∑︁
𝑘=1

(
1 − 𝑘

𝑛

)
𝜌𝑘 = 1 + 2

∞∑︁
𝑘=0

max
(
0, 1 − 𝑘

𝑛

)
𝜌𝑘 .

Given (1.11), the dominated converge theorem permits us to exchange the
ordering of the limit as 𝑛 → ∞ and the sum over 𝑘 , which provides the
limit (1.12).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.4 Stochastic Differential Equations 19

The practical consequence of (1.12) is that, for finite 𝑛,

Var
[
�̂�𝑛 (ℎ)

]
≈

𝜎2
ℎ

𝑛/IACTℎ
, (1.15)

the same as the variance if 𝑛/IACTℎ i.i.d. samples from 𝜈 had been used. The
quantity 𝑛/IACTℎ is, therefore, known as the effective sample size. Since
they relate directly to the inverse variance of �̂�𝑛 (ℎ), effective sample size
and the inverse of the integrated auto-correlation time are useful measures
of the efficiency of a Markov chain for estimating E𝜈 [ℎ(𝑋)].

1.4 Stochastic Differential Equations
The Langevin stochastic differential equation (SDE) is the basis for the
Metropolis-Adjusted Langevin algorithm (Section 2.1.4) and for stochas-
tic gradient Langevin methods (Chapter 3). It is also key to understanding
the efficiency of various Metropolis–Hastings algorithms when the dimen-
sion, 𝑑, is high (see Chapter 2). We start with a heuristic introduction to
SDEs before considering a special case of the Langevin diffusion known as
the Ornstein–Uhlenbeck (OU) process and then moving on to the general
Langevin diffusion.

Consider a differential equation of the form

d𝑥𝑡
d𝑡

= 𝑎(𝑥𝑡 , 𝑡),

with a known initial value for 𝑥0. Discretising time leads to the simple Euler
approximation

𝛿𝑥𝑡 ≈ 𝑎(𝑥𝑡 , 𝑡)𝛿𝑡,

where 𝛿𝑥𝑡 = 𝑥𝑡+𝛿𝑡 − 𝑥𝑡 . Setting 𝛿𝑡 = 𝑇/𝑚, starting with 𝑥0, and recursively
applying the Euler update 𝑚 times leads to an approximation �̂�𝑇 , which
approaches the true value 𝑥𝑇 as 𝑚 →∞.

Instead of deterministic updates, we might wish to allow for the addition
of random noise with a scale proportional to 𝑏(𝑥𝑡 , 𝑡). The initial value, 𝑋0,
may now be random, and setting 𝛿𝑋𝑡 : = 𝑋𝑡+𝛿𝑡 − 𝑋𝑡 leads to one possible
update

𝛿𝑋𝑡 ≈ 𝑎(𝑋𝑡 , 𝑡)𝛿𝑡 + 𝑏(𝑋𝑡 , 𝑡)𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝛿𝑡),

where the Gaussian noise terms 𝜖𝑡 are independent of all previous ran-
domness, and 𝑋𝑡 has become a random variable. A noise distribution of
the form N(0, 𝛿𝑡) is chosen because it is self-consistent. For example, with

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

20 Background

𝑎(𝑋𝑡 , 𝑡) = 𝑎 and 𝑏(𝑥𝑡 , 𝑡) = 𝑏, after two time steps initialised at 𝑋0 = 𝑥0, we
have

𝑋2𝛿𝑡 ≈ 𝑥0 + 𝑎𝛿𝑡 + 𝑏𝜖𝛿𝑡 + 𝑎𝛿𝑡 + 𝑏𝜖2𝛿𝑡 = 𝑥0 + 2𝑎𝛿𝑡 + 𝑏𝜖2𝛿𝑡 ,

where 𝜖2𝛿𝑡 ∼ N(0, 2𝛿𝑡), since the two noise terms 𝜖𝛿𝑡 and 𝜖2𝛿𝑡 are inde-
pendent. However, the right-hand side of this expression is exactly of the
same form we would get from a single time step of size 2𝛿𝑡 to obtain 𝑋2𝛿𝑡
from 𝑋0.

The process with 𝑎 = 0, 𝑏 = 1 and 𝑋0 = 0 consists of a sequence of mean-
zero Gaussian increments, each with a variance of 𝛿𝑡. This is a discretisation
of a process known as Brownian motion, which is often denoted by 𝑊𝑡 . In
particular, we have that

𝛿𝑊𝑡 = 𝑊𝑡+𝛿𝑡 −𝑊𝑡 ∼ N(0, 𝛿𝑡),
and 𝑊𝑡 ∼ N(0, 𝑡). From the definition of 𝑊𝑡 , we may rewrite the noisy
update as

𝛿𝑋𝑡 ≈ 𝑎(𝑋𝑡 , 𝑡)𝛿𝑡 + 𝑏(𝑋𝑡 , 𝑡)𝛿𝑊𝑡 . (1.16)

Consider this process on some interval [0, 𝑇], with 𝛿𝑡 = 𝑇/𝑚 and 𝑋0 = 𝑥0,
for some initial value 𝑥0. Subject to some regularity conditions, the limit as
𝑚 →∞ exists and is written

d𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡)d𝑡 + 𝑏(𝑋𝑡 , 𝑡)d𝑊𝑡 .

This is known as a SDE, and (1.16) is the Euler–Maruyama approximation to
it. Subject to the initial condition, the solution to this SDE is the stochastic
process {𝑋𝑡 }𝑡∈[0,𝑇] obtained from the limit 𝛿𝑡 → 0 of the discrete-time
process defined through (1.16).

The above-mentioned heuristic describes a one-dimensional SDE and
its Euler–Maruyama discretisation; however, it is straightforward to extend
these to higher dimensions with X𝑡 ∈ R𝑑 , a : R𝑑 × [0,∞) → R𝑑 , W𝑡 ∈ R𝑘
and the 𝑑 × 𝑘 matrix b : R𝑑 × [0,∞) → R𝑑𝑘 .

A stochastic process that satisfies an SDE is called a diffusion. For the
most part, we will deal with time-homogeneous diffusions, where 𝑎 and 𝑏
have no explicit time dependence; however, time-inhomogeneous diffusions
will be used in Chapter 3.

1.4.1 The Ornstein–Uhlenbeck Process
Consider the SDE

d𝑋𝑡 = −
1

2𝜎2 𝑏
2𝑋𝑡d𝑡 + 𝑏d𝑊𝑡 .

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.4 Stochastic Differential Equations 21

The Euler–Maruyama discretisation gives

𝑋𝑡+𝛿𝑡 ≈ 𝑋𝑡 + 𝛿𝑋𝑡 =
(
1 − 𝑏2

2𝜎2 𝛿𝑡

)
𝑋𝑡 + 𝑏𝛿𝑊𝑡 .

Since 𝛿𝑊𝑡 is Gaussian distributed and independent of 𝑋𝑡 , if 𝑋𝑡 is Gaus-
sian so is 𝑋𝑡+𝛿𝑡 . Moreover, if E [𝑋𝑡] = 0, then E [𝑋𝑡+𝛿𝑡] = 0. Finally, if
Var [𝑋𝑡] = 𝜎2, then

Var [𝑋𝑡+𝛿𝑡] =
(
1 − 𝑏2

2𝜎2 𝛿𝑡

)2

𝜎2 + 𝑏2𝛿𝑡 = 𝜎2 + 1
4𝜎4 𝑏

4𝛿𝑡2.

In the limit 𝑚 → ∞, as the number of increments is increased, with
𝛿𝑡 = 𝑇/𝑚 ↓ 0, the term in 𝛿𝑡2 becomes irrelevant: the variance does not
change. Thus, if 𝑋0 ∼ N(0, 𝜎2), then 𝑋𝑡 ∼ N(0, 𝜎2) for all 𝑡 > 0; the SDE
is stationary. Shifting the coordinate system by 𝑚, we see that the slightly
more general SDE

d𝑋𝑡 = −
1

2𝜎2 𝑏
2(𝑋𝑡 − 𝑚)d𝑡 + 𝑏d𝑊𝑡 (1.17)

has a stationary distribution of N(𝑚, 𝜎2). The process arising from the
SDE (1.17) is known as the OU process. Substituting 𝑠 = 𝑏2𝑡, the SDE
becomes d𝑋𝑠 = −(𝑋𝑠 − 𝑚)/(2𝜎2)d𝑠 + d𝑊𝑠, which explains why 𝑏2 is
termed the speed of the diffusion. Figure 1.5 presents three realisations
of OU processes with stationary distribution N(𝑚, 1) and started from the
corresponding 𝑚/2. Each diffusion has a different speed, and the effect of
this on the convergence to, and mixing within, the stationary distribution is
clearly visible.

1.4.2 The Infinitesimal Generator
The infinitesimal generator (or, simply, generator) of a continuous-time
stochastic process acts on a function ℎ of the process

(Lℎ) (x) : =
𝜕

𝜕𝑡
E [ℎ(X𝑡) |X0 = x]

����
𝑡=0

= lim
𝛿𝑡↓0

E [ℎ(X𝛿𝑡)] − ℎ(x)
𝛿𝑡

. (1.18)

The set of functions for which the limit exists for all x is called the domain
of the infinitesimal generator. Subject to regularity conditions, this includes
the set of compactly supported functions with a second derivative that is
continuous, denoted 𝐶2

0 .

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

22 Background

Figure 1.5 Three realisations of the OU processes, all with
𝜎 = 1, and on the time interval [0, 10]. Other parameter settings
are 𝑥0 = 2, 𝑚 = 4, and 𝑏 = 3; 𝑥0 = 𝑚 = 0 and 𝑏 = 1; 𝑥0 = −2,
𝑚 = −4, and 𝑏 = 1/3.

For processes defined by an SDE, we can gain some insight into their
generator by considering a Taylor expansion. For simplicity of presentation,
we consider 𝑥 ∈ R:

1
𝛿𝑡
E [ℎ(𝑋𝛿𝑡) − ℎ(𝑥)] =

1
𝛿𝑡
E

[
(𝑋𝛿𝑡 − 𝑥)ℎ′ (𝑥) +

1
2
(𝑋𝛿𝑡 − 𝑥)2ℎ′′ (𝑥) + . . .

]
.

The Euler–Maruyama approximation of the SDE is 𝑋𝛿𝑡 − 𝑥 ≈ 𝑎(𝑥)𝛿𝑡 +
𝑏(𝑥)𝛿𝑊𝑡 . Thus, E [𝑋𝛿𝑡 − 𝑥] ≈ 𝑎(𝑥)𝛿𝑡 and E

[
(𝑋𝛿𝑡 − 𝑥)2

]
≈ 𝑏(𝑥)2𝛿𝑡 +

𝑎(𝑥)2 [𝛿𝑡]2, with all higher-order expectations at most 𝑜(𝛿𝑡). Thus, we
might expect that

(Lℎ) (𝑥) = 𝑎(𝑥) dℎ
d𝑥
+ 1

2
𝑏(𝑥)2 d2ℎ

d𝑥2 ,

and this is indeed the case. For a multivariate diffusion, the generator is

(Lℎ) (x) =
𝑑∑︁
𝑖=1

𝑎𝑖
𝜕ℎ

𝜕𝑥𝑖

����
x
+ 1

2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑏𝑏⊤)𝑖, 𝑗
𝜕2ℎ

𝜕𝑥𝑖𝜕𝑥 𝑗

����
x
. (1.19)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.4 Stochastic Differential Equations 23

Generators of diffusion processes are used in the next subsection to derive
the stationary density of two classes of diffusion that appear repeatedly in
Chapters 2 and 3. Generators of diffusions are also used in Chapter 6 for
the assessment and improvement of algorithms. Finally, Chapter 5 employs
the generators of another class of continuous-time stochastic processes to
determine the processes’ stationary distributions.

1.4.3 Langevin Diffusions
We now describe two classes of diffusion, the overdamped and underdamped
Langevin diffusions, where the stationary density forms an explicit part of
the SDE formulation.

The Overdamped Langevin Diffusion
Consider a positive, differentiable density function 𝑓 (x) for x ∈ R𝑑 , and
the following SDE:

dX𝑡 =
1
2
∇ log 𝑓 (X𝑡)𝑏2d𝑡 + 𝑏dW𝑡 . (1.20)

A solution to this SDE is known as an overdamped Langevin diffusion. The
OU process (1.17) with 𝑓 (𝑥) = N(𝑥;𝑚, 1/𝑎) is a special case of this class
of diffusions, and in this case, as seen in Section 1.4.1, 𝑓 is the density of the
stationary process. In fact, this is true in general: the stationary density of the
overdamped Langevin diffusion (1.20) is 𝑓 . To see this in one dimension,
consider the infinitesimal generator of the diffusion

(Lℎ) (𝑥) = 1
2
𝑏2 𝑓

′ (𝑥)
𝑓 (𝑥) ℎ

′ (𝑥) + 1
2
𝑏2ℎ′′ (𝑥).

This is the rate of change of the expectation of ℎ(𝑋𝑡) at 𝑡 = 0, when started
from 𝑋0 = 𝑥. Suppose instead that 𝑋0 has a density of 𝑓 . Then, the rate
of change of the expectation of 𝑋𝑡 at 𝑡 = 0 can be calculated by taking
expectations with respect to 𝑋0. This is

1
2
𝑏2

∫ {
𝑓 ′ (𝑥)
𝑓 (𝑥) ℎ

′ (𝑥) + ℎ′′ (𝑥)
}
𝑓 (𝑥) d𝑥 =

1
2
𝑏2

∫
{ 𝑓 (𝑥)ℎ′ (𝑥)}′ d𝑥 = 0

for all sufficiently smooth ℎ with compact support. Thus, if 𝑋0 ∼ 𝑓 ,
d
d𝑡E [ℎ(𝑋𝑡)]

��
𝑡=0 = 0. This is true for all ℎ ∈ 𝐶2

0 , and so the distribution
of 𝑋𝑡 does not change as 𝑡 increases from 0. The distribution at time 0 must,
therefore, be the stationary distribution of the Langevin diffusion (1.20),
and 𝑓 is the corresponding stationary density.

When Langevin diffusions are employed in a Bayesian setting, 𝑓 (x) is of-
ten a posterior density whose normalising constant is, typically, intractable.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

24 Background

The fact that the calculation of∇ log 𝑓 (X𝑡) does not require this normalising
constant is crucial to the practical use of these diffusions.

The Underdamped Langevin Diffusion
The underdamped Langevin diffusion extends the state space to include a
velocity component, P𝑡 :

dX𝑡 = P𝑡d𝑡, (1.21)

dP𝑡 = −𝛾P𝑡d𝑡 + 𝑐∇ log 𝑓 (X𝑡)d𝑡 +
√︁

2𝛾𝑐 dW𝑡 . (1.22)

Intuitively, dividing (1.22) through by 𝛾 and taking the limit as 𝛾 → ∞
and 𝑐 → ∞ with 𝑐/𝛾 = 𝑏2/2 fixed, we obtain the overdamped Langevin
diffusion, so the latter is a limiting case of the underdamped diffusion.

The underdamped Langevin diffusion targets 𝑓 (x)𝑔(p), where

𝑔(p) = 1
√

2𝜋𝑐
exp

(
− 1

2𝑐
∥p∥2

)
.

To see this, we, again, restrict ourselves to the one-dimensional case to
simplify the presentation, and, again, we start from the generator

(Lℎ) (𝑥, 𝑝) = 𝑝ℎ𝑥 (𝑥, 𝑝) − 𝛾𝑝ℎ𝑝 (𝑥, 𝑝) + 𝑐
𝑓 ′ (𝑥)
𝑓 (𝑥) ℎ𝑝 (𝑥, 𝑝) + 𝛾𝑐ℎ𝑝,𝑝 (𝑥, 𝑝),

where we have used subscripts to denote the differentiation of ℎwith respect
to 𝑥 or 𝑝. The quantity (Lℎ) (𝑥, 𝑝) is the rate of change of the expectation
of ℎ(𝑋𝑡 , 𝑃𝑡) at 𝑡 = 0, when started at 𝑋0 = 𝑥 and 𝑃0 = 𝑝. Thus if 𝑋0 and
𝑃0 have respective densities of 𝑓 (𝑥) and 𝑔(𝑝), then the rate of change of
E [ℎ(𝑋𝑡 , 𝑃𝑡)] at 𝑡 = 0 is∬ {

𝑝ℎ𝑥 − 𝛾𝑝ℎ𝑝 + 𝑐
𝑓 ′ (𝑥)
𝑓 (𝑥) ℎ𝑝 + 𝛾𝑐ℎ𝑝,𝑝

}
𝑓 (𝑥)𝑔(𝑝)d𝑝d𝑥.

In the manipulations that follow, we will twice use the fact that 𝑔′ (𝑝) =
−𝑝𝑔(𝑝)/𝑐. First integration by parts gives∫

𝛾𝑐ℎ𝑝,𝑝𝑔(𝑝) d𝑝 =

∫
𝑝𝛾ℎ𝑝𝑔(𝑝) d𝑝,

so the second and fourth terms cancel. Second two integrations by parts,
first with respect to 𝑝 and then with respect to 𝑥, give∬

𝑐 𝑓 ′ (𝑥)ℎ𝑝𝑔(𝑝) d𝑝d𝑥 =
∬

𝑓 ′ (𝑥)ℎ𝑝𝑔(𝑝) d𝑝d𝑥

= −
∬

𝑓 (𝑥)ℎ𝑥 𝑝𝑔(𝑝) d𝑝d𝑥,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.5 The Kernel Trick 25

so the first and third terms cancel. The argument is completed analogously
to that for the overdamped Langevin diffusion.

In Chapter 3, we explore further the overdamped and underdamped
Langevin diffusions as practical algorithms for scalable Monte Carlo in-
ference in the large-data setting and show that the discretisation of these
diffusion processes leads to important special cases of the general frame-
work for stochastic gradient MCMC algorithms.

1.5 The Kernel Trick
Chapter 6 introduces the kernel Stein discrepancy and uses it to measure
the discrepancy between a sample of points and a distribution of interest.
Practical use of the methodology is made feasible by the ability to reduce
what appears to be an infinite amount of computation – maximising a quan-
tity over an uncountably infinite set of possible functions – to only a finite
number of arithmetic operations. The key mechanism for this simplification
is often called the kernel trick, and the setting for its use is a reproducing
kernel Hilbert space.

This section first explains the kernel trick in the more familiar setting
of a finite-dimensional inner-product space, before extending to the more
general setting required for Chapter 6. Whilst many of the concepts in-
troduced are much more general, our presentation focuses on the specific
setting of relevance: the vectors of our inner-product space are functions,
the associated field is R, and the inner product is an integral with respect to
a probability distribution.

Throughout, 𝑓 (·), 𝑔(·), etc., are functions from X → R, where X is R𝑑
or some closed or open subset of R𝑑; 𝑓 (x), 𝑔(x) etc denote the function
evaluated at x ∈ X. The probability distribution 𝜈 is assumed to have a
density 𝜈(x) on X.

1.5.1 Finite-Dimensional Inner-Product Space
Let 0(·) be the function such that 0(x) = 0 for all x ∈ X. A set, V, of
functions from X → R is a vector space over R if the following axioms are
satisfied:

1. 0(·) ∈ V.
2. 𝑓 (·) ∈ V =⇒ − 𝑓 (·) ∈ V.
3. 𝑓 (·), 𝑔(·) ∈ V =⇒ 𝑓 (·) + 𝑔(·) ∈ V.
4. 𝑓 (·) ∈ V and 𝑎 ∈ R =⇒ 𝑎 𝑓 (·) ∈ V.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

26 Background

Aside: The associativity, commutativity, and distributativity axioms of
a general vector space are satisfied automatically when the elements are
functions and from X to R and the field is R.

Every finite-dimensional vector space has a dimension, 𝑛, such that there
is a set of 𝑛 vectors {𝑏1(·), . . . , 𝑏𝑛 (·)}, which satisfy the following two
properties:

1. Linear independence: If there are 𝑎1, . . . , 𝑎𝑛 ∈ R such that
∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 (·) =

0, then 𝑎𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑛}.
2. Spanning V: for each 𝑓 (·) ∈ V, there are 𝑎1, . . . , 𝑎𝑛 ∈ R such that

𝑓 (·) = ∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 (·).

The set {𝑏1(·), . . . , 𝑏𝑛 (·)} is called a basis.

Example 1.7. It is straightforward to check that the set

V = { 𝑓 (·) : 𝑓 (𝑥) = 𝑐 sin(𝑥 + 𝜃) : 𝑐 ∈ R, 𝜃 ∈ [0, 2𝜋)}
= { 𝑓 (·) : 𝑓 (𝑥) = 𝑎 sin 𝑥 + 𝑏 cos 𝑥; 𝑎, 𝑏 ∈ R}

satisfies Axioms 1–4, whatever the domain, X ⊆ R. We may take 𝑏1(·) =
sin(·) and 𝑏2(·) = cos(·). However, we may also take 𝑏1(·) = sin(·)+3 cos(·)
and 𝑏2(·) = cos(·), for example.

For any vector space V of functions from X → R and any distribution
𝜈 with a probability density function on X of 𝜈(𝑥), we define the inner
product

⟨ 𝑓 (·), 𝑔(·)⟩𝜈 =
∫

𝑓 (x)𝑔(x)𝜈(x) dx, (1.23)

where here and throughout this section, if the integral range is not specified,
then it is X. We refer to this inner product as ⟨·, ·⟩𝜈 .

The inner product defined by (1.23) clearly satisfies two of the three
defining properties of an inner product: ⟨ 𝑓 (·), 𝑔(·)⟩ = ⟨𝑔(·), 𝑓 (·)⟩ and
⟨ 𝑓 (·) + 𝑔(·), ℎ(·)⟩ = ⟨ 𝑓 (·), ℎ(·)⟩ + ⟨𝑔(·), ℎ(·)⟩. However, we have only
that ⟨ 𝑓 (·), 𝑓 (·)⟩ = 0 ⇔ 𝑓 (x) = 0(x) 𝜈-almost everywhere, rather than
⟨ 𝑓 (·), 𝑓 (·)⟩ = 0 ⇔ 𝑓 (·) = 0(·). Each 𝑓 belongs to an equivalence class
of functions that are equal 𝜈-almost everywhere. This set of equivalence
classes forms a vector space, and (1.23) defines an inner product on this
space, not on the space of functions,V. To keep the presentation in this sec-
tion as straightforward as possible, our wording ignores this distinction, but
the more rigorous reader may wish to replace any vector space of functions
and inner product between these functions with the corresponding vector
space of equivalence classes of functions and inner products between these
equivalence classes.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.5 The Kernel Trick 27

The inner product provides a norm, called the induced norm, the square
of which is

∥ 𝑓 (·)∥2𝜈 = ⟨ 𝑓 (·), 𝑓 (·)⟩𝜈 =
∫

𝑓 (x)2𝜈(x) dx.

Example 1.8 (Example 1.7 continued). Let X = [0, 2𝜋], and let 𝜈 be the
uniform distribution on [0, 2𝜋]. For any 𝑓 (·), 𝑔(·) ∈ V,

⟨ 𝑓 (·), 𝑔(·)⟩𝜈 =
1

2𝜋

∫ 2𝜋

0
𝑓 (𝑥)𝑔(𝑥) d𝑥 and ∥ 𝑓 (·)∥2𝜈 =

1
2𝜋

∫ 2𝜋

0
𝑓 (𝑥)2 d𝑥.

Example 1.9. For a general vector spaceV of functions of the formX → R,
let V𝜈 be the elements of V that have a finite norm induced by 𝜈:

V𝜈 =

{
𝑓 (·) ∈ V :

∫
𝑓 (x)2𝜈(x) dx < ∞

}
.

ThenV𝜈 is also a vector space, since Axioms 1, 2 and 4 are satisfied trivially,
and Axiom 3 is satisfied since for any 𝑓 (·), 𝑔(·) ∈ V𝜈 ,

∥ 𝑓 (·) + 𝑔(·)∥2𝜈 = ⟨ 𝑓 (·) + 𝑔(·), 𝑓 (·) + 𝑔(·)⟩𝜈
= ∥ 𝑓 (·)∥2𝜈 + 2 ⟨ 𝑓 (·), 𝑔(·)⟩𝜈 + ∥𝑔(·)∥2𝜈
≤ ∥ 𝑓 (·)∥2𝜈 + 2∥ 𝑓 (·)∥𝜈 ∥𝑔(·)∥𝜈 + ∥𝑔(·)∥2𝜈 < ∞,

where the third line uses the Cauchy–Schwarz inequality, which, in this case,
is the familiar inequality E [𝑓 (X)𝑔(X)]2 ≤ E[𝑓 (X)2]E

[
𝑔(X)2

]
, where X

has a density 𝜈 on X.

Henceforth, for narrative simplicity, we will assume that V is a finite-
dimensional vector space with dimension 𝑛. Section 1.5.4 extends the nar-
rative to potentially infinite-dimensional spaces.

When considering the inner product ⟨·, ·⟩𝜈 , two vectors 𝑓 (·), 𝑔(·) ∈
V are said to be orthogonal if ⟨ 𝑓 (·), 𝑔(·)⟩𝜈 = 0, and the basis vectors,
𝑒1(·), . . . , 𝑒𝑛 (·), are said to be orthonormal if they are orthogonal and each
has a norm of 1: for each 𝑗 , 𝑘 ∈ {1, . . . , 𝑛},

∥𝑒 𝑗 (·)∥𝜈 = 1 and ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩𝜈 = 0,

whenever 𝑗 ≠ 𝑘 . We will reserve the symbols {𝑒𝑘 (·)}𝑛𝑘=1 for any set of 𝑛
orthonormal basis functions.

The representation of 𝑓 (·) in terms of an orthonormal basis

𝑓 (·) =
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

28 Background

is termed an orthonormal decomposition of 𝑓 (·). Since the 𝑒𝑖 (·) are or-
thonormal, the projection of 𝑓 (·) onto 𝑒𝑘 (·) is 𝑓𝑘:

⟨ 𝑓 (·), 𝑒𝑘 (·)⟩𝜈 =
〈
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·), 𝑒𝑘 (·)
〉
𝜈

=

𝑛∑︁
𝑗=1

𝑓 𝑗 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩𝜈

= 𝑓𝑘 . (1.24)

Furthermore, the squared norm of 𝑓 (·) is the sum of the squares of the
orthonormal projections

∥ 𝑓 (·)∥2 =
〈
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑓𝑘𝑒𝑘 (·)
〉
=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑓 𝑗 𝑓𝑘 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩

=

𝑛∑︁
𝑗=1

𝑓 2
𝑗 . (1.25)

Example 1.10. In Example 1.7, since
∫ 2𝜋

0 sin2 𝑥 d𝑥 =
∫ 2𝜋

0 cos2 𝑥 d𝑥 = 𝜋

and
∫ 2𝜋

0 sin 𝑥 cos 𝑥 d𝑥 = 0,

𝑒1(·) =
√

2 sin(·) and 𝑒2(·) =
√

2 cos(·)
form an orthonormal basis for V when 𝜈 is the uniform distribution on
[0, 2𝜋]. Any function 𝑓 (·) ∈ V can be written as 𝑓 (·) = 𝑓1𝑒1(·) + 𝑓2𝑒2(·).
For example set

𝑓 (𝑥) = sin(𝑥 + 𝜋/6) =
√

3
2

sin 𝑥 + 1
2

cos 𝑥. (1.26)

So 𝑓1 =
√

3/(2
√

2) and 𝑓2 = 1/(2
√

2). Also,

∥ 𝑓 (·)∥2𝜈 = 𝑓 2
1 + 𝑓 2

2 =
3
8
+ 1

8
=

1
2
=

1
2𝜋

∫ 2𝜋

0
sin2(𝑥 + 𝜋/6) d𝑥.

1.5.2 Kernels in a Finite-Dimensional Inner-Product Space
As in the previous subsection, let V be an 𝑛-dimensional vector space of
functions from X to R, and let 𝜈 be a probability distribution on X with a
probability density of 𝜈(x), x ∈ X. Finally, let {𝑒𝑘 (·)}𝑛𝑘=1 be a set of basis
functions that is orthonormal with respect to the inner product (1.23).

Let𝜆1, . . . , 𝜆𝑛 be a set of non-negative scalars, and consider the following
real-valued function on X × X:

k(x, y) =
𝑛∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (x)𝑒 𝑗 (y). (1.27)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.5 The Kernel Trick 29

Clearly, k(·, ·) is symmetric: k(y, x) = k(x, y). Moreover, k(·, ·) is positive
semidefinite: for any finite 𝐽 < ∞, 𝑐1, . . . , 𝑐𝐽 ∈ R and x1, . . . x𝐽 ∈ R𝑑 ,

𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘k(x 𝑗 , x𝑘) =
𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘

𝑛∑︁
𝑙=1

𝜆𝑙𝑒𝑙 (x 𝑗)𝑒𝑙 (x𝑘)

=

𝑛∑︁
𝑙=1

𝜆𝑙

𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘𝑒𝑙 (x 𝑗)𝑒𝑙 (x𝑘)

=

𝑛∑︁
𝑙=1

𝜆𝑙

{
𝐽∑︁
𝑗=1

𝑐 𝑗𝑒𝑙 (x 𝑗)
}2

≥ 0.

Any function k(·, ·) : X ×X → R, which is both symmetric and positive
semidefinite, is called a kernel.

Example 1.11. Continuing Example 1.7, let k : [0, 2𝜋] × [0, 2𝜋] → R be

k(𝑥, 𝑦) = 1
2
𝑒1(𝑥)𝑒1(𝑦) +

3
2
𝑒2(𝑥)𝑒2(𝑦) = sin 𝑥 sin 𝑦 + 3 cos 𝑥 cos 𝑦

= 2 cos(𝑦 − 𝑥) + cos(𝑦 + 𝑥).

This is symmetric and positive definite by construction.

Given the definition of k(·, ·) in (1.27), define

k(x, ·) =
𝑛∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (x)𝑒 𝑗 (·), (1.28)

and k(·, x) = k(x, ·). Since 𝑒 𝑗 (x) ∈ R, k(x, ·) ∈ V. Furthermore, for 𝑓 (·) ∈
V, define the operator 𝑇k via

𝑇k 𝑓 (·) =
∫

k(·, y) 𝑓 (y)𝜈(y) dy. (1.29)

Then 𝑇k is a linear operator, since for any 𝑎, 𝑏 ∈ R and 𝑓 (·), 𝑔(·) ∈ V,

𝑇k {𝑎 𝑓 (·) + 𝑏𝑔(·)} = 𝑎𝑇k 𝑓 (·) + 𝑏𝑇k𝑔(·).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

30 Background

Now, writing 𝑓 (·) = ∑𝑛
𝑘=1 𝑓𝑘𝑒𝑘 (·),

(𝑇k 𝑓 (·)) (x) =
∫

k(x, y) 𝑓 (y)𝜈(y)dy

= ⟨k(x, ·), 𝑓 (·)⟩𝜈 =
〈
𝑛∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (x)𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑓𝑘𝑒𝑘 (·)
〉
𝜈

=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝜆 𝑗𝑒 𝑗 (x) 𝑓𝑘 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩𝜈 =
𝑛∑︁
𝑘=1

𝜆𝑘 𝑓𝑘𝑒𝑘 (x).

So 𝑇k 𝑓 (·) =
∑𝑛
𝑘=1 𝜆𝑘 𝑓𝑘𝑒𝑘 (·) and, hence, 𝑇k 𝑓 (·) ∈ V, too. Moreover, con-

sidering 𝑓 (·) = 𝑒 𝑗 (·), we see that 𝑇k𝑒 𝑗 (·) = 𝜆 𝑗𝑒 𝑗 (·); each 𝑒 𝑗 (·) is an
eigenfunction of 𝑇k with a corresponding eigenvalue of 𝜆 𝑗 .

Example 1.12. Continuing Example 1.7, with the kernel from Example
1.11,

k(𝑥, ·) = sin 𝑥 sin(·) + 3 cos 𝑥 cos(·) = 2 cos(· − 𝑥) + cos(· + 𝑥).

Let 𝑓 (·) be as defined in (1.26). Then, using the definite integrals at the
start of Example 1.10,

𝑇k 𝑓 (·) =
1

2𝜋

∫ 2𝜋

0
{sin(·) sin 𝑦 + 3 cos(·) cos 𝑦}

{√
3

2
sin 𝑦 + 1

2
cos 𝑦

}
d𝑦

=
1

4𝜋

∫ 2𝜋

0

√
3 sin(·) sin2 𝑦 + 3 cos(·) cos2 𝑦 d𝑦

=
1
4

{√
3 sin(·) + 3 cos(·)

}
.

Since

𝑒1(·) =
√

2 sin(·), 𝑒2(·) =
√

2 cos(·), 𝑓1 =
√

3
2
√

2
, 𝑓2 =

1
2
√

2
,

𝜆1 = 1/2 and 𝜆2 = 3/2, 𝑇k 𝑓 (·) is, therefore,

𝜆1 𝑓1𝑒1(·) + 𝜆2 𝑓2𝑒2(·),

as we would hope.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.5 The Kernel Trick 31

1.5.3 A New Inner Product and the Kernel Trick in Finite
Dimensions

Let {𝑒 𝑗 (·)}𝑛𝑗=1 be an orthonormal basis for V, and let k be defined through
(1.27) with respect to this basis. For 𝑓 (·), 𝑔(·) ∈ V with

𝑓 (·) =
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·) and 𝑔(·) =
𝑛∑︁
𝑗=1

𝑔 𝑗𝑒 𝑗 (·), (1.30)

the inner product with respect to 𝜈 is the sum of the products of the orthog-
onal projections

⟨ 𝑓 (·), 𝑔(·)⟩𝜈 =
〈
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑔𝑘𝑒𝑘 (·)
〉
𝜈

=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑓 𝑗𝑔𝑘 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩𝜈

=

𝑛∑︁
𝑗=1

𝑓 𝑗𝑔 𝑗 .

We now define a new inner product

⟨ 𝑓 (·), 𝑔(·)⟩k =
𝑛∑︁
𝑗=1

𝑓 𝑗𝑔 𝑗

𝜆 𝑗
, (1.31)

where the {𝜆 𝑗}𝑛𝑗=1 are exactly those from the definition of k and are the
eigenvalues of the operator 𝑇k.

This inner product may be rephrased in terms of a set of eigenfunctions
that are orthonormal with respect to ⟨·, ·⟩k: {𝑒′𝑗 (·)}𝑛𝑗=1 with 𝑒′𝑗 (·) =

√︁
𝜆 𝑗𝑒 𝑗 (·).

With respect to this basis, the vector

𝑓 (·) =
𝑛∑︁
𝑗=1

𝑓 ′𝑗 𝑒
′
𝑗 (·),

with 𝑓 ′𝑗 = 𝑓 𝑗/
√︁
𝜆 𝑗 . Using an analogous decomposition for 𝑔(·),

⟨ 𝑓 (·), 𝑔(·)⟩k =
𝑛∑︁
𝑗=1

𝑓 ′𝑗 𝑔
′
𝑗 ,

as expected. Finally,

k(x, y) =
𝑛∑︁
𝑗=1

𝑒′𝑗 (x)𝑒′𝑗 (y).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

32 Background

Example 1.13. In Example 1.11, 𝑒′1(·) = sin(·) and 𝑒′2(·) =
√

3 cos(·).
Clearly,

k(𝑥, 𝑦) = sin 𝑥 sin 𝑦 + 3 cos 𝑥 cos 𝑦 = 𝑒′1(𝑥)𝑒′1(𝑦) + 𝑒′2(𝑥)𝑒′2(𝑦).

For 𝑓 (·), as in Example 1.26,

𝑓 (·) =
√

3
2

sin(·) + 1
2

cos(·) =
√

3
2

sin(·) +
√

3
6
√

3 cos(·),

so 𝑓 ′1 =
√

3/2 and 𝑓 ′2 =
√

3/6. Thus,

∥ 𝑓 (·)∥2k =
3
4
+ 3

36
=

5
6
.

The Kernel Trick
From the definition (1.28) and with 𝑓 (·) decomposed as in (1.30),

⟨k(x, ·), 𝑓 (·)⟩k =
〈
𝑛∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (x)𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑓𝑘𝑒𝑘 (·)
〉

k

=

𝑛∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (x) 𝑓 𝑗
𝜆 𝑗

= 𝑓 (x). (1.32)

Moreover, choosing 𝑓 (·) to be k(y, ·), 𝑓 𝑗 = 𝜆 𝑗𝑒 𝑗 (y) from (1.28), and, hence,

⟨k(x, ·), k(y, ·)⟩k =
𝑛∑︁
𝑗=1

𝜆 𝑗𝑒 𝑗 (x)𝑒 𝑗 (y) = k(x, y). (1.33)

Together, (1.32) and (1.33) enable the evaluation of inner products in ⟨·, ·⟩k
without needing to know the original basis functions 𝑒1(·), . . . , 𝑒𝑛 (·) nor
the associated values 𝜆1, . . . , 𝜆𝑛. Indeed, we do not even need to know 𝜈.
This is known as the kernel trick, and we will exemplify its use in Section
1.5.5. First, we generalise to a much broader class of kernels.

1.5.4 General Kernels
In Section 1.5.2, we created a kernel via (1.27) using a known orthonormal
basis for the inner-product space V, with the inner product specified by
(1.23) according to the density 𝜈. However, a kernel is any positive-definite
symmetric function and we are interested in kernels k : X × X → R.

Example 1.14. The Gaussian kernel is

k(x, y) = exp
(
−∥y − x∥2

)
,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.5 The Kernel Trick 33

where ∥ · ∥ represents the standard Euclidean norm. This is clearly symmet-
ric. To see that k is also positive semidefinite on X = R𝑑 , note that

Z ∼ N𝑑

(
x,

1
4

I𝑑
)

and Y|Z ∼ N𝑑

(
Z,

1
4

I𝑑
)

=⇒ Y ∼ N𝑑

(
x,

1
2

I𝑑
)
,

from which

exp
(
−∥y − x∥2

)
= 𝛾

∫
exp

(
−2∥y − z∥2

)
exp

(
−2∥x − z∥2

)
dz,

where 𝛾 = 2𝑑/𝜋𝑑/2. Hence,
∑𝐽
𝑗=1

∑𝐽
𝑘=1 𝑐 𝑗𝑐𝑘k(x 𝑗 , x𝑘) is

𝛾

𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘

∫
exp

(
−2∥x 𝑗 − z∥2

)
exp

(
−2∥x𝑘 − z∥2

)
dz

= 𝛾

∫ 𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘 exp
(
−2∥x 𝑗 − z∥2

)
exp

(
−2∥x𝑘 − z∥2

)
dz

= 𝛾

∫ {
𝐽∑︁
𝑗=1

𝑐 𝑗 exp
(
−2∥x 𝑗 − z∥2

)}2

dz

≥ 0.

When specifying k in Example 1.14, we have not specified a vector
space, nor a density 𝜈, nor an associated inner product. However, since k is
a kernel, we might hope that if we do specify 𝜈 and the inner product ⟨·, ·⟩𝜈
in (1.23), then there might be a vector space with a basis that is orthonormal
with respect to ⟨·, ·⟩𝜈 such that k has the decomposition (1.27). If this were
the case, then we would know that there was a new inner product ⟨·, ·⟩k such
that (1.32) and (1.33) held. Hence, we could evaluate inner products with
respect to k without knowing the basis itself nor the eigenvalues of 𝑇k, nor,
even, the details about 𝜈.

The decomposition in (1.23) does not hold in general, but Mercer’s
theorem and generalisations of it tell us that an analogous decomposition,
but with 𝑛 potentially infinite, holds widely.

Specifically, letX beR𝑑 or a closed or open subset ofR𝑑 , k(·, ·): X×X →
R be a kernel and 𝜈(x), x ∈ X, be a probability density onX. Then, provided
k(x, y) is a continuous function of x and y, and∫

k(x, y)2𝜈(y) dy < ∞ for all x ∈ X, (1.34)

the linear operator 𝑇k defined in (1.29) has at most countably many positive
(and no negative) eigenvalues𝜆1, 𝜆2, . . . with corresponding eigenfunctions

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

34 Background

𝑒1(·), 𝑒2(·), . . . , which are orthonormal with respect to the inner product
⟨·, ·⟩𝜈 defined in (1.23). Furthermore, k can be decomposed as

k(x, y) =
∞∑︁
𝑗=1

𝜆𝑘𝑒 𝑗 (x)𝑒 𝑗 (y),

and the set {
√︁
𝜆 𝑗𝑒 𝑗 (·)}∞𝑗=1 forms an orthonormal basis with respect to the

inner product

⟨ 𝑓 (·), 𝑔(·)⟩k =
∞∑︁
𝑗=1

𝑓 𝑗𝑔 𝑗

𝜆 𝑗
,

where

𝑓 (·) =
∞∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·) and 𝑔(·) =
∞∑︁
𝑗=1

𝑔 𝑗𝑒 𝑗 (·). (1.35)

The space in which 𝑒1(·), 𝑒2(·), . . . lie is a generalisation of the vector
space of Example 1.9 to the Hilbert space,H𝜈 , of functions 𝑓 (·) : X → R
with the inner product ⟨·, ·⟩𝜈 and such that ∥ 𝑓 (·)∥2𝜈 =

∫
𝑓 (x)2𝜈(x) dx <

∞. Likewise, the orthonormal basis {
√︁
𝜆 𝑗𝑒 𝑗 (·)}∞𝑗=1 lies in the reproducing

kernel Hilbert space, Hk, of functions with the inner product ⟨·, ·⟩k and
such that ∥ 𝑓 (·)∥k < ∞. A Hilbert space H is an inner-product space with
a potentially infinite set of basis vectors that is complete; informally, it
contains no ‘holes’, so that for any sequence 𝑓1, 𝑓2, . . . with

∑∞
𝑗=1 𝑓

2
𝑗 < ∞

then (e.g. consideringHk) 𝑓 (·) = lim𝑛→∞
∑𝑛
𝑗=1 𝑓 𝑗𝑒

′
𝑗 (·) exists, with distance

measured through the norm induced by the inner product, and is inHk.
Thus, the simplifications of the inner products in (1.32) and (1.33) con-

tinue to hold; in general, the intermediate steps must replace 𝑛 with∞.

Example 1.15. For the Gaussian kernel of Example 1.14, k(x, ·) = exp(−∥x−
·∥2) and 〈

exp(−∥x − ·∥2), exp(−∥y − ·∥2)
〉

k = exp(−∥y − x∥2).

Also, for any 𝑓 (·) ∈ Hk,〈
exp(−∥x − ·∥2), 𝑓 (·)

〉
k = 𝑓 (x).

Trace-Class Kernels
A kernel where

∫
k(x, x)𝜈(x) dx = 𝑐 < ∞ is referred to as trace class. This

property has important consequences for the set of eigenvalues, 𝜆1, 𝜆2, . . . ,
of 𝑇k, since

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.5 The Kernel Trick 35∫
k(x, x)𝜈(x) dx =

∫ ∞∑︁
𝑘=1

𝜆𝑘𝑒𝑘 (x)𝑒𝑘 (x)𝜈(x) dx

=

∞∑︁
𝑘=1

𝜆𝑘

∫
𝑒𝑘 (x)2𝜈(x) dx =

∞∑︁
𝑘=1

𝜆𝑘 .

Thus,
∑∞
𝑘=1 𝜆𝑘 = 𝑐. Since each 𝜆𝑘 ≥ 0, we have lim𝑘→∞ 𝜆𝑘 = 0.

The Gaussian kernel of Example 1.14 is a trace class with 𝑐 = 1 since
k(x, x) = 1 for all x ∈ R𝑑 . The kernel we will meet in in Chapter 6 is also
of trace class, following a similar reasoning.

Without loss of generality, we label the eigenvalues 𝜆1, 𝜆2 . . . in order of
decreasing size (choosing any one of the possibilities if some of the 𝜆 𝑗 are
not unique). With the decomposition of 𝑓 (·) in (1.35),

∥ 𝑓 (·)∥2k =
∞∑︁
𝑗=1

𝑓 2
𝑗

𝜆 𝑗
≥ 1
𝜆1

∞∑︁
𝑗=1

𝑓 2
𝑗 =

1
𝜆1
∥ 𝑓 (·)∥2𝜈 .

Thus, ∥ 𝑓 (·)∥k < ∞ =⇒ ∥ 𝑓 (·)∥𝜈 < ∞ and hence Hk ⊆ H𝜈 . In general,
Hk is strictly smaller than H𝜈 , and the more quickly the eigenvalues of 𝑇k
decay, the smaller the spaceHk.

1.5.5 The Power of the Kernel Trick
Suppose we have values x1, . . . , x𝑚 ∈ X, and we are interested in

V∗ =

{
𝑔(·) : 𝑔(·) =

𝑚∑︁
𝑗=1

𝑔 𝑗k(x 𝑗 , ·), 𝑔1, . . . , 𝑔𝑚 ∈ R
}
.

First for any 𝑔(·) = ∑𝑚
𝑗=1 𝑔 𝑗k(x 𝑗 , ·),

∥𝑔(·)∥2k =
〈
𝑚∑︁
𝑗=1

𝑔 𝑗k(x 𝑗 , ·),
𝑚∑︁
𝑘=1

𝑔𝑘k(x𝑘 , ·)
〉

k

=

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑔 𝑗 ⟨k(x 𝑗 , ·), k(x𝑘 , ·⟩ 𝑔𝑘

=

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑔 𝑗k(x 𝑗 , x𝑘)𝑔𝑘 < ∞. (1.36)

So, V∗ ⊆ Hk. Second for any 𝑓 (·) ∈ Hk,

⟨ 𝑓 (·), 𝑔(·)⟩k =
𝑚∑︁
𝑗=1

𝑔 𝑗 ⟨ 𝑓 (·), k(x 𝑗 , ·)⟩k =
𝑚∑︁
𝑗=1

𝑔 𝑗 𝑓 (x 𝑗). (1.37)

Suppose there is a particular function of interest, 𝑓 (·) ∈ Hk, and we
would like to construct the function 𝑔(·) ∈ V∗ that most closely resembles

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

36 Background

𝑓 (·) in shape. We could find the unit vector in V∗ that has the largest
component in the 𝑓 (·) direction

�̂�(·) = arg max
𝑔 (·) ∈V∗:∥𝑔 (·) ∥=1

⟨ 𝑓 (·), 𝑔(·)⟩k .

The size of the inner product, ⟨ 𝑓 (·), �̂�(·)⟩k, is a measure of the ability of V∗
to represent 𝑓 (·).

Define f = [𝑓 (x1), . . . , 𝑓 (x𝑚)]⊤ and g = [𝑔1, . . . 𝑔𝑚]⊤, and let K be the
matrix with elements 𝐾𝑖, 𝑗 = k(x𝑖, x 𝑗). Then, (1.36) and (1.37) become

⟨ 𝑓 (·), 𝑔(·)⟩k = g⊤f and ∥𝑔(·)∥2k = g⊤Kg.

To find �̂�(·), we must find the vector ĝ that maximises g⊤f subject to
g⊤Kg = 1.

Let A be a square matrix such that AA⊤ = K, and set h = A⊤g. Then,
equivalently, we wish to maximise h⊤A−1f such that ∥h∥ = 1. We must find
the unit 𝑚-vector with the largest component in the A−1f direction, which
is

ĥ =
A−1f√︁

(A−1f)⊤A−1f
=⇒ ĝ =

A−⊤A−1f
√

f⊤A−⊤A−1f
=

K−1f
√

f⊤K−1f
,

since ĝ = A−⊤ĥ. The inner product ĝ⊤f is

f⊤K−1f
√

f⊤K−1f
=
√

f⊤K−1f.

This calculation only requires us to be able to evaluate 𝑓 (x 𝑗) and k(x 𝑗 , x𝑘)
for 𝑗 , 𝑘 = 1, . . . , 𝑚. We do not need to know the eigenfunctions 𝑒1(·), . . .
nor eigenvalues 𝜆1, . . . of 𝑇k. Indeed, we do not even need to know 𝜈; only
that (1.34) is satisfied.

Example 1.16. Let X = R and let k be the one-dimensional case of the
Gaussian kernel in Example 1.14. We find the approximations to the func-
tion

𝑓 (𝑥) = 1
1 + 𝑥2 ,

using gradually more and more kernel functions k(𝑥 𝑗 , 𝑥). For points,
𝑥1, . . . , 𝑥𝐽 , K is the matrix with elements 𝐾𝑖, 𝑗 = exp[−(𝑥𝑖 − 𝑥 𝑗)2], and f is
the vector with 𝑓 𝑗 = 𝑓 (𝑥 𝑗). We set (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) = (−3, . . . , 3)
and approximate 𝑓 (𝑥) using just 𝑥1 then 𝑥1, . . . , 𝑥3, then 𝑥1, . . . , 𝑥5 and fi-
nally 𝑥1, . . . , 𝑥7. Figure 1.6 compares the four approximations with the truth.
Each time new points are added to the set, the approximation improves, but

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

1.6 Chapter Notes 37

Figure 1.6 The function 𝑓 (𝑥) = 1/(1 + 𝑥2) (T) and kernel-based
approximations to 𝑓 (𝑥) from Example 1.16. Curves use A:
𝑥 = −3, B: 𝑥 = −3,−2,−1, C: 𝑥 = −3, . . . , 1, and D:
𝑥 = −3, . . . , 3.

it matters where the points are added; some basis vectors are more helpful
than others.

1.6 Chapter Notes
There are many texts that cover the introductory material from this chapter
in more depth and rigour than we have allowed; we suggest a few on each
topic.

Basic Monte Carlo and importance sampling are covered in Ripley (2009)
and Rubinstein and Kroese (2008). For an introduction to Bayesian statistics
and the use of Monte Carlo methods for Bayesian analysis, see Bernardo
and Smith (2009), Robert (2007) and Robert and Casella (1999).

Norris (1998) provides a gentle introduction to Markov chains on discrete
state spaces, while Meyn and Tweedie (2012) give a thorough treatment on
general state spaces; a less thorough but more readily accessible treatment
for general state spaces is given by Roberts and Rosenthal (2004). Geyer

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

38 Background

(1992) describes methods for estimating the integrated auto-correlation time
from a sample of the chain when the Markov chain is reversible; for the
non-reversible chains of Chapter 4, the integrated auto-correlation can be
estimated by fitting an auto-regressive process to the time series {ℎ(𝑋𝑘)}𝑛𝑘=1
or by estimating the spectral density of the series at a frequency of 0 (e.g.
Heidelberger & Welch, 1981).

Diffusions and SDEs are the subject of Oksendal (2013), Rogers and
Williams (2000a) and Rogers and Williams (2000b). An alternative to
simple Monte Carlo, which attempts to obtain better convergence rates
with the Monte Carlo sample size 𝑛, is quasi-Monte Carlo. See, for example,
Caflisch (1998) for an introduction and L’Ecuyer and Lemieux (2002) for
work on randomised quasi-Monte Carlo.

Chapter 1 of Conway (2010) introduces Hilbert spaces in general, and
kernels and reproducing kernel Hilbert spaces are covered in Chapter 6 of
Rasmussen and Williams (2005). Mercer’s theorem is usually stated for a
compact X; we have used the generalisation to non-compact spaces in Sun
(2005).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288460.002
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.205, on 23 Jul 2025 at 16:16:51, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288460.002
https://www.cambridge.org/core

