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It is a most implausible fact that a one-to-one operator from c0 into a Banach
space which maps the unit ball of c0 onto a closed set is necessarily an isomorphism.

In this paper the term semi-embedding denotes a one-to-one operator from one
Banach space into another, which maps the closed unit ball of the domain onto a
closed set. In the first section we study semi-embeddings in conjunction with weak
compactness; in the second section we apply our results to the case of semi-
embeddings defined on C(X), X compact.

In Propositions 2 and 3 we construct semi-embeddings which are not isomor-
phisms. The main result of Section 1 (Proposition 4) states that an operator can be
factored through a dual space provided that there exists a semi-embedding defined on
the codomain such that the composition of the two operators is weakly compact. This
implies that the domain of a weakly compact semi-embedding must be a dual space
(Corollary 6). In the case when the domain is C(X), the existence of a weakly
compact semi-embedding is equivalent to X being hyperstonian and satisfying the
countable chain condition.

In Section 2, after some technical lemmas, we strengthen an argument of Pel-
czynski and Semadeni. Then we give the main result of the paper: a compact space X
is scattered if and only if every semi-embedding of C(X) is an isomorphism. This is
even true for any equivalent norm on C(X) (Corollary 12). In particular, every
semi-embedding of c0 is an isomorphism.

Theorem 11 also allows us to answer a question raised by Kalton and Wilansky
(question 6.4 in (5)). Indeed, our results show (see Corollary 14) that a compact space
X is scattered if and only if all one-to-one Tauberian operators from C(X) into
arbitrary Banach spaces are isomorphisms.

Finally, we prove that every semi-embedding of C[0, 1] is an isomorphism on a
complemented subspace isomorphic to C[0,1].

We use standard terminology throughout (see (1)). An operator is a bounded linear
operator from one Banach space into another; an embedding of a Banach space in
another is an operator which is an isomorphism onto a closed subspace of its
codomain. Finally, a compact space is scattered if it contains no perfect subsets.

1. Semi-embeddings and weak compactness

Definition 1. An operator T from a Banach space E into a Banach space F is
called a semi-embedding if T is one-to-one and maps the closed unit ball of E onto a
closed subset of F.
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If T is a semi-embedding of E and if E is given a new equivalent norm, T may fail
to be a semi-embedding of E in the new norm. For example, let T = L with the usual
supremum norm and define T:E^c0 by T(aj) = (aji). It is easy to see that T is a
semi-embedding. If E is renormed by ||| (a,) ||| = majc{||(a,)||, 2 lim sup |a,|}, where || || is
the usual supremum norm, then ||| ||| and || || are equivalent. However, let (a,)n,
n = 1,2,... be the sequence whose i-th term is 1 if i *£ n, 0 if / > n; then ||| (<*,)„ ||| = 1
and T(oti)n -z*y, y not in the image under T of the unit ball.

For A s» 1, a A semi-embedding of a Banach space E into a Banach space F is a
one-to-one operator T:E^>F such that T(U) C AT(C/), where [/ is the unit ball of E.
Evidently the property of being a A semi-embedding for some A is preserved when the
domain is given an equivalent norm. A number of our results, including the main
theorem, remain true or have valid analogues when "semi-embedding" is replaced by
"A semi-embedding" in the statements of the results. We comment more on this in the
remarks at the end.

Proposition 2. Let E be a Banach space which has a separable infinite-dimen-
sional quotient space. Then there is a Banach space G and a semi-embedding of E*
into G which is not an embedding.

Proof. Let F be a subspace of E such that E/F is separable and infinite-
dimensional, and let 77 be the quotient map of E onto E/F. Let (x,) be a sequence of
norm one elements of E such that the linear span of (ir(jc,)) is dense in E/F. Define
5 : U -» E by S((A,)) = 'LiXixj2'; then S is a compact operator.

Next, define T: F@lt -» E by T(y, z) = y + S(z). Now let G = F*@L and let
T*:E*-*G be the adjoint map. It is easily seen that the range of T is dense in E, so
T* is one-to-one. Moreover, the image of the unit ball of E* under T* is w*-compact,
so T* is a semi-embedding.

The space F1, the annihilator of F in £*, is infinite-dimensional, and the restric-
tion of T* to F x coincides with the restriction of S* to F \ Since S* is compact, it
follows that T* is not an embedding. This completes the proof.

Note that if E itself is separable, then we may take F = {0} in the above argument.
So T* = S* is a compact semi-embedding of E* into /„. This observation will be
needed in the proof of Proposition 3.

Corollary. Let E be an infinite-dimensional Banach space such that E* has the
Radon-Nikodym property. Then E** admits a semi-embedding which is not an
embedding.

Proof. Let F be any separable infinite-dimensional subspace. of E. By a result of
Stegall (9), F* is separable. Also, F* is a quotient of E*; hence the proposition
applies to E*.

Proposition 3. Let E be a Banach space. If E has an infinite dimensional reflexive
subspace, then there exists a semi-embedding of E into some Banach space which is
not an embedding.
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Proof. Assume that H is an infinite dimensional, separable, reflexive subspace of
E. According to Proposition 2, there exists a compact semi-embedding So of H in L.
Let S:£->/„ be an extension of 50. Define now T:E-*(ElH)x L by Tx = (x, Sx)
where jc-»i is the quotient map E-*E/H. Obviously T is one-to-one and, since its
restriction to H is compact, T is not an embedding. In order to show that T is a
semi-embedding, consider a sequence {xn} in E such that | | j tn | |sl and {Txn} is
convergent to a limit {x, z) G (E/H) x L. Since x = lim xn there is a sequence {hn} in H
such that lim (xn - x - hn) = 0, and therefore lim sup ||JC + hn\\ ^ 1. Since the subspace
generated by H and x is also reflexive and separable, by passing to a subsequence if
necessary, we may assume that {x + hn} has a weak limit x + h^ with /i«, G / / and
||x + /ioo||g 1. Obviously (x + /i»)* = x and S(x + /i») is the weak limit of S(x + hn).
Since lim S(xn —x — hn) = 0 we also have z = lim Sxn = 5(x + /io») and therefore
T(x + /i«) = (x, z).

Remark. If E contains isometrically the dual of a separable Banach space, a
slight modification of the above proof shows that there is a A semi-embedding of E
into some Banach space which is not an embedding. The constant A can be taken to
equal 3.

Proposition 4. Let E, F, and G be Banach spaces, let T:E^>F be a semi-
embedding and let S.G^E be an operator such that TS is weakly compact. Then
there exists a factorisation of S through a dual Banach space G -*B* -IE such that 5i
is one-to-one, TSt is weak*-weak continuous, and \\Si\\ \\S2\\ = ||S||.

Proof. Denote the unit balls of E and G by U and W, respectively, and denote
the closure of TS(W) by A. Then A is weakly compact and moreover A C | |5||r([/),
since T is a semi-embedding. The linear hull FA of A with A as unit ball is the dual B*
of a Banach space B and the canonical map of B* into F is weak*-weak continuous
(3, Ch. I, p. 104). Now TS considered as a map from G into FA defines an operator
S2:G-*B* with HSJI^l- Since FA is contained in the range of T, we can define
S,: B* -» E by S,y = r~'y for all y G FA, and clearly ||S,||«||5||.

Finally, it is obvious that TSt is the canonical inclusion of FA in F.

Corollary 5. Under the hypotheses of Proposition 4, the operator S has an
extension S:G**^E with \\S\\ = ||S||.

Proof. Take S = SiQ*Sf* where Q is the canonical map from B into B**.

Corollary 6. Let T be an operator from E into F. Then the following are
equivalent:

a) T is a weakly compact semi-embedding;
b) E is a dual space and T is a one-to-one, weak*-weak continuous operator.

Proof, b) => a) is trivial and a) => b) follows from Proposition 4 applied to the case
G = E, S the identity operator. (B* is isometric to E since 5i is one-to-one.)
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Corollary 7. Let X be a compact space. Then the following are equivalent:
a) X is hyperstonian and satisfies the countable chain condition;
b) there exists a weakly compact semi-embedding of C(X) in some Banach space.

Proof. Assume that T :C(X)-» F is a weakly compact semi-embedding. It fol-
lows from Corollary 6 that C{X) is a dual, that is, X is hyperstonian (2). Now T*
maps the unit ball of F* onto a weakly compact set A in C(X)*. It follows that there
is a positive measure /n0G C(X)* such that all fj. G A are absolutely continuous with
respect to pi0- Since T is one-to-one, the support of /u0 is X. This implies that X
satisfies the countable chain condition. Thus b) => a).

Assume now that a) holds; then there exists a strictly positive normal measure /x
on X and C(X) = L=V) (loc. cit.). Since the inclusion map L°V)-» L"(p), 1 < p < +»
is a weakly compact semi-embedding, b) follows.

2. Semi-embeddings of C(A")

In order to prove the main result of this section we need several preliminary
results:

Lemma 8. Let E and F be Banach spaces and T :E^>Fbe a one-to-one operator.
If T is not an embedding then the restriction of T to some infinite dimensional
subspace of E is compact.

Proof. Suppose that T is not an embedding. Then there is x, G E such that
||xi|| = 1 and ||7JCI|| S J. Pick / , G E* such that ||/,|| = 1, ft(xt) = 1. Since the restriction of
T to the kernel of f\ is not an embedding, there is x2 in the kernel of f\ with ||x2|| = 1
and ||TJC2|| g 2'4. Now pick f2 G E* such that f2(x2) = 1 and ||/2|| = 1. Continuing in this
way, we can define by induction sequences {xn} in E and {/„} in E* such that for all n:

i) ||JCJ = 1,| |/J= land/„(*,) = 1 ;
") /*(*„) = () if \^k<n;

iii) ||r.xn|| ^2-2".
Suppose now that ||2t=i a/txt||s£ 1. Applying /i we conclude that | « i | g l , hence

||2k=2a*x*|| = 2. Applying f2, we conclude that |a2f=2, hence ||2J!=3atJt*||S4. Proceed-
ing in this way, we see that \ak\^2k'1. Thus \\T(akxk)\\^2-k+l. It follows that if
x = 2&A, Qkxk, then ||Tjt|| § 2-N||x|| and so the restriction of T to the closed linear hull
of {xn} is compact.

Lemma 9. Every scattered compact space is sequentially compact.

Proof. Let X be a scattered compact space and {xn} a sequence in X. Since the
set of cluster points of {xn} can not be perfect, it contains an isolated point x. It is easy
to see that a subsequence of {*„} converges to x.

The following result is proved with arguments similar to those of (7, Main
Theorem, 4)-»5)). The conclusion is stronger in that the subspace obtained is
complemented.
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Proposition 10. Let X be a sequentially compact space, let a be an ordinal and let
<p be a continuous map from X onto [0, a] . // G is an infinite dimensional subs pace of
C(X) consisting of functions of the form f°<p with f G C([0, a]), then G contains a
closed subspace isomorphic to Co and complemented in C(X).

Proof. The Proposition is trivially true for finite a. Assume now that a is an
ordinal such that the Proposition holds for all ordinals /3<a. If a = y+l, a infinite,
then [0, a] is homeomorphic to [0, y] so by induction it also holds for a. Assume then
that a is a limit ordinal.

For P<a, let Pp be the projection f^fxp where \e ' s the characteristic function
of X0 = <p'][0, /3]. We identify the range of Pp with C(XP). Now let Go be the
subspace Co = { / £ C ; / = Oon <p~l(a)}. Clearly Go is also infinite dimensional.

We now distinguish two cases:
a) there exists /3<a such that Pp\G0 is an isomorphism. In this case, by the

induction hypothesis, Pe(Go) contains a subspace Ho isomorphic to c0 and which is the
range of a projection Q in C(XP). Then, with T = Pp\G0, T~lQPp is a projection from
C(X) onto T~lH0, and we are done.

b) for all /3 <a, Pp\G0 is not an isomorphism. In this case, a standard argument
(see for example (7), p. 216, last paragraph) shows that there exist a sequence {/„} in
Go and ordinals /3i < /32 < /33 < • • • < a with the following properties:

i) | | / J=lforat ln;
ii) the functions gn = (Pp +1 - Pp )fn have norm one;
»0 S||/n-dl<2-<.
Now for each n pick /„ G X with \gn(tn)\ = 1. By passing to a subsequence we may

assume that {tn} is convergent to a limit *„. Since the functions gn are disjointly
supported, ii) implies that the sequence {gn} is equivalent to the usual basis of c0. Also,
the map

Pf = 2 [/('„) - /(*-)] Sgn [gn(tn)]gn

is a projection of C(X) onto the closed linear hull of {#„}. Using iii) and 1.1.7 in (6) we
conclude that the closed linear hull of {/„} is also isomorphic to c0 and complemented
in C(X).

This completes the proof of Proposition 10.

Main Theorem 11. Let X be a compact space. Then the following conditions are
equivalent:

a) X is scattered;
b) every semi-embedding of C(X) in a Banach space is an embedding;
c) // F is a Banach space and T: C(X) -» F is a one-to-one operator which is not

an embedding, then there is a complemented subspace G of C(X) such that G is
isomorphic to Co and T\G is compact.

d) every infinite dimensional subspace of C(X) contains a subspace isomorphic to
Co and complemented in C(X).
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Proof, d) => c). This follows from Lemma 8. c) 4> b). Suppose that there is a
semi-embedding T: C(X) -* F that is not an embedding. Let G be a subspace of C(X)
as described in c). Then Corollary 5 implies that the inclusion map G -* C(X) has an
extension G**-»C(X). Since G is complemented in C(X), it follows that it is
complemented in G**, which is impossible since G is isomorphic to c0.

b) => a). Suppose that X is not scattered. Then C(X) contains a subspace isometric
to C[0,1] (7, Main Theorem) and a fortiori, an infinite dimensional reflexive subspace.
But then Proposition 3 implies that b) can not hold.
a)=>d). The arguments for (1)4>(4) in the proof of the Main Theorem of (7) show
that Proposition 10 can be applied.

Remark. H. P. Rosenthal kindly pointed out to us that (a) 4> (c) also follows from
Lemma 8, (0) =£> (5) of the Main Theorem of (6), and the following unpublished result
of his: Let X be a sequentially compact space and let Z be a subspace of C(X)
isomorphic to c<>. Then Z contains a subspace isomorphic to c0 and complemented in
C(X).

Corollary 12. Let T: E -> F be a semi-embedding and let G be a complemented
subspace of E isomorphic to C(X) where X is scattered. Then T\G is an embedding.

Proof. This follows as in the proof of c) >̂ b) above by using c) and Corollary 5.

Corollary 13. Every semi-embedding of c0 is an embedding.

Now we come to the relationship between semi-embeddings and Tauberian opera-
tors. A bounded linear operator T.E-+F is Tauberian if (T**)'\F)C E.

These facts follow from the definitions:
(A) All quotient maps P-.E-+E/H, where H is a reflexive subspace, are Tau-

berian.
(B) If T:E->MxL is defined as Tx = (Px, Sx) with P : E - > M Tauberian (and

S:E-+L just linear and bounded) then T is Tauberian.
Also, using the equivalence "(a)O(b)" on page 251 of (5), we conclude:
(C) AH one-to-one Tauberian operators are semi-embeddings.
With this we can state:

Corollary 14. Let X be a compact space. Then X is scattered if and only if all
one-to-one Tauberian operators from C(X) into arbitrary Banach spaces are embed-
dings.

Proof. If X is scattered, Theorem 11 and (C) apply to obtain the desired
conclusion. Suppose now that X is not scattered. Then the operator T defined in the
proof of Proposition 3 is Tauberian by (A) and (B). But it was shown in Proposition 3
that T is not an embedding, and this concludes the proof of the corollary.

We remark that (A), (B) and (C) actually provide an alternative proof that the
operator T of Proposition 3 is indeed a semi-embedding.

Consider now the case X = [0, 1]. We know that there are semi-embeddings of
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C(X) which are not embeddings. However, we have:

Proposition 15. Let T be an operator from C[0,1] into some Banach space.
Assume that T is a semi-embedding for some norm on C[0,1] equivalent to the sup
norm. Then there is a complemented subspace C\ of C[0,1] isomorphic to C[0,1] such
that the restriction of T to C\ is an embedding.

Proof. Since C[0,1] is isomorphic to C(A), (A is the Cantor set) we will prove the
Proposition for C(A). We shall use the dyadic decomposition of A as A = A) U A2,
A, = A3 U A4, A2 = A5 U Ae,... where A, = A n [0,1/3], A2 = A D [2/3,1], A3 = A D [0,1/9],
A4 = An[2/9,1/3], A5 = An[2/3,7/9], etc. If Gn is the subspace consisting of the
functions vanishing off An, then clearly C(A) = G[@G2, G\ = G3©G4, etc.

Now, if T\Gn is an isomorphism for some n, we are done with Ct = Ga. On the
other hand, if T\Gn is not an isomorphism for each n, then we can.pick /„ E Gn with
l/nll = 1 and ||r/n|| =£ I In. But then the closed linear span of {/2, /4, fs,...} is isomorphic
to Co and Corollary 12 is violated.

Remarks. We comment here on the effect of replacing "semi-embedding" by "A
semi-embedding" in the statements of our results.

Proposition 4 remains true except that the statement ||5i|| ||S2|| = ||S|| has to be
replaced by ||Si||||S2||«A||S||. Similarly, Corollaries 5 and 6 remain valid, with minor
modifications. Of course, the validity of the Main Theorem for A semi-embeddings is
implied by Corollary 12.

In Corollary 7, a ) ^ b ) obviously remains valid if "semi-embedding" is replaced by
"A semi-embedding". Also, b) still implies that X satisfies the countable chain
condition; all that was used here is that T is one-to-one and weakly compact.
However, b) no longer implies that X is hyperstonian. For example, let Y = fiN and
let X be the quotient space of Y obtained by identifying two points of BN ~ N. The
spaces C(X) and C(Y) are isomorphic, so by Proposition 2 there is a weakly compact
A semi-embedding of C(X) into some Banach space. However, X is not Stonian. (For
details, see (8, Theorem 2.6).)

In connection with condition d) in the proof of the Main Theorem, we remark that
J. Hagler (4) has constructed an example of a separable Banach space B such that B*
is not separable and B is hereditarily c0.
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