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Abstract. Since its elaboration in 1983 by Weiss, Tabor and Carnevale, the
method to explicitly build the Bäcklund transformation of a partial differential
equation (PDE) from singularity analysis only has been improved in several com-
plementary directions, and at the present time it succeeds for practically all PDEs in
1þ 1-dimensions. The current state of the art is presented, and the emphasis is put
on understanding the method. There are two important stages: first, the definition
(identified with a Darboux transformation) of a resummation variable to make the
Laurent series a finite one as requested by the definition of the word integrability;
second, the link (identified with a linearizing formula to be taken from the classifi-
cation of Painlevé and Gambier) between this resummation variable and the Lax
pair to be found.

1991 Mathematics Subject Classification. 35Q58.

1. Introduction:Bäcklund transformation,Laxpair,Darbouxtransformation. This
paper is a short version, restricted to integrable partial differential equations
(PDEs), of a summer school course on the same subject also dealing with non-
integrable PDEs [7]. Many examples, not repeated here, can be found there.

Given a nonlinear PDE (boldface means multicomponent)

Eðu; xÞ ¼ 0; ð1Þ

which has some good reasons to be integrable (see definition below), such as passing
the Painlevé test [6,20], the problem which we address is to find explicitly the
‘‘macroscopic’’ quantities which materialize this integrability. More precisely, we
want to find the Bäcklund transformation (BT) if it exists, since this is a generator of
exact solutions, and we want to do it by singularity analysis only.

We need to recall some basic definitions. For simplicity, but this is not a
restriction, let us give them for a PDE defined as a single scalar equation for one
dependent variable u and two independent variables ðx; tÞ.

Definition 1. (Refs. [1], [11] vol. III chap. XII, [19]) A Bäcklund transformation
(BT) between two given PDEs

E1ðu; x; tÞ ¼ 0; E2ðU;X;TÞ ¼ 0 ð2Þ
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is a pair of relations

Fj ðu; x; t;U;X;TÞ ¼ 0; j ¼ 1; 2 ð3Þ

with some transformation between ðx; tÞ and ðX;TÞ, in which Fj depends on the
derivatives of uðx; tÞ and UðX;TÞ, such that the elimination of u (resp. U) between
ðF1;F2Þ implies E2ðU;X;TÞ ¼ 0 (resp. E1ðu; x; tÞ ¼ 0). The BT is called the auto-BT
or the hetero-BT according as the two PDEs are the same or not.

Example 1. The sine-Gordon equation (we identify sine-Gordon and sinh-
Gordon since an affine transformation on u does not change the integrability nor the
singularity structure)

sine-Gordon : EðuÞ � uxt þ 2a sinh u ¼ 0 ð4Þ

admits the auto-BT

ðuþUÞx þ 4� sinh
u�U

2
¼ 0; ð5Þ

ðu�UÞt �
2a

�
sinh

uþU

2
¼ 0; ð6Þ

in which � is an arbitrary complex constant, called the Bäcklund parameter.

The importance of the BT is such that it is often taken as a definition of integr-
ability.

Definition 2. A PDE in N independent variables is integrable if at least one of
the following properties holds.

1. It is linearizable.
2. For N > 1, it possesses an auto-BT which, if N ¼ 2, depends on an arbi-

trary complex constant, the Bäcklund parameter.
3. It possesses a hetero-BT to another integrable PDE.

Definition 3. Given a PDE, a Lax pair is a system of two linear differential
operators

Lax pair : L1ðU; �Þ; L2ðU; �Þ; ð7Þ

depending on a solution U of the PDE and, in the 1þ 1-dimensional case, on an
arbitrary constant �, called the spectral parameter, with the property that the van-
ishing of the commutator ½L1;L2� is equivalent to the vanishing of the PDE
EðUÞ ¼ 0.

A Lax pair can be represented in several equivalent ways, such as the Lax
representation, the zero-curvature representation, the projective Riccati representation,
the scalar representation, the Sato representation, etc. From the singularity point of
view, the Riccati representation is the most suitable, as will be seen.
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Example 2. The sine-Gordon equation (4) admits the zero-curvature repre-
sentation

ð@x � LÞ
 1

 2

� �
¼ 0; L ¼

Ux=2 �

� �Ux=2

� �
; ð8Þ

ð@t �MÞ
 1

 2

� �
¼ 0; M ¼ �ða=2Þ��1 0 eU

e�U 0

� �
; ð9Þ

equivalent to the Riccati representation, with y ¼  1= 2,

yx ¼ �þUxy� �y
2; ð10Þ

yt ¼ �
a

2
��1eU þ

a

2
��1e�Uy2: ð11Þ

The working definition of the Darboux transformation (DT) given below is very
simplified (this is an involution) as compared to the one of Darboux [10], but it is
sufficient for our purpose.

Definition 4. Given a PDE, a Darboux transformation is a transformation
between two solutions ðu;UÞ of the PDE

DT : u ¼
X
f

Df Log �f þU ð12Þ

linking their difference to a finite number of linear differential operators, denoted Df

( f like family), acting on the logarithm of functions �f.

In the definition (12), it is important to note that, despite the notation, each
function �f is in fact the ratio of the ‘‘tau-function’’ of u by that of U.

Lax pairs, Bäcklund and Darboux transformations are not independent. In
order to exhibit their interrelation, one needs some additional information, namely
the link

8f : Df Log �f ¼ Ff ð Þ; ð13Þ

which most often is the identity � ¼  , between the functions �f and the function  
in the definition of a scalar Lax pair.

Example 3. The (integrable) sine-Gordon equation (4) admits the Darboux
transformation

u ¼ U� 2ðLog �1 � Log �2Þ; ð14Þ

in which ð�1; �2Þ is a solution ð 1;  2Þ of the system (8)–(9).
Then its BT (5)–(6) is the result of the elimination [4] of �1=�2 between the DT

(14) and the Riccati form of the Lax pair (10)–(11), with the correspondence
�f ¼  f; f ¼ 1; 2. This elimination reduces to the substitution y ¼ e�ðu�UÞ=2 in the
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Riccati system (10)–(11), and this is one of the advantages of the Riccati repre-
sentation. Therefore the Bäcklund parameter and the spectral parameter are iden-
tical notions.

Thus, roughly speaking, the BT is equivalent to the couple (DT, Lax pair).

2. The ODE situation. For the six ordinary differential equations (ODE) (P1)–
(P6) which bear his name, Painlevé proved the Painlevé property (PP) by showing
[26,27] the existence of one (case of (P1)) or two ((P2)–(P6)) function(s) � ¼ �1; �2,
called tau-functions, linked to the general solution u by logarithmic derivatives

(P1) : u ¼ D1 Log �; ð15Þ

ðPnÞ; n ¼ 2; . . . ; 6 : u ¼ DnðLog �1 � Log �2Þ; ð16Þ

where the operators Dn are linear: these operators are given by

D1 ¼ �@2x; D2 ¼ D4 ¼ �@x; D3 ¼ �e�x@x; ð17Þ

D5 ¼ �xe�xð2	Þ�1=2@x; D6 ¼ �xðx� 1Þe�xð2	Þ�1=2@x: ð18Þ

These functions �1; �2 satisfy third order nonlinear ODEs and they have the same
kind of singularities as solutions of linear ODEs, namely they have no movable sin-
gularities at all; they are entire functions for (P1)–(P5), and their only singularities
for (P6) are the three fixed critical points ð1; 0; 1Þ.

The important point is that the linear operator D contains the full information.
In some sense, the tau-function � realizes a (global) resummation of the (local)
Laurent series

u ¼
Xþ1

j¼0

ujðx� x0Þ
jþp; ð19Þ

with p ¼ �1 for (P1), p ¼ �2 for the others.
ODEs cannot possess an auto-BT, since the number of independent arbitrary

coefficients in a solution cannot exceed the order of the ODE. Nevertheless, some of
the features above can be transposed to the PDE situation.

3. A degeneracy: linearizable equations. The Burgers equation in its potential
form,

bvt þ v
2
x=aþ vxx þ GðtÞ ¼ 0; ð20Þ

under the transformation of Forsyth [15, p. 106]

v ¼ aLog �; � ¼  ; ð21Þ

is linearized into the heat equation
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b t þ  xx þ GðtÞ ¼ 0: ð22Þ

This can be considered as a degenerate Darboux transformation (12), in which U is
identically zero and  satisfies a single linear equation, not a pair of linear equa-
tions, and so this fits the general scheme.

4. The local information: Laurent series. Let (1) be a PDE which passes the
Painlevé test. One considers (which does not mean that one computes) all the
Laurent series that can (maybe after suitable perturbations not described here)
represent the general solution,

u ¼
Xþ1

j¼0

uj

jþp; �p 2 N ; E ¼

Xþ1

j¼0

Ej

jþq;�q 2 N

�: ð23Þ

The expansion variable 
 is for instance 
 ¼ ’ðx; tÞ � ’0, in which ’ðx; tÞ � ’0 ¼ 0 is
the singular manifold [31].

Definition 5. One calls the singular part operator of the family f ¼ ðu0; pÞ the
linear differential operator D which has the property that

u�DLogð’ðx; tÞ � ’0Þ ð24Þ

is regular when ’! ’0.

The only piece of information which one retains from the Laurent series is its
singular part operator D. Examples of D have been given in (15)–(16) and (21).

5. The global assumption: resummation. The full Laurent series is of no help, for
this is not global information. Since this is the only piece of information directly
available, let us represent, and this is the idea of Weiss, Tabor and Carnevale (WTC)
[31,30], an unknown exact solution u as the sum of a singular part, built from the
finite principal part of the Laurent series (i.e. the finite number of terms with nega-
tive powers), and of a regular part made up of one term denoted by U. This
assumption is identical to that of a Darboux transformation (12), in which nothing
would be specified about U.

This method is widely known as the singular manifold method or truncation
method because it selects the beginning of the Laurent series and discards (‘‘trun-
cates’’) the remaining infinite part.

Since its introduction by WTC [31], it has been improved in many directions
[22,12,17,24,8,28,25], and we present below the current status of the method.

For PDEs, the analogue of (15)–(16), with an additional rhs U, is now the
Darboux transformation (12), and the scalar(s)  to which the scalar(s) � are linked
by (13) are assumed to satisfy a linear system, the Lax pair.

More precisely, the (infinite) Laurent series (23) in the variable ’� ’0 is resum-
med as the sum of two terms

u ¼ DLog � þ regular part: ð25Þ
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The first term is a finite Laurent series in �, in which D is the singular part operator
defined in Section 4, and � is any variable fulfilling the requirement that ��1 be linear
in ð’� ’0Þ

�1, so as to capture all the singularities of u when ’! ’0 without altering
the structure of singularities. The second term, temporarily called ‘‘regular part’’ for
this reason, is yet unspecified. The sum of these two terms is therefore a finite
Laurent series and the variable � is a resummation variable which has made the for-
mer infinite series in ’� ’0 a finite one. One then requires the identification of this
resummation (25) with the definition of a Darboux transformation (12). This
involves two features. The first feature is to uncover a link (13) between � and a
scalar component  of a Lax pair. The second feature is to prove that the left over
‘‘regular part’’ is indeed a second solution to the PDE under study.

Example 4. For the KdV and modified KdV equations, the assumptions are
respectively

u ¼ Uþ @2x Log �; ð26Þ

u ¼ Uþ ð@x Log �1 � @x Log �2Þ; ð27Þ

in which nothing is assumed about U.

To make the assumption a constructive one, the needed additional input is as
follows.

1. The order of the Lax pair and its definition containing coefficients to be found.
2. A link between the set of functions �f and the component(s)  i of the Lax

pair. This link will not be guessed arbitrarily but obtained from the classifications of
ODEs performed by the Painlevé school (Painlevé, Gambier, Chazy, Bureau, Cos-
grove, . . .).

6. The possible links between � and . When the number of independent variables
is two, one can eliminate @t between the two PDEs defining the unknown BT, and
thus obtain an ODE, e.g. (5). This nonlinear ODE, with coefficients depending on U
and, in the 1þ 1-dimensional case, on an arbitrary constant �, has the property [25]
of being linearizable, since it results from the Lax pair, a linear system, and the
Darboux transformation by an elimination process [4].

This very strong property restricts the admissible choices (13) to a finite number
of possibilities, summarized in Table 1.

This provides much information. If the scattering order is at most three, the
unknown so called x-part of the BT is either a Riccati equation (for shortness, the
symbol 0 means here @x)

Table 1. This gives the nonlinear ODEs of first degree and first or second order that have the Painlevé

property and are linearizable. Their name is in the last column. For the order of the nonlinear ODE given

in column 2, column 3 indicates the number of homographically inequivalent ODEs with the PP, column

1 the order of the associated linear equation.

Linear order Nonlinear order with PP with PP and linearizable

2 1 1 Riccati

3 2 50 Gambier nos. 5 and 25
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y0 ¼ a2y
2 þ a1yþ a0; (Riccati) ð28Þ

or a fifth Gambier equation [16]

y00 þ 3yy0 þ y3 þ ryþ q ¼ 0; (G5) ð29Þ

or a twenty-fifth Gambier equation.

Y 00 � 3Y 02=ð4YÞ þ 3YY 0=2þ Y3=4� ðY 0 þ Y2Þ
Q0

2Q
� RY�Q ¼ 0: (G25)

The coefficients in the equations above are arbitrary functions of ðx; tÞ, and these
equations are to be considered modulo the group of homographic transformations.
The classes (G5) and (G25), inequivalent under the homographic group, are
equivalent under the birational group, with the explicit transformation between
G5ðy; q; rÞ and G25ðY;Q;RÞ given by

Y ¼
Q

2z0 þ z2 � ðQ0=QÞz� R
; z ¼ yþ

Q0

2Q
; 2y ¼

Y0

Y
þ Y�

Q0

Q
; ð30Þ

r ¼ �Rþ
Q00

Q
�
5Q02

4Q2
; q ¼ �

Q

2
�
R0

2
þ
Q000

2Q
�
7Q0Q00

4Q2
þ
5Q03

4Q3
: ð31Þ

The linearizing transformations are

(Riccati) y ¼ �a�1
2

�0

�
¼ �a�1

2

 0

 
;  00 � ða1 þ ða02=a2ÞÞ 

0 þ a0a2 ¼ 0; ð32Þ

(G5) y ¼
�0

�
¼
 0

 
;  000 þ r 0 þ q ¼ 0; ð33Þ

(G25)

Y ¼
�0

�
¼

Q

2z0 þ z2 � ðQ0=QÞz� R
; z ¼

 0

 
;

 000 �
3Q0

2Q
 00 � Rþ

Q00

Q
�
Q02

Q2

� �
 0 �

R0

2
þ
Q

2
�
Q0R

2Q

� �
 ¼ 0:

8>><
>>:

ð34Þ

The formulae above define the a priori link between � and  .
These two and only two possibilities for a third order Lax pair were redis-

covered in 1980 in the context of scattering theory by Caudrey [2] and Kaup [18].

7. The route from the PDE to the Bäcklund transformation. Again, the full details
of this algorithm are given in [7], with complements (on nonlinear superposition
formulae) in [21].

Zeroth step. Find the singular part operator D.
First step. Assume a Darboux transformation defined as

u ¼ UþDðLog �1 � Log �2Þ; EðuÞ ¼ 0; ð35Þ

with u a solution of the PDE under consideration, U an unspecified field, �f the
‘‘entire’’ function (or more precisely ratio of entire functions) attached to each
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family f. For one-family PDEs, one denotes �1 ¼ �; �2 ¼ 1, so that the DT assump-
tion (35) becomes

u ¼ UþDLog �; EðuÞ ¼ 0: ð36Þ

Second step. Choose the order two, then three, then . . ., for the unknown Lax
pair, and define one or two (as many as the number of families) scalars  f from the
component(s) of its wave vector (e.g. the scalar wave vector if the PDE has one
family and the pair is defined in scalar form). Such Lax pairs and scalars are for
instance, in the scalar representation,

L1 �  xx þ
S

2
 ¼ 0; ð37Þ

L2 �  t þ C x �
Cx
2
 ¼ 0; ð38Þ

2½L1;L2� � X ¼ St þ Cxxx þ CSx þ 2CxS ¼ 0; ð39Þ

or

L1 �  xxx � a x � b ¼ 0; ð40Þ

L2 �  t � c xx � d x � e ¼ 0; ð41Þ

½L1;L2� � X0 þ X1@x þ X2@
2
x ¼ 0: ð42Þ

Third step. Select (in a finite list) a link F

8f : DLog �f ¼ Fð fÞ; ð43Þ

the same for each family f, between the functions �f and the scalars  f defined from
the Lax pair. The most frequent choice (Riccati, (G5), see Section 6) is

8f : �f ¼  f: ð44Þ

Fourth step. Enforce the condition EðuÞ ¼ 0 modulo the pair of linear equations
for  [23]. This is the ‘‘truncation’’ properly said, that is to say : with the assump-
tions (35) for a DT, (43) for a link between �f and  f, (37)–(38) or (40)–(41) or other
for the Lax pair in  , express EðuÞ as a polynomial in the derivatives of  f which is
irreducible modulo the Lax pair. For the above pairs and a one-family PDE, this
amounts to eliminating any derivative of  of order in ðx; tÞ higher than or equal to
ð2; 0Þ or ð0; 1Þ (second order case) or to ð3; 0Þ or ð0; 1Þ (third order), thus resulting in
a polynomial of one variable  x= (second order) or two variables  x= ;  xx= 
(third order)

EðuÞ ¼
X�q
j¼0

EjðS;C;UÞð = xÞ
jþq (one-family PDE, second order); ð45Þ

EðuÞ ¼
X
k�0

X
l�0

Ek;lða; b; c; d; e;UÞð x= Þ
k
ð xx= Þ

l

(one-family PDE, third order): ð46Þ
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This generates the set of determining equations

8j EjðS;C;UÞ ¼ 0 (one-family PDE, second order) ð47Þ

8k 8l Ek;lða; b; c; d; e;UÞ ¼ 0 (one-family PDE, third order) ð48Þ

for the unknown coefficients ðS;CÞ or ða; b; c; d; eÞ as functions of U, and one
establishes the constraint(s) on U by eliminating ðS;CÞ or ða; b; c; d; eÞ.

If the only constraint on U is to satisfy some PDE, one is on the way to an auto-
BT if the PDE for U is the same as the PDE for u, or to an hetero-BT between the
two PDEs.

The second, third and fourth steps must be repeated until a success occurs. The
process is successful if and only if all the following conditions are met:

1. U comes out with one constraint exactly, namely: to be a solution of some
PDE,

2. (if an auto-BT is desired) the PDE satisfied by U is identical to (1),
3. the vanishing of the commutator ½L1;L2� is equivalent to the vanishing of

the PDE satisfied by U,
4. in the 1þ 1-dimensional case only and if the PDE satisfied by U is identical

to (1), the coefficients depend on an arbitrary constant �, the spectral or Bäcklund
parameter.

At this stage, one has obtained the DT and the Lax pair.
Fifth step. Obtain the two equations for the BT by eliminating  f [4] between the

DT and the Lax pair.

8. The privilege of second-order Lax pairs. The general second-order scalar Lax
pair reads, in the case of two independent variables ðx; tÞ,

L1 �  xx � d x � a ¼ 0; ð49Þ

L2 �  t � b x � c ¼ 0; ð50Þ

½L1;L2� � X0 þ X1@x; ð51Þ

X0 � �at þ axbþ 2abx þ cxx � cxd ¼ 0; ð52Þ

X1 � �dt þ ðbx þ 2c� bdÞx ¼ 0: ð53Þ

For the inverse scattering method to apply, the coefficients ðd; aÞ of the x-part (49)
are also required to depend linearly on the field U of the PDE.

The Lax pair (49)–(50) is identical to a linearized version of the Riccati system
satisfied by the most general expansion variable Y [22,28] which realizes the resum-
mation explained in Section 5, that is by [5]

Y�1 ¼ Bð
�1 þ AÞ ðB 6¼ 0Þ; ð54Þ


x ¼ 1þ
S

2

2; ð55Þ


t ¼ �Cþ Cx
�
1

2
ðCSþ CxxÞ


2; ð56Þ

and the correspondence is
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Y ¼ B�1  

 x
; B 6¼ 0; ð57Þ

d ¼ 2A; a ¼ Ax � A
2 � S=2; b ¼ �C; c ¼ Cx=2þ AC þ

Z
Atdx: ð58Þ

In particular, when the coefficient d is zero or when, by a linear change

 7!e
R
ðdÞdx=2 , it can be set to zero without altering the linearity of a on U, the cor-

respondence is as given in [22]; that is


 ¼
 

 x
; B ¼ 1; A ¼ 0; ð59Þ

d ¼ 0; a ¼ �S=2; b ¼ �C; c ¼ Cx=2; ð60Þ

and the  in (59) satisfies (37)–(38).
Therefore second order Lax pairs are privileged in the singularity approach, in

the sense that their coefficients can be identified with the elementary homographic
invariants S;C of the invariant Painlevé analysis and, if appropriate, A;B. Con-
versely, and this has historically been the reason for some errors (which we shared!),
at the stage of searching for the BT (as opposed to the stage of performing the
Painlevé test), these homographic invariants S;C are useless when the Lax order is
higher than two and they should not be considered.

As explained in Section 7, given a Lax pair, one should define from it either one
or two scalars  f. Consider the second order Lax pair defined by the gradient of Y.
Then, for one-family PDEs, this unique scalar  is defined by (57). For two-family
PDEs, the two scalars  f are defined by

Y ¼
 1

 2
; ð61Þ

which leads to the zero-curvature representation of the Lax pair

ð@x � LÞ
 1

 2

� �
¼ 0; L ¼

�A� B�1Bx=2 B�1

BðAx � A
2 � S=2Þ Aþ B�1Bx=2

� �
; ð62Þ

ð@t �MÞ
 1

 2

� �
¼ 0; ð63Þ

M ¼
ACþ Cx=2� B

�1Bt=2 �CB�1

BððCSþ CxxÞ=2þ At þ CA
2 þ CxAÞ �AC� Cx=2þ B

�1Bt=2

� �
:

The reason why the Riccati form is the most suitable characterization of the Lax
pair is that it allows two linearizations [24,28]; namely (57) and (61), depending on
whether the PDE has one family or two opposite families.

9. Second order truncations. For (P1) on one side, (P2)–(P6) on the other side,
one must distinguish two types of PDEs: the one-family ones, and the two-family
ones. Table 2 summarizes the characteristics of the truncation in each case.
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10. Higher order Lax pairs and truncations. Two nice features of the second order
case are now meaningless and must not be used or considered.

1. The truncation in 
 or Y to access the BT (this would mix Lax orders).
2. The singular manifold equation FðS;CÞ ¼ 0 (for the same reason).
Given the order n of the unknown Lax pair, one then has to expand EðuÞ as a

polynomial in n� 1 variables, typically  x= ;  xx= ; . . ., irreducible modulo the
satisfaction of the Lax pair by  , and to require its identical vanishing.

The main new feature is that the link � ¼  is no longer the only possible one. As
seen in Section 6, there exists one more possibility at third order. Thanks to this unu-
sual link, the BT of the Kaup-Kupershmidt (KK) equation could finally be obtained
from [25], and this was a new result, to the credit of singularity analysis. The well
known duality (this is an hetero-BT) between the Sawada-Kotera equation and the
KK one reduces, at the ODE level, to the birational transformation between (G5)
and (G25). There are two such ODE levels at which this birational transformation
takes place: the one of the x-part of the BT of each PDE, relevant to this paper, and
the one of the fourth order ODEs arising as reductions of the PDEs. In this second
level, each fourth order ODE is equivalent [13] to a two-degree of freedom Hénon-
Heiles Hamiltonian system, with the feature that the separating variables of the
Hamiltonian system in the SK case are obvious (q1 þ q2 and q1 � q2, just like the
link � ¼  is obvious), while in the KK case they are not at all obvious [29], but a
posteriori easily recoverable from the SK case by the birational transformation.

Note that the two-family PDEs create no problem [14].

11. Selected examples. Table 3 gathers the main features of the truncation for
various integrable PDEs, with either one or two families of movable singularities,
and with either a second order or a third order Lax pair.

Table 3. Selected examples. For each PDE, the successive lines indicate the singular part(s), the link

between � and  , the assumption for a Lax pair which leads to the BT, the basis variables for defining the

determining equations, the reference where the correct truncation was performed for the first time.

PDE KdV KK p-mKdV, SG Tzitzéica

u�U @2x Log � @x Log �1 Log �1 � Log �2 @x@t Log �

�ð Þ � ¼  � ¼ G25ð Þ Y�1 ¼ �2
�1

¼  2

 1
� ¼  

Lax scalar2ð Þ scalar3ð Þ matrix2ð 1;  2Þ matrix3ð x;  t;  Þ

Basis
 x
 

 x
 
;
 xx
 

 1

 2

 x
 
;
 t
 

Ref. [31] [25] [28] [9]

Table 2. Compared characteristics of the one-family and the two-family truncations for second order

scattering problems.

Type of PDE One-family Two-family

P
DLog Log � Log �1 � Log �2

link �ð Þ � ¼  �1 ¼  1; �2 ¼  2

powers in u 
p to 
0 Yp to Y�p

truncation variable 
 ¼ �

�x
Y�1 ¼ �1

�2
link with ’ � ¼ ð’� ’0Þ’�1=2

x Y�1 ¼ Bð
�1 þ AÞ

BÄCKLUND TRANSFORMATIONS 19

https://doi.org/10.1017/S0017089501000027 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501000027


We do not know of any unsuccessful truncation of a 1þ 1-dimensional PDE.

Acknowledgements. RC thanks the organizers for their financial support.
MM acknowledges the financial support extended within the framework of the
IUAP Contract No. P4/08 funded by the Belgian government and the support of
CEA. RC and MM acknowledge the financial support of the Tournesol grant No.
T99/040.

REFERENCES
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385.
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tion, J. Math. Phys. 40 (1999), 2092–2106.

10. G. Darboux, Sur une proposition relative aux équations linéaires, C. R. Acad. Sci.
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triques du calcul infinitésimal, Vol. III (Gauthier-Villars, Paris, 1894). Reprinted, Théorie gén-
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Painlevé property, one century later, ed. R. Conte, CRM series in mathematical physics
(Springer-Verlag, 1999), 517–572.

21. M. Musette, Nonlinear superposition formulae of integrable partial differential
equations by the singular manifold method, in Direct and inverse methods in nonlinear evolu-
tion equations, ed. A. Greco (Springer-Verlag, 2001).

22. M. Musette and R. Conte, Algorithmic method for deriving Lax pairs from the
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