A REMARK ON RELATIVE HOMOLOGY AND
COHOMOLOGY GROUPS OF A GROUP

To Zvorrt SUETUNA on his 60th Birthday

TADASI NAKAYAMA

Let G be a group and H a subgroup of G. With a left G-module M, rela-
tive cohomology groups H™(G, H, M) of G on M, relative to H, have been
defined by Adamson [1] and may be expressed as Extl, », (Z, M) in the notation
of relative homological algebra of Hochschild [2], where Z denotes the G-module
of rational integers (acted by G trivially). Regarding M as a right G-module,
Tori?» ™ (M, Z) are similarly relative homology groups H.(G, H, M). In case
H is of finite index in G, Hochschild [2] defines further negative-dimensional
relative homology and cohomology groups. He then remarks that these com-
plete relative homology and cohomology structures are separate (contrary to
the absolute case H=1). Indeed he exhibits an example of G, H, M (with H
even normal in G) such that H"(G, H, M) =0 for every n=0, =1, +2, ...
and H,(G, H, M) is a group of order 2 for every =0, +1, £2,.... This,
however, does not exclude the possibility that negative-dimensional relative
homology groups H-.(G, H, M) are in close relationship with positive-dimen-
sional relative cohomology groups on some G-module N other than M. In fact,
in case H is a normal subgroup of G, we have H.,(G, H, M) =~ H-,(G/H, My)
=~ H"(G/H, Mg) (where Mz denotes as usual the residue-module of M with
respect to the submodule generated by the elements of form u—hu (z€ M,
he H) and this is isomorphic to H* NG/H, N"Y =~ H" NG, H, N) if Ma is
G-isomorphic to N” (where N7 is the submodule of N consisting of all elements
of N left invariant by H); this holds not only for » > 0 but for all #=0, =+1,
+2,.... Now we want to show that a similar phenomenon prevails also in
case of a non-normal subgroup H.

Thus, let H be a subgroup of finite index in a group G and K, be the
largest normal subgroup of G contaiuned in 4, ie. the intersection of all conju-

gates of H in G. For G-modules M and N, we consider the following condition :
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(A) There exists a G-homomorphism x, of M into N such that x, induces
a (G-) isomorphism of My, onto N, and, moreover, we have
H™(K/K,, Mx,) = H(K/K,, Mg,) =0 for every subgroup K of H

which is an intersection of conjugates of H in G.
This condition may also be formulated as follows:

(A'") There exists a G-homomorphism &, of M into N such that x, induces
a (G-) isomorphism of My, onto N*° and for every subgroup K of H

which is an intersection of conjugates of H in G the homomorphism
k£(K) of M into N defined by

(1) e Klu= 3 oxn (ues M),

K3p mod Kq
p running over a representative system of cosets of Ko in K,
induces an isomorphism of Mx onto N*.

Indeed, the endomorphism v - EM_ ov (v e N¥) of N¥ induces a monomor-
phism (resp. an epimorphism) oﬁfp nzoN’g"){x,K") to (N%0)®/% = N¥ if and only if
H(K/K,, N¥)=0 (resp. H""(K/K,, N¥)=0). Combining this consideration
with G-isomorphism of My, and N* induced by k, we see the equivalence of
the conditions (A), (A') readily.

We want also to note that if (A) (or (A')) is the case and if K is an
intersection of non-void set of conjugates of H in G, which is not necessarily
a subgroup of H, the homomorphism of M into IV defined by the same formula
as (1) induces an isomorphism of Mx onto N¥, as follows readily from the G-
isomorphism property of xy by an easy conjugation consideration. With this
generalized significance of x(K), we observe also that if K, L are two intersec-

tions of non-void sets of conjugates of H in G and if L D K then

(2) e(L)= > p(K),

L3pr.mod K

p running over a representative system of right cosets of K in L. We have also
(3) k(oKo™") = gr (K)o

Now, with the condition (A) (or (A')) we assert

Tueorem.Y Let H be a subgroup of finite index in a group G. For G-

U The theorem will be applied in a subsequent paper to a study of fundamental exact
sequences in homology and cohomology of finite groups. Cf. remark at the end.
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modules M, N, suppose that the condition (A) (or, equivalently, (A')) is satisfied.
Then
H,G, H M)~ H "G, H, N)

for all n=0. More precisaly, if ZX,, is the standard complete complex G rela-

n=0
tive to H, the complexes D\ MQ ¢ Xn. >3 Home (X-n-1, N) with respective differ-
entiations O, & are isomorphic by an isomorphism mapping M®eXn onto

Home (X—n-l, N).

Proof. Relative homology and cohomology groups H,(G, H; M), H™ (G, H;
M), with H of finite index in G, are defined most conveniently by means of

the standard complete complex of (G, H), i.e. the exact sequence

a1 do 0-1 02
4) e~ x> X —> Xy —> -
in which each X» with #=0 is the G-module having the totality of (n+1)-
tuples (oo H, o1 H, . . ., onH) of right H-cosets in G as Z-basis and the map
On t Xn— Xn-1, #>0, is defined by (linearity and)

onlaoH, ..., onH) = 20(—1>"(00H, e, 0i-iH, giv H, ..., o H)

while X_,, n >0, is the G-module Hom;(X,-1, Z) dual to Xu-1 and the map
O-n+ X-n—-> X_y-1, =0, is dual of 2,+1, and further, the map 9, : Xo - X; is
the combination of the coefficient sum homomorphism X, - Z and its dual
Z - X-1; all the modules X,, =0, are (G, H)-projective, all the maps on,
n=0, are G-homomorphic, and the sequence is (G, H)-exact, in the sense of
Hochschild [2]. We observe also that each X, is in fact G-isomorphic to its
dual X_»_: (and is, hence, (G, H)-injective too); for n=0 the isomorphism is
given by associating (s H, ..., onH ) with the element {¢oH, ..., onH} of
Hom; (X,, Z) which maps (6o H, . . ., o»H) into 1 but other (n + 1)-tuples to 0.

(Relative) cohomology groups H™(G, H; N), n=0, on a G-module N is
defined by the sequence

a 0 il
(5) -+ «— Home (%1, N) <— Homg¢ (Xo, V) <— Homg (X-;, N)
i) 2

0
«~— Home (X-_g, N) ¢— -

while (relative) homology groups H.(G, H; M), n=0, on a G-module M is
defined by the sequence
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0 a ) 0
(6) eI MR X1 MQeXe—> MR X —> MReX-2 -+,
both sequences being derived from (4) in natural manner. As X-n-1 is
Hom;z ( X», Z) (and is in fact isomorphic to X, itself) we have an G-isomorphism

b N®zXn= Homy (Xp1, N)

where v®x (v€ N, ¥ X) in the left-hand side is mapped to the element
»(v® x) of the right-hand side such that »(v @ x)f = (fx)v for fe X pn
=Homz (X, Z); the map is not only (G-)homomorphic but isomorphic since
X» has an (independent) finite Z-basis. Hence we have an isomorphism, denoted

also by v,
(7) (N® 2 Xn)® = Homg (X-n-1, N).

Now, we first consider the case #=0. There is a system of (# + 1)-tuples
(8) s=(aH, aiH, ..., onH), $=aH, oiH, ..., nH), ...

such that for every (n+ 1)-tuple ¢ = (voH, -1 H, . . . , to H) there is one, and only
one, among them, say s*', from which the given (n+ 1)-typle ¢ is obtained by
the operation of an element of G, thus ¢=1s* (r&G); here r =0 r.mod
oW HsM ' =6 r.mod M Hoe™™, ..., and ¢ is determined uniquely up to
r.mod oW Ho N oW Hs™ N - - - N Ho™'. We see readily that every

element of the tensor product M ® ¢ X, is expressed in a form

9) UQos+u Qes'+ -+ - (u, o', ... EM).

Here the classes in the residue-modules My, Mx., . . . of the elements #, «/, . . .,

respectively, are uniquely determined, where we put

(10) K=coHoi'NoyHsi' N+ - NonHoy', K' =otHoy *NalHA™ NN

/ ! -1
JnHO'n y e e s

for brevity.

Now, let « =«k(K), £’ =«(K'"), ... be the homomorphisms of M into N
which are described in the condition (A’) of our theorem and thus in particular
induce isomorphisms Mx = N*, Mx. = N*, . .. respectively. We associate with
(9) the element

(11) 2 p(xu)®ps+ }_—3 ‘0'(5’%?)@‘0,5'”}* .
pr.mod K p/r.mod £’

of N®;X., where in the first sum p runs over a representative system of right
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cosets modulo X in G, in the second sum g’ runs over a representative system
of rigl’it cosets modulo X' in G, and so on. This element (11) of N® X, is
independent of the choices of these representative systems of cosets, as follows
from the definitions of «, K, etc., and is, moreover, determined uniquely by the
element (9), irrespective of the special choices of elements #, #/, . . . from their
classes in Mx, Mk:, ....” The former of the last remarks entails that (11)
belongs in fact to (N®2zX,)® Thus, by (9) » (11) we obtain a homomorphism

¢ MR e Xn—~ (N®zXn)G.

We contend that this homomorphism is an isomorphism. Thus, suppose that
(11) is 0. Since {ps}, {o's'}, . . . are altogether the set of distinct (zn+ 1)-tuples,
this implies that each single term in the sum (11) is 0, ie. p(x%#) =0 for every
pr.mod K, etc. It follows then that =, #', ... belong to the kernels of «, &/,
.., le. to the O-classes in Mx, Mg/, . . ., re§pectively. This implies however

that the element (9) is 0, showing that ¢ is monomorphic. .
To prove further that ¢ is epimorphic, consider any element of (N® z Xx)¢,

which we can express in a form

(12) 2 v‘”)®ps+ 2 vI(P')®pISI+ . e e

pr.mod K p?r.mod K¢

(v, »"*”, ... €N); we assume that the unit element 1 appears in each of
the representative systems {p}, {¢'}, . . .. From its invariance by the eclements
of K we deduce that " belongs to N*. Its invariance by p implies »'* = p»'".
Similarly we have ¢/ e N¥, v =o'V, etc. The elements vV, Y, . ..
of N N¥, ... may be expressed as ru, t'e, - .. with », o/, ... M. So
the element (12) assumes a form (11) and is contained in the image of M® ¢ X»n
by ¢. This proves that ¢ is an isomorphism.

In case # <0 we consider {aH, ..., omH} (m= —n-1) in place of
(s0H, . . .) and obtain similarly an isomorphism ¢: M® ¢X, < (N® Xa)°.

Before proceeding further, we observe that in deriving (11) from (9), to
define ¢, we need not assume that s, s, ... in (9) are the specific (2 + 1)-
tuples in (8). Thus we consider (9) to be an arbitrary expression of a given
element of M® zX», in which s, s/, . . . are allowed to be any (n+1)-tuples of
right cosets of H in G, and show that the element (11) is determined uniquely

) We shall soon observe that the element (9) is independent of the choice of s, s,
Indeed it is determined by the element (9) itsell, irrespective of its special form.
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by the given element (9) itself, independent of its particular form (9). Indeed,
since any other similar expression for the same element (9) is devived from
(9) by addition of differences like #®as—o#®gsos \up to trivial rules like
cancelling equal terms with opposite signatures), we have only to prove the
equalitypr'gdl(p(xu)®ps=mr'§dmpl(,;lgu)®p,gs, where K=goHoy '+ + = NpnHpy'
(s=(owH, ..., 0nH)), Ki=0Hs", t=x(K), r1=x(K). But this is certainly
the case since r, =k(0Ks™") =or(K)s™', as was observed before, and p,s runs
over a representative system of right cosets modulo K, in G, when p, runs over
a such of right cosets modulo K;=¢Ks™'. A similar remark holds also in case
n < 0.

Now we consider the diagram

M@GXTI —_—> (N@ZXn)G Q:I-IOIIIG! (.Y_.n_l, N)
(13) 2| £
MRsXni —> (N®zXn-1)GzHomg(X_,,, N)

where the horizontal arrows are the isomorphisms ¢ defined above.
We contend that the diagram is commutative. First consider the case n=1,

and consider an element #®¢s of MR@e¢X (s=(aH, ..., onH)). We have
H(uQ®es) = Z&( - Di”@a(dof{, ceey 0i-tH, 0iH, ..., o HYEM®Qe¢Xn-1.
By our above remark about ¢, we have

¢((u®qs)) = E( -1 S okin)Ro0(aH, ..., 0i-yH, 0is1H, ..., onH)

pr.mod K;

where Ki=K(ao, - - -, 0i=1, Git1, .« « 5 0n) =00 Hot "N . . . Naiey Hoy2i N oiv1 Hothy
N- - NonHon' and ki =k(K;). This element ¢(3(#®4s)) of (N® 2 Xn-1)¢ is
associated by », (7), with the element of Homg (X_», N) mapping (. H, . .
thH) e X-n=Hom; (Xn-y, Z) to

LI

n .
(14‘) 20( - 1), Z 6(1,[1,...,1“11),(;)00}] ..... poi-1H, paiylH,...,pa7,Ii)p(Kiu) S N
i=

pr.mod K;
(Kronecker ¢'s). On the other hand, we have

C(u®es) = 2 plkn)@0(ooH, i H, ..., onH),

pr.omod X

which corresponds by v to the element of Homg (X-»-1, N) mapping {w H, 71 H,
) TnH> € X-n-1 = Hom;, (Xn Z) to 2 5(—.0n,.‘.,1,,n,,(poon,,,,,pann)p(lcu) € N.

p r.mod K
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Its image by the coboundary operation § isthe element of Homg (X-», V) which
maps {r1H, . .., tnH} & X-p=Hom; (Xn-1, Z) to

n .
(15) E E( "1)‘ E 3(1;1! ,,,,, T«[H,dH,tiﬂh',...,’th),(paDH,...,panH)p('fu) EN,

pr.modK i=0 or.mod H

since o{r1H, ..., tnH} = g’( -1 Y {uH, ..., wH oH, tinH, ..., taH}.

pr.mod H
In the summation >} for fixed p, 7 in (15) the only effective term is the one

or.mod H

with ¢H = po; H, and (15) may be rewritten as

n .
(16) E 2( - 1)15(“;1,...,1,,11), (pOoH,y ...y po‘z‘_IH,pdi-HH,...,po"H)p(’Cu)v

promodK ¢=0

Now, for each 7 we have K; D K and

olku) = kin
Ki3pr.mod K

by (2). Thus (14) is in fact equal to (16) whence to (15), which shows that
the diagram (13) is commutative.

Next consider the case # < 0. Set m= —n=1. With s={aH, ..., onH)}
we have

m

(u®es)=2(-D'u®s X I(an, eo., 0l 6H, g H, ..., omH},

=0 6 r.mod k

m

sﬂ(a(u®as))=§(—1)‘ P > olkow)

or.mod H pr.modKg

QoiaH, ..., 0;H 6H i1 H, ..., omH)

where ko =aHs 'NarHoi' N+« NomHoy' and ks =£(K,). Thus ¢(0(#®gs))
is associated, by », with the element of Homg (X, N) mapping (voH, w1 H, . . .,
TmH) to

(17) 2‘;‘) ( - 1 )i 2 2 6(:011 ..... TmH), (pOyH, ..., poH pojaaH,..., pOmH) 0('50 u) S N

or.mod H pr.mod Ko

In the summation >, for fixed 7, ¢ in (17) the only effective terms are the

pr.mod Ko

ones with poH =r; H. Hence (17) may be rewritten as

m

(18) Zo("'l)i 2 2 a(tuH,...,ri_IH,erH ..... 1,,.H),(polﬂ,...,p'r,,,ﬂ)ﬁ(lcou)

or.mod H t;Ho~13pr.mod Kg

m
=> O(toHy e Sim Hy RiiHy e, TdD), (poiH s pop i) O K ).
=0 pr.mod Ko

On the other hand, we have, with K=o, Ho;7' N - - * N\ o Ho}l,
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(u@as)= > pkw)QplaH, ..., omH)
pr.mod X
and this corresponds by v to the element of Homg (Xin-y, N) mapping (71 H,
.« TmH) to

2 6("1” ----- TmH), (pO1H, -~.P°rnﬂ)p('cu) € N.
pr.mod K

Hence 0(»(¢(#®¢s))) is the element of Home (Xm, N) mapping (roH, 71 H,

P TmH) to
(19) 2( - 1)1 2 6(1,!],...;1;_13,1;“1!, < TmH), (posH, ..., pcmtl)p(’fu)-
=0 pr.mod X
But, since xu= >  plk.n), for each g, the right-hand side of (18) coincides

K33p r.mod K¢

with (19). This proves the commutativity of (13) for » <0.

We finally consider the case n=0. For s= (s H) we have

Hues) =u@qglaH)) = ZG@G“EN’H{GO\?H} = u®a“.2°dE(GH}
= 2 0_1u®G(H}’

or.mod H

e((u®es)) = >, S plketu)Qo{H)

or.mod H pr.mod H
with £ =#x(H). Hence »r¢(d3(uRes)) is the element of Homge (Xs, N) which
maps (H) e X, onto

(20) = N {eHYH)p(ko™'u) = D) ko a.

or.modH pr.mod H or.mod H
On the other hand, we have
P(uRes) =P(uRalonH)) =¢(0i ' u@e(H)) = EMHp(xaE‘u)pr(H),
p r.m

and »¢(u® ¢s) is the element of Home(X-1, N) mapping {rH}< X-: onto
Ed {tH}(pH)p(kos'ut) t(kos'u). Hence 0v¢(u® gs) is the element of

p r.mo

Home (Xo, V) mapping (H) onto

(21) SV tlkestw).
Tr.mod H

Here, since & = Zo‘,dK pko With xo = £(K), Ko being the intersection of all conju-

H=3p m 0
gates of H in G, the sum (21) is equal to Z}dxamuo" '%, and this is in turn equal
6r.mod Ky
to Z‘,d 0 kou= X, oxu, as ko is a G-homomorphism. Similarly the right-
or.mod Ko 6 r.mod Ky

hand side of (20) is equal to > S okopon' = D) ko= 2, okot.

or.mod H H=p mod K, 6 mod Ky ¢ mod K
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Thus (20) and (21) are equal and this proves the commutativity of (13) for
n=0.

The isomorphism of ¢ and the commutativity of (3) shows that the com-
plexes > M Q¢ Xn, > Homg(X_,-1, N) with differentiations 9, § are isomorphic,

as was asserted.

Remark. If H is (not only of finite index in G but) of finite order and if
H™K, M)=HK, M) =0 for every subgroup X of H which is an intersection
of conjugates of H in K, then the condition (A) (or equivalently (A')) is satis-
fied with N =M. For, we have then in particular H (K, M) = H"(K,, M) =0,
which implies that the G-endomorphism x, of M defined by xoz =p§opu induces
an isomorphism of My, onto M™, and furthermore «(K) defined by (1) with
our ko, just defined, induces an isomorphism of My onto MY, because of
H™(K, M)=HK, M) =0, for each K.

The application alluded to in the foot-note 1) will be under this stronger

assumption.
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