
13
Interacting reggeons

13.1 Constructing effective field theory of
interacting reggeons

Now we are in the position to address an important question, namely:
what can be said about the vertex functions N for other, more compli-
cated, processes.

13.1.1 Stuffing up the vertex: R → RR transition

Let us draw a more complicated diagram for
N . Again, I will carry out the factorization
and obtain the same structure expressing N
as the energy integral (12.14) of some new
amplitude (which now has a three-particle
threshold in s1), etc.

Continuing the process I will face the following problem. As the diagram
becomes more complicated, it may start to decrease slower and slower with
the growth of energy. For a concrete diagram, N is a number. Summing up
a set of diagrams may rend, however, a diverging answer for N (if faraway
multi-particle thresholds happen to dominate the internal integrals in A1).
Stuffing the particles into N , we effectively increase s1 and may arrive,
e.g. at the graph shown in Fig. 13.1(a). This one has all the reasons to
contradict my initial expectation that it was profitable to ascribe a finite
energy 〈s1〉 to the particle–reggeon scattering blocks, and the bulk of the
total energy – to the parallel reggeons, sI ∼ sII ∼ s.

This observation exposes another flaw in our logic. In the previous
lecture we have analysed a branch cut singularity in the angular momen-
tum plane due to two reggeons. But who ever told us that the blocks
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13.1 Constructing effective field theory of interacting reggeons 335

(a)

1

2

f 2( j ) =

(b)

Fig. 13.1 (a) A ladder in the two-particle–two-reggeon vertex block; (b) partial
wave for the two-reggeon branching.

in Fig. 13.1(b) did not contain singularities themselves? In particular, if

contains, e.g. a pole in the total angular momentum j (as

the ladder in Fig. 13.1(a) suggests), the asymptotics of N(s1) would be
bad, and the integral (12.14) would diverge. Therefore, it was a mistake
to suppose that the reggeon production amplitude was a smooth function
in the j-plane.

Let us write, once again, the integral for the vertex function N :

N =
∫ ∞

s0

ds1

2π
A1(s1, q

2; . . .) . (13.1a)

Does this not look familiar?
Recall, how in Lecture 7 we have related the t-channel partial wave to

the imaginary part of the amplitude, cf. (7.27),

fj(t) ∼
∫

Qj(z)A1(z, t) dz �
∫ ∞

s0

ds
A1(s, t)
sj+1

. (13.1b)

Comparing the two expressions (13.1) we conclude that, if the wavy lines
in Fig. 13.1(b) were ordinary particles rather then reggeons, N would be
just the value of the partial wave fj for the 2→2 scattering amplitude
at j = −1. Thus, our N is the analogue of the partial wave f−1 for a
two particles → two reggeons transition. In this language, the problem
of convergence reduces to the question where the singularities in j are:
if they all lie on the left of j = −1 then N is finite; if the rightmost
singularity is above −1 then N = ∞. So, the divergence of the vertex N
is connected to the structure of angular-momentum singularities of the
reggeon production amplitude.
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336 Interacting reggeons

13.1.2 Reggeon field theory: construction logic

So, what is the basic idea? We have found the branchings, and realized
that all of them are relevant for the asymptotic behaviour. To construct
an effective field theory describing high-energy scattering phenomena, I
have to have, I would say, an initial (bare) reggeon, reggeon emission
amplitudes, amplitudes of inter-reggeon interactions, etc.

. . .

Dealing with a field theory we assume that once we plug in bare quantities
(propagators, vertices), the true scattering amplitudes can be calculated,
taking into account all renormalization corrections, repetitions, etc. From
the point of view of dispersion relations, all the branchings are important.
Obviously, if such a situation persists at the level of ‘true’ (renormalized)
objects and interactions, we would have failed the task. In practice, we
would rather have an answer that is self-consistent within a scheme that
contains but a small number of bare (unknown) quantities.

Let us divide the diagrams into two classes.

(1) Diagrams with only a few lines, in configurations with not too large
relative momenta and virtualities (so that the s1 integral converges),
yielding finite functions N . These we will call ‘bare reggeon ver-
tices’, and will treat them as such.

(2) Diagrams with large pair energies s1 �μ2. As to these diagrams,
we will assume that they can be expressed, in turn, in terms of
reggeons, since s1 is large and the amplitude is in the asymptotic
regime.

By so doing we make the second class of diagrams, again, subject to
calculation. This fits well the idea of constructing a self-consistent field
theory. There is, of course, a problem: how to actually separate diagrams
into the two classes (when few becomes a good few?).

In the diagrammatic language, the main hypothesis can be formulated
as follows. I suppose that after I reformulate the theory in terms of exact
(renormalized) reggeons, the diagrams will naturally fall into two classes.
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(a) (b) 

A1 A1 

s1 λs1 

Fig. 13.2 Dividing vertex diagrams into two classes: (a) a clear-cut case; (b)
setting an arbitrary separation parameter s1 = λ.

The ideal case is when the two energy regions separate naturally as in
Fig. 13.2(a). But even if the discontinuity A1 does not have a prominent
structure as shown in Fig. 13.2(b), we can introduce an arbitrary finite
cut-off λ to formally divide the two regions.

We hope that in the high energy region, s1 � λ = O(1), the picture will
get simpler in the asymptotics, and we will be able to construct a self-
consistent calculation scheme. At the same time, we will treat particle–
reggeon and reggeon–reggeon interaction blocks at low energies, s1 <∼ λ,
as input (bare) vertices. The introduction of bare vertices is a way to
separate the finite energy domain about which nothing definite can be
said from first principles.

Now that we have virtually ‘calculated’ all the diagrams of the first class
(s1 ≤ λ, s2 ≤ λ, sinternal ∼ s → ∞), we can make an important statement:
N 
= 0.

Since my ‘calculation’ is valid only for s1 ≤ λ anyway, I can deform the
contour around the right cut in spite of the divergence of the integral,
and define a ‘bare’ vertex

Nbare ≡
∫ λ

4μ2

ds1

π
A1(s1). (13.2)

About the integrand we can say that A1 > 0, at least in a certain region:
for (near to) forward scattering it is given by a sum of positive contribu-
tions

ImA = A1 = =
∑
n

an an∗ > 0,

+ . ..= + +

(13.3)
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338 Interacting reggeons

This allows us to state that the particle–reggeon scattering does exist:
Nbare 
= 0.

At this point you may wonder: how did we manage to get N =0 for
the AFS amplitude? The total contribution of each multi-particle state is
positive since the same (full) amplitude stands there on the left and on
the right from the discontinuity in (13.3). To observe the AFS cancella-
tion, we have picked specific pieces from the multi-particle cuts through
(corrections to) the reggeon vertex, which cuts are not positively definite:

2Re=A1
AFS + + . . . (13.4)

The series of selected terms cancelled, upon integration over s1, the posi-
tive contribution a1a

∗
1 of the one-particle state. Such a selection procedure

eliminates not only the pole but some other positive terms on the r.h.s.
of the unitarity relation (13.3) as well. For example,

. . .=A1
(2) +

which diagram, being planar, has no third spectral function either. At the
same time, the diagrams with ρsu 
= 0 do survive and contribute to N . For
them an artificial procedure of extracting negative pieces from the farther
terms of the unitarity relation makes no sense: the series of potentially
compensating contributions diverges.

13.2 Feynman diagrams for reggeon branchings

Now we have to examine different diagrams and learn to calculate them.
How can one describe the contribution of branchings in a transparent

way? We start from a two-reggeon branching,

F2(s, q2) =

k2

k1− k

f
∼
f

k2+ k
p2

p1
k1

.

At high energies this diagram can be expressed in terms of the asymptotics
of the blocks f and f̃ . For one of the blocks, introducing the complex
angular momentum variable �1 and the reggeon Green function G�1 , we
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13.2 Feynman diagrams for reggeon branchings 339

can write

f = g(k1, k)g(k2, k) · (−1)
∫

d�1
2πi

ξ�1[2k1k2]�1G�1(k)︸ ︷︷ ︸
block

.

If G has a simple pole, G = 1/(�1 − α(k2)), the integration can be carried
out producing (2k1k2)αξα. Similarly, for the second block we have

f̃ = −g(p1 − k1, q − k)g(p2 − k2, q − k)

×
∫

d�2
2πi

ξ�2 [2(p1 − k1)(p2 − k2)]�2G�2(q − k).

Taking into account that

α1 ∼ 1, β1 ∼ s−1; α2 ∼ s−1, β2 ∼ 1;

αk ∼ βk ∼ s−1, k2 � −k2
⊥,

2k1k2 = α1β2s, 2(p1 − k1)(p2 − k2) = (1 − α1)(1 − β2)s,

everything becomes factorized, and we obtain

F2(s, q2) =
1
2!
iπ

2

∫
d�1
2πi

∫
d�2
2πi

∫
d2k

(2π)2
ξ�1G�1(k)ξ�2G�2(q − k)

·N�1�2(k,q)N∗
�1�2(k,q) s�1+�2−1, (13.5)

where

N�1�2 =
1√
2

∫
d4k1

(2π)4i

∫
sdβk
2πi

g(k1, k)g(p1−k1, q−k)α�1
1 (1 − α1)�2

( ) ( ) ( ) ( )
.

We have discussed that this expression is analogous to a Feynman dia-
gram for particles with spins; α�1

1 (1 − α1)�2 are ‘cosines of angles’. Since
α1 changes in the interval 0 < α1 < 1 (cf. calculation of the box diagram
in Section 9.2.3 of Lecture 9), this factor does not pose any problem.

13.2.1 Two-reggeon branching as a Feynman integral

How to find the t-channel partial wave corresponding to the amplitude
(13.5)? This is done using the ‘relativistic projection’ (7.19):

f
(2)
j (q2) =

2
π

∫ ∞

s0

ds

sj+1
ImF2(s, q2); (13.6a)

F2(s, q2) = − 1
4i

∫
dj ξjs

jf
(2)
j (q2). (13.6b)
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340 Interacting reggeons

The integral is very simple:

fj(q2) =
1
2!

∫
d2k

(2π)2

∫
d�1d�2
(2πi)2

γ�1�2N
2
�1�2G�1(k)G�2(q − k)

s�1+�2−j−1
0

j + 1 − �1 − �2
.

Here γ�1�2 ≡ Im(iξ�1ξ�2).
One may always choose units such that s0 = 1. More importantly, I will

always be interested in the region j close to the singularity so that j +
1 − �1 − �2 ≈ 0 and the factor s�1+�2−j−1

0 can be dropped, independently
of the value of s0.

The expression we have obtained reminds us very much of the old per-
turbation theory. Indeed, we took two ‘particles’ with propagators

a 

b 

α1(k) α2(q−k)

G�1 =
1

�1 − α1
, G�2 =

1
�2 − α2

,

and derived

fj(q2) =
1
2!

∫
d2k

(2π)2
γα1α2N

2
α1α2

j + 1 − α1 − α2
. (13.7)

This is a typical expression for the second-order
correction to the a → b transition amplitude in
non-relativistic perturbation theory,

δfa→b(E) =
∑
n

VanVnb

En − E
. (13.8)

We get a direct correspondence if we treat

α1(k) − 1 ≡ ε1, α2(q − k) − 1 ≡ ε2

as energies of the two particles, En = ε1 + ε2, and j − 1 ≡ ω as the total
energy (E):

E − En ≡ ω − (ε1 + ε2) = (j − 1)−(α1 − 1)−(α2 − 1) = j + 1 − α1 − α2.

The two-dimensional momentum k in (13.7) plays the rôle of the index n
of the intermediate state in (13.8).

This result can be rewritten using Feynman’s techniques (covariant
perturbation theory). To this end we return to the original representation
containing integration over �1 and �2. The contours in �i run parallel to
the imaginary axis, on the right of the singularities of the Green functions
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G�i . Consider, e.g., the �2-plane:

j + 1−   1

2 

G(  2) 

For the energy integral in (13.6a) to converge, j has to be sufficiently
large: j + 1 − �1 − �2 > 0. Then, in the �2-plane the contour lies on the
left of the pole: �2 < �pole

2 = j + 1 − �1. Therefore we may evaluate the
integral by closing the contour on the right half-plane, around the pole.
Introducing ω1 = �1 − 1 and ω2 = �2 − 1 as new variables, G�i → Gωi

, the
relation j + 1 − �1 − �2 = 0 translates into ω2 = ω − ω1 and we have

fω(q2) =
1
2!

∫
d2k

(2π)2

∫
dω1

2πi
γω1ω2N

2
ω1ω2

Gω1(k)Gω−ω1(q − k). (13.9a)

This expression can be cast in a more symmetric form by introducing two
sets of integrations,

fω(q2) =
1
2!

∫
dω1 d

2k1

(2π)3i

∫
dω2 d

2k2

(2π)3i
γω1ω2N

2
ω1ω2

Gω1(k1)Gω2(k2)

· (2πi) δ(ω − ω1 − ω2) · (2π)2δ(q − k1 − k2).

(13.9b)

ω, q

G (ω − ω1,q−k1)G(ω1, k1)

This is a Feynman diagram in the
exact sense of the word; a ‘par-
ticle’ with ‘energy–momentum’
(ω1,k1) is described by the prop-
agator G(ω1,k1). The only unfa-

miliar feature is the form of the integration in ‘energy’ ω: we have now the
integral running along the imaginary axis instead of the usual Feynman
integration contour,

This does not make much of a difference, it is just more convenient. It is
important that the singularities of the propagator G(ω,k) lie on the one
side of the contour, i.e. our ‘particles’ are non-relativistic.
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342 Interacting reggeons

Recall the reggeon signature factor (8.8c),

ξ� = −e−iπ� ± 1
sinπ�

,

which can be represented as

ξ� = −ζ�
−1 · exp

{
−i

π

2

(
� +

1 − P�

2

)}
, ζ� =

{
sin π�

2 , P� = +1,
cos π�

2 , P� = −1,

where P� = ±1 corresponds to positive (negative) signature. The factors
ζ� may be included into reggeon propagators, G�; this way we would have
poles in � both for reggeons and particles: � = 2n for positive, and � =
2n + 1 for negative signature trajectories.

Let us look at the numerator of the γ factor in (13.9),

Im
(
iξ1ξ2

)
∝ Re exp

{
−i

π

2
(
�1 + �2 + 1

2(1 − P1) + 1
2(1 − P2)

)}
,

giving

γ�1�2 = ζ−1
�1

ζ−1
�2

cos
π

2
(
j + 1 + 1

2(1 − P1) + 1
2(1 − P2)

)
, (13.10)

where we have taken into account that j + 1 = �1 + �2. The cos factor can
either be absorbed into vertices,

√
cos · √cos, or ascribed to the interme-

diate state of the two reggeons.
The signature of the reggeon branching is given by the product of signa-

tures of participating reggeons, P (2) = P1P2. Indeed, the factor s�1+�2−1 in
the expression (13.5) contains two reggeon amplitudes, ξ�s�, each of which
transforms under the s → −s reflection according to its proper signature,
while s−1 originates from the phase space volume and is in fact |s|−1.

13.2.2 Multi-reggeon exchange: conservation of signature

Let us take into account more complicated processes. We have considered
a diagram with two blocks with Regge pole asymptotics, and arrived at the
two-reggeon branching contribution. What if the asymptotic behaviour of
the block amplitude itself corresponds to the branching rather than to
the pole?

Let us insert f (2) that we have just calculated in one of the blocks,

=f .(2) f pole
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The vertex will now contain N · g instead of g1 · g2. However, since every-

thing remains factorized in the integrand, denoting as N�1�2�3 ,

for the amplitude we obtain

F3(s, q2) =
i2

3!

∫
d2k′d2k
(2π)4

∫
d�1 d�2 d�3

(2πi)3
ξ�1ξ�2ξ�3

·G�1G�2G�3s
�1+�2+�3−2(N�1�2�3)

2. (13.11)

Here 3! accounts for different equivalent insertions, and s−2 originates
from the phase space volume.

It is clear now how to repeat the procedure an arbitrary number of
times. For the n-reggeon branching we have

Fn(s, q2) =
π

2
(−1)nin−1

n!

∫ n−1∏
1

d2ki
(2π)2

n∏
1

d�1
2πi

ξ�iG�i · s
∑

i �i−n+1N2
�1...�n .

(13.12)
Let us look into the origin of the phase in (13.12).

In the case of two reggeons we had iξ1ξ2; a three-reggeon amplitude
contains the factor i2ξ1ξ2ξ3. Each additional transverse momentum inte-
gration brings in a factor i:

d4ki
(2π)4i

=
i

2 |s| ·
dαis

2πi
dβis

2πi
d2k

(2π)2
,

since integrals over αi and βi, as we have learned before, reduce to in-
tegrations of discontinuities of reggeon creation amplitudes and produce
real-valued vertex functions. Evaluating the corresponding partial wave
using (13.6a) and introducing an integral over kn in order to symmetrize
the expression, we get

f
(n)
j (q2) =

1
n!

∫ n∏
i=1

d2kid�i
(2π)3i

G�i(ki) · (2π)2δ
(∑

ki − q
)

· Im
(
in−1ξ�1 . . . ξ�n

) N2

j + n− 1 − ∑
�i

. (13.13)

Finally, we may introduce ωi and one more integration,

f
(n)
j (q2) =

1
n!

∫ n∏
i=1

d2ki dωi

(2π)3i
· (2π)3 iδ

(
ω −

∑
ωi

)
δ
(∑

ki − q
)

· γω1...ωn
·N2

ω1...ωn

n∏
i=1

Gωi
(ki), (13.14)
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to obtain, again, a standard expression for the Feynman diagram. The
only difference is in the signature factor γ:

γ ≡ Im
[
(−1)nin−1 e−

iπ

2 (∑ �i+
∑

i

1−Pi
2 )

]
·

n∏
i=1

ζ−1
�i

. (13.15)

Recalling that we have taken the residue j + n− 1 − ∑
i �i = 0, for (13.15)

it is straightforward to derive

γ = (−1)n−1 sin
π

2

[
j +

n∑
i=1

1 − Pi

2

]
·

n∏
i=1

ζ−1
i . (13.16)

What is the meaning of this factor? Depending on the sign of the prod-
uct P (n) =

∏n
i=1 Pi, the amplitude is proportional to sin π

2 j (P (n) = +1)
or cos π

2 j (P (n) = −1). This is the manifestation of the conservation of
signature: the symmetry of the n-reggeon amplitude is determined by the
‘product’ of symmetries of all the poles.

Because of this factor, the contribution of the n-reggeon branching van-
ishes in the points of its proper signature, γ+ ∝ sin π

2 j = 0 for j = 2k, and
γ− ∝ cos π

2 j = 0 for j = 2k + 1.
The signature of a branching of n+ pos-

itive and n− negative signature reggeons
is

P (n) ≡ P (n++n−) = (−1)n− .
n+ n−

∝ (−1)n−1n

Let us examine the most important case
when all the poles are pomerons P. Then,
as we know, jn(t) = nα(t/n2) − n + 1. At
small t-values the branching jn(t) � 1 +
(α′t/n) is positioned near 1, as well as all
the poles �i, and (13.16) gives

γ�1...�n ≡ γnP � (−1)n−1. (13.17)

In another interesting case when we have n pomerons and one non-
vacuum pole with some trajectory β(t),

jn+1(t) � β(0) +
α′

α′ + nβ′ t � β(0),

the branching signature factor reads

γnP+β = (−1)nζ−1
β(0) sin

π

2

[
β(0) +

1 − Pβ

2

]
= (−1)nPβ. (13.18)
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13.3 Enhanced branchings 345

Thus, in both cases when all (or all but one) poles are P, adding one
pomeron changes the sign of the partial wave amplitude of the branching.

We conclude that the contributions of the (simplest) branchings are
very similar to Feynman diagrams, except for the alternating signs. In
terms of the field theory, the fact that contributions to the unitarity con-
dition have alternating signs means that the Hamiltonian corresponding
to our theory is anti-Hermitian.

Where does this oscillation come from? Recall that the characteristic
feature of the vacuum pole was that the corresponding scattering ampli-
tude A was purely imaginary at small t values, A ∝ i. When we iterate n
vacuum amplitudes, n− 1 loops each produce
the factor i,

F (n) ∼ And
4k1 . . . d

4kn−1

[(2π)4i]n−1
∼ An

(
i

i2

)n−1

(i2 in the denominator participates in forming
the real multi-reggeon production vertices, as
we have just discussed), and we get

F (n) ∼ (iA)n−1A ∼ (−1)n−1A.

What if I considered a photon?

APP = −i Aγγ = i

Both processes are diffraction scatterings, but in the case of the photon
the basic amplitude is real. Thus the alternating sign takes its origin from
the complexity of the vacuum pole amplitude.

As we have discussed in the previous lecture, from the s-channel point
of view the opposite sign of the two-pomeron branching is nothing but
the screening phenomenon.

13.3 Enhanced branchings

Till now we supposed that the reggeon creation vertices N contained no
singularities in � and treated them as constants. What we have obtained
this way is known as ‘non-enhanced’ reggeon branchings.
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Now it is time to move further and try to
combine poles with branch cut singularities.

For example, what will be the contribution
to the asymptotics of a diagram like this one?
This is an example of the so-called enhanced
branchings.

To learn how to deal with enhanced branchings, it is sufficient to con-
sider a general graph (13.19), without specifying the details of the blocks:

F (q2, s) =

p1

k

p2

s2

s1

(13.19)

For the time being we assume the simplest case, with two particles in
the intermediate t-channel state; more complicated configurations will be
considered later.

F =
∫

d2k⊥ dα dβ s

2(2π)4i
f(p1, q, k)

1
m2 − αβs + k2

⊥ − iε

1
m2 − (α− αq)(β − βq)s + (k − q)2⊥ − iε

f ′(p2, q, k). (13.20)

The key question is, which invariant energies s1 and s2 are relevant? If one
of them is small, we arrive at the situation we have already considered.
So, we will suppose that both energies are in the asymptotic regime,
s1, s2 � μ2.

13.3.1 Renormalization of the Regge pole

First, we write for the blocks f and f ′ in (13.20) just the pole expressions:

f = g(q, p1)
∫

d�1
2πi

ξ�1G�1(q)(2p1k)�1g(q, k) = . (13.21)

https://doi.org/10.1017/9781009290227.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.014


13.3 Enhanced branchings 347

This leads to the picture of two reggeons connected by a particle loop,

k

(β < 0)
α 

(β > 0)

Let us investigate the singularities in α. The poles are

α1 =
m2

⊥ − iε

βs
, α2 =

m
′2
⊥ − iε

(β − βq)s
+ αq .

The cuts in α come from the lower block amplitude f ′(s2):

s1 = (p1 − k)2 = (1 − α)(γ − β)s− k2
⊥ � −βs ,

s2 = (p2 + k)2 = (γ + α)(1 + β)s− k2
⊥ � αs .

Depending on the sign of β, I close the contour around the left (β > 0) or
the right (β < 0) cut. As always, to determine the asymptotics, we have
to consider the s- and u-cuts independently (see Lecture 11):

F (q2, s) =
∫
β<0

dβs dα d2k
2(2π)3π

f(p1, q, k)
( )( )

Ims f
′(p2, q, k) +

∫
β>0

Imu f
′(p2, q, k).

(13.22)
Consider the first integral. It includes

ξ�1(−βs)�1(αs)�2 ;

the second signature factor, ξ�2 , is absent since we took the s-channel
imaginary part of the lower amplitude. Everywhere in the propagators
enters αβs = O(1), thus it is reasonable to introduce x = −αβs as an
integration variable, instead of β:

F (q2, s) = g(q, p1)g(q, p2)
∫

d�1
2πi

ξ�1G�1(q)
∫

d�2
2πi

G�2(q)

·
∫

d2k dx

(2π)4
g(q, k)g(q, k)

( ) ( )

∫
dα

α

(x

α

)�1
(αs)�2 . (13.23)

Since the propagators depend only on x, the integral in α can be easily
taken: ∫

dα

α
α�2−�1 ,

1
s
< α < 1.

The result depends on the magnitude of the difference �2 − �1.

https://doi.org/10.1017/9781009290227.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.014


348 Interacting reggeons

If the angular momenta are significantly different, for example, �2 > �1,
then the lower amplitude grows with energy faster than the upper one.
In this situation we have

α ∼ 1 ; (αs)�2 is large, while (βs)�1 ∼
( x

αs
s
)�1

∼ 1 is small,

so that the whole energy turns out to be assigned to the lower block,
s ∼ s2 � s1. In the opposite case, �2 < �1, a large energy will be assigned
to the upper block, while the lower one will contain only a few particle
interactions, away from the asymptotic regime.

An interesting case is �2 ≈ �1. This gives a possibility to get an enhanced
contribution by playing on the redistribution of energy between the two
blocks: ∫ 1

1/s

dα

α
=

1
�2 − �1

(1 − s(�1−�2)) ∼ ln s. (13.24)

This is just the phenomenon which prompted me to carry out the calcu-
lation. According to (13.24), the singularity in j of our simplest enhanced
diagram is not identical to that of the initial reggeon amplitude. Let us
rewrite the expression so that this can be clearly seen:

F (q2, s) = g2

∫
d�1
2πi

ξ�1G�1(q)
∫

d�2
2πi

r�1�2G�2(q)
s�1 − s�2

�1 − �2
. (13.25a)

Here

r�1�2 = 2
∫

d2k dx

(2π)4
g2(q, k)
( ) ( )

x�1 . (13.25b)

The partial wave is given by the integral

fj(q2) = g2

∫
d�1
2πi

G�1(q)
∫

d�2
2πi

G�2(q) r�1�2

∫ ∞

s0

ds

sj+1

s�1 − s�2

�1 − �2
. (13.26)

Let us calculate it at �1 ≈ �2:∫ ∞

s0

ds =
1

�1 − �2

[
sj−�1
0

j − �1
− sj−�2

0

j − �2

]
� 1

(j − �1)(j − �2)
.

Finally, closing the �-contours around the poles, we obtain

fj(q2) = g(q2)Gj(q) rjjGj(q) g(q2). (13.27)

Depending on the signatures of the two reggeons, the second term of
(13.22) due to the u-channel cut either cancels the s-channel contribution
(opposite signatures, P1 =−P2) or doubles it (P1 =P2; the corresponding
factor 2 is already included in the formula (13.25b) for r�1�2).
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The expression (13.27) is rather transparent from the point of view of
Feynman diagrams. The two reggeons belonging to the same scattering
amplitude, having the same quantum numbers and the same signature,
can transform one into another; they ‘mix’.

If we insert the calculated expression in the up-
per block of our general graph (13.19) and repeat
the analysis, we obtain a graph with two successive
reggeon–reggeon transitions.

If initially the reggeon Green function has the form

r 

r

G0 =
1

j − α0
,

then after taking into account all iterations of this sort we arrive at

G =
1

j − α0
+

r

(j − α0)2
+

r2

(j − α0)3
+ · · · =

1
j − α0 − r

.

The trajectory has changed.
By the way, this means that if the pole is a genuine one, there cannot

be such diagrams (r = 0). (This is just an aside.)

13.3.2 Basic reggeon interactions

What truly interests us is diagrams like

=

N

g

N
g

j

1 + 2 − 1

.

Using the results of our previous calculations, we obtain

fj(q) = g Gj(q)
∫

d�1 d
2k

(2π)3i
rj�1�2G�1(k)G�2(q − k)γ�1�2N�1�2(q, k), (13.28)

where �2 = j + 1 − �1. The new vertex rj�1�2 is analogous to r�1�2 , only
with the two-reggeon creation function N replacing one of the g(q, k)
factors in (13.25b).

https://doi.org/10.1017/9781009290227.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.014


350 Interacting reggeons

We come to the conclusion that one reggeon can
transform into two: there is a mixing. Such a tran-
sition can be important only when the upper and
the lower blocks have the same degree of the s be-
haviour, i.e. αpole ≈ αbranching. But as we already
know this is just the situation that we have, at small
t-values, for the vacuum pole P with αP(0) = 1.

Similarly, one arrives at more complicated diagrams. For example, taking
a three-reggeon branching for one of the blocks in (13.19), we will obtain
diagrams

, etc.

Thus, having started from a pole, we obtain all diagrams with different
groups of reggeons following one another in the t-channel. These diagrams
modify particle–reggeon vertex functions
and the reggeon propagator.

Will there be graphs of another sort,
which look like corrections to reggeon–
reggeon interaction vertices?

Should a reggeon diagram like this
one, (13.29), exist this would generate,

N 

N 

r 
r , (13.29)

r 
r 

r 

r 

g 

g

via (13.19), a whole new family of graphs
containing ‘reggeon corrections’ to r as well
as to other reggeon interaction vertices.

The reggeon graphs of the type of (13.29)
do appear from the analysis of the diagram
shown in the l.h.s. of (13.30). To show this is
a rather cumbersome task because of many
regions in the αi, βi variables in an ampli-
tude with five scattering blocks.

(13.30)
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The answer, however, turns out to be quite simple: just the sum of two
terms shown on the r.h.s. of (13.30). If the outer reggeons forming the
basic loop are different, these contributions are not identical, exactly as
it would have been the case in a non-relativistic quantum mechanical
problem.

Essentially, the answer reduces to a simple statement that using
reggeons we can draw all diagrams that can be imagined in a field theory.
There is one important additional rule: every reggeon vertex r has its own
signature factor γ, which is characterized by the set of reggeon complex
angular momenta �i in each intermediate state,

.

We have investigated only the structures of the diagrams. What are the
coefficients these diagrams should be added up with? Is there any corre-
spondence with a (non-relativistic) field theory? The answer is simple:
the coefficients should be such that the unitarity conditions are satisfied,
since the series of Feynman diagrams is a formal solution of the unitarity.

The asymptotic behaviour of the amplitudes at s → ∞ can be expressed
in terms of the asymptotics of the internal blocks. If we assume that the
basic scattering block is just a Regge pole, then, applying the diagram-
matical rules, everything can be constructed from this reggeon.

13.4 Feynman diagrams and reggeon unitarity conditions

In Lecture 11 we derived the reggeon unitarity condition in the t-channel,
at t > 0, which contained unknown reggeon creation amplitudes. Now we
know that the branchings can be obtained directly from the physical re-
gion of the s-channel (t < 0) where all the ingredients are well defined,
diagrammatically. It is the series of these diagrams that allows us to sim-
plify the unitarity conditions.

Recall the two-reggeon unitarity condition that we have written in the
t-channel,

δfj = −π

∫
dt1 dt2 τ(t, t1, t2)N+

j · δ(j + 1 − α1 − α2) ·N−
j , (13.31)

where τ is the two particle phase space volume, and N±
j = N±

j (t, t1, t2)
are the values of the full two-particle–two-reggeon transition amplitude
above and below the cut in j, cf. (11.37).
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We have calculated above a similar expression in terms of Feynman
diagrams, using the simplest explicit vertex functions N :

fj =

N

N

 = −
∫

d2k d�1
(2π)3i

G�1(k)Gj+1−�1(q − k)N N . (13.32)

Substituting G = 1/�− α,

fj = −
∫

d2k
(2π)2

NN

j + 1 − α1 − α2
.

The imaginary part of the partial wave,

δfj = −π

∫
d2k

(2π)2
Nδ(j + 1 − α1 − α2)N, (13.33)

has a structure resembling the t-channel unitarity condition. The only
difference is that now we have d2k instead of dt1 dt2 τ in (13.31).

So, is there a correspondence between the two formulae? Let us trade
the two-dimensional transverse momentum integration,

d2k = k dk dϕ = 1
2d(k

2) dϕ,

for the arguments of the reggeon Green functions,

−t1 = k2, −t2 = k′2 ≡ (q − k)2; (−t = q2)

k′2 = q2 + k2 − 2kq cosϕ , dk′2 = 2kq sinϕdϕ .

We obtain

sin2 ϕ = 1 −
(
k

′2 − q2 − k2

2kq

)2

, d2k =
dt1 dt2

2kq|sinϕ| =
dt1 dt2

2
√
−t · pc

,

where

pc = pc(t, t1, t2) =
[
t2 − 2t(t1 + t2) + (t1 − t2)2

4t

]1
2
.

The factor pc appearing in the denominator of (13.33) is nothing but
the relative momentum of the two reggeons in the centre-of-mass of the
t-channel. Curiously, the same factor pc is present in the unitarity condi-
tion (13.31) but in the numerator, τ ∝ pc.

The two expressions would match if we could extract 1/pc from the full
vertex N± by introducing N± = Ñ/pc(t, t1, t2), and claim that Ñ behaves
similarly to N from (13.33).
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Such an operation, however, looks intrinsically dangerous, since the
singularity we are studying emerges just near pc = 0.

Let us recall the origin of the two-reggeon creation amplitude N :

N

1

2

The production amplitude of usual particles with the orbital momentum
L behaves at small pc as N ∼ pLc . Our branch point corresponds to j =
σ1 + σ2 − 1. Comparing with

j = σ1 + σ2 + L , |j|max = σ1 + σ2 + L,

we observe that the two-reggeon singularity appears when the orbital mo-
mentum assumes the first unphysical value L = −1. Consequently, the
vertex N± is obliged to behave like 1/pc, and this is just what we need:
Ñ turns to a constant in the pc → 0 limit.

As for multi-reggeon diagrams, using in the partial wave (13.14) the
Regge-pole expression for G�i(ki) and evaluating the imaginary part gives

δf
(n)
j =

(−1)n−1π

n!

∫ n−1∏
i=1

d2ki

(2π)2
Nδ

(
j + n− 1 −

n∑
m=1

α(km)
)
N. (13.34)

This expression describes the simplest contribution to the multi-reggeon
unitarity condition, corresponding to N = const. To satisfy the genuine
unitarity condition (11.40) one has to draw and analyse the full set of
diagrams for the creation of n reggeons in a two-particle interaction, which
determines the exact vertex N±.
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