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Abstract

It is known that all locally flat projective planes in S4 have homeomorphic normal disk
bundles. In this paper we investigate the homeomorphisms of Q' (= boundary of the normal
disk bundle) onto itself. We show that a homeomorphism of Q' onto itself is determined, up to
isotopy, by the outerautomorphism of ir,(O') that it induces. Since Q* is an irreducible, not
sufficiently large 3-manifold with finite fundamental group this characterization is interesting in
its own right. The characterization of homeomorphisms is then used to study certain questions
about embeddings of the projective plane in S4. One result is that there are at most two distinct
projective planes in S" with a given complement.

If P and P' are smooth embeddings of the projective plane in S4 then the
normal bundle to P is equivalent to the normal bundle to P' (see Theorem I of
Massey (1974)). In fact, using smoothing theory, the above result can be
extended to the case where P and P' are PL locally flat embeddings.
Furthermore the normal disk bundle is constructed in Massey (1969) and in
Price and Roseman (1975). In the latter paper it is shown that the boundary of
this normal disk bundle, denoted Q3, is a compact 3-manifold whose
fundamental group is the quaternion group {a, b: a2 = b2 = (ab)2} and its
universal cover is S3. This 3-manifold, which we refer to as quaternion space,
arises in a number of problems in topology (see page 198 of Seifert and
Threlfall (1934) for an early reference). As mentioned above, it is the quotient
space of S3 modulo the action of the quaternion group on S3. The referee has
also pointed out that in Borel (1953), Q3 is identified as 0(3)/Q(3). Using this
fibration, as well as some related principal fibrations, Borel shows that S3 (the
symmetric group on 3 letters) acts on Q3. In Corollary 1 to Theorem 1 of this
paper we show that the group of isotopy classes of homeomorphisms of Q3

onto itself is, in fact, isomorphic to S3.
Having classified the homeomorphisms of Q3 onto itself, we show

(analogous to Gluck's results on embeddings of S2 in S4, see Gluck (1962))
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[2] Projective planes 113

that there exist at most two distinct embeddings of P2 in S" with a given
complement. We also point out that Q3 is irreducible, not sufficiently large
and has finite fundamental group. Hence the classification of homeomor-
phisms by their induced outerautomorphisms on TT,(Q3) (analogous to Wald-
hausen (1968)) is at least as interesting as the applications to embeddings of
projective planes in S4.

The notation used in the paper is quite standard. We write 3^(X) to
denote the group of orientation preserving homeomorphisms of X onto itself.
We write SVM(X) to denote the subgroup of homeomorphisms isotopic to the
identity. We write $(X) to denote the quotient group 3t(X)/Xld(X) of
isotopy classes of homeomorphisms of X onto itself. If G is a group, we write
Aut G to denote the automorphisms of G, Inaut G to denote the inner-
automorphisms of G and Outaut G to denote the quotient group
AutG/Inaut G of outerautomorphisms of G.

The normal disk bundle to a projective plane in S" is discussed in Price
and Roseman (1975) but we give a brief description of it here. Let K3 be the
solid Klein bottle

where B2 denotes the unit disk in Euclidean 2-space with Cartesian coordi-
nates. Let F: S' x B2^> X3 be defined by

— x ( x , y ) O S 0 S 7 T
77

F(0x(x,y))= \
0-

TT
x(-*,y)

Let M4 denote the mapping cylinder of F

(i.e., M 4 =(S 'xB 2 )x[0 , l ] U K3).
\ (8.(x.y),0)-F(«.(i.y)) /

Notice that M2 = (S1 x (0,0) x [0,1] U F(S* x (0,0)) is a Moebius band em-
bedded in M4. We complete the normal disk bundle by attaching D2 x B2 to
M4 by the map <f>: (dD2)x B2— S1 x B2 x {1}C M" given by 4>(a x (x, y)) =
a x pla(x, y) x {1} where pla is rotation of B2 by an angle of 2a radians (D2

denotes a 2-disk). Thus v = M4U*D2 x B2. Note that P2 = M2U*D2 x (0,0) is
a projective plane and p is clearly a disk bundle over P2. This is, in fact, the
normal disk bundle structure.
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The boundary of v is now easily described. Let K2 denote the boundary
of K' and let T2 denote the boundary of 5' x B2. Let M'CdM* denote the
submapping cylinder

(J K2

= T2x[0,1] (J K2.
F

Finally dv, which will usually be denoted, G>3 is just M3 U *D2 x (dB2). We
usually write "T3 for D2xdB2. Figure 1 gives a useful schematic diagram
of Q \

4>((dD2)x6)

K2 = dK'

T2= S ' x dB2

Figure 1

We will always mean the symbols K2, T2, M3 and T3 to denote the subsets of
Q3 described above. Also we will always use the symbols a and b to denote
the oriented meridian and longitude on K2 as shown in Figure 1 and the
symbols o and b to denote the oriented "meridian" and "longitude" on T2as
shown in Figure 1. Note that F takes a homeomorphically onto a and F takes
b by the 2 to 1 covering map onto b. We will use the points x0 and e0 as base
points for fundamental groups. Using Van Kampen's theorem one easily
computes n,(Q3,x0) to be the quaternion group (with eight elements) which
can be presented {a, b : a2 = b2 = (ab)2} (we will use a and b to represent
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elements of 77,(Q\jto) as well as the meridian and longitude of K2). The
following list of elements and some equivalent words of TTI(Q\ X0) is useful.

1 =a
i=bi=(ab)4 ft = aba = ab~'a~' = a 'b 'a

a = bab = ba'b'= bla 'b ft3 = ft1 = aba' = a~'ba

a
2= b2= (ab)2=(baf ab = (bay = b'a = ba '

a*= a' = bab~' = b'ab ba = (ab)' = a~lb = ab ' .

It is easy to list the automorphisms and inner automorphisms of TT,(O3, x0). To
get an automorphism, a, let a(a) be anything except 1 or b2. Then let a(b) be
anything except 1, b2, a(a) or a(a)~\ This yields the 24 automorphisms (see
page 74 of Passman (1968)). Conjugation by a or a ' fixes a and sends b to
ft'. Conjugation by ft or ft1 fixes ft and sends a to a"'. Conjugation by ab or
ba sends a to a"' and ft to ft"1. Conjugation by 1 or a2 fixes everything since 1
and a 2 = ft2 lie in the center.

Finally a couple of comments about the irreducibility of M3 and Q3 and
the non-sufficiently largeness of Q \ It is quite easy to construct the covering
space of O1 corresponding to the subgroup {I, a, a2, a3} of Trl(Q

i,x0) and
identify it as the lens space L(4,1). Hence the universal cover of Q3 is S3.
Hence Q"1 is irreducible (each 2-sphere bounds a 3-cell). Since
7T|(T3)—> 77|(Q3) is not the zero homomorphism it follows that T3 is not
contained in a 3-cell in Q3 hence M3 is also irreducible. The projective plane
is the only surface with a small enough fundamental group to embed
incompressibly in Q3 but its regular neighborhood would be a punctured
projective 3-space whose boundary 2-sphere does not bound a 3-cell. Hence
Q3 is not sufficiently large.

I. Homeomorphisms on Q3

In this section we construct several homeomorphisms of Q3. In the next
section we will show that these homeomorphisms generate all of the isotopy
classes of homeomorphisms of Q3. In classifying the isotopy classes we will
use the action of a homeomorphism on TTI(Q3, X0). Since homeomorphisms
need not fix x0, this action is well defined only if we ignore the in-
nerautomorphisnas of iri(Q3,x0). More explicitly, if h:Q3-*Q3 is a
homeomorphism, then h is isotopic to h, where h,(x0) = x0. Hence hx induces
an automorphism hlif of TT,(Q3, JC0). Let /i* denote the element of Outaut
TTI(Q3, x0) = Autn,(Q3, xo)/lnaut ir](Q

3,xn) that contains /i^.Then the as-
signment h^h* defines a homomorphism from ffl(Q3) to the out-
erautomorphisms of 7r,(O3, X0).
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The following two homeomorphisms correspond to nontrivial out-
erautomorphisms. Define gi:Q3—>-Q3 as follows. The image of K2 is
F~'(a) x [0, l]UFa together with an annulus, A, spanning T3 (see Figure 2).
The homeomorphism g, fixes a (pointwise) and takes b onto the oriented
curve /.

K
M

Figure 2

Note that in TTI(O3, X0), [/] = ba ' = ab. Hence the automorphism induced by
g, takes a to a and b to ab. So far we have described g, on K2. Clearly g,
extends to take M3 onto closure (Q3 - F'\A') x [0,1]UFA'). Since F'\A') x
[0,1]UFA' is a solid torus we need only check that the boundary of its
meridional disk, D, sits properly on (9(g,(M3)). By sliding 3D towards gi{K2)
in Figure 2 one easily checks that 3D ~ lala ' so that g! extends to take 7"3

onto F '(A')x [0,1]UFA'. One final observation about g,. Recall that
O3 = dv where v is the normal disk bundle of P2 in S4. In particular Q3 is a
circle bundle over P2. The fibers of this bundle are just the meridians of K2

and T2 and the longitudes of T3 (see Figure 1). It is easy to see that g, can be
constructed to take fibers onto fibers (i.e. g, is a bundle map) and hence g,
extends to a homeomorphism G,: v—•> v.

The next homeomorphism, g2, is described similarly. The image of K2 is
F~\b) x [0, 1]UF/J together with a Moebius band M' spanning T3 (see Figure
3). The homeomorphism g2 takes a torn and takes b to /.
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F\b)x[Q,l]Ub
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M'

T3

Figure 3

Note that the outerautomorphism induced by g2 takes a to ab and takes b to
a. The above homeomorphism on K2 extends to take M3 onto closure
(Q3 - F'{(M") x [0,1]UFM"). Since F'\M") x [0,1]UFM" is a solid torus, we
need only check that the boundary of its meridional disk, D, sits properly in
d(g2(M

3)). By sliding 3D towards g2(K2) in Figure 3 one easily checks that
3D = lmlm'x so that g2 extends to take T3onto F~\M")x [0,1]UFM". Since
kernel (7T,(Q3, x0)—>• rr^v, xa)) is {1, a, a2, a"1} and since g2*(a) = ab it follows
that g2 does not extend to v.

The next homeomorphism we need to construct is the most troublesome,
but the easiest to describe. This homeomorphism, g, takes K2 onto itself by
taking a to a' and b to b '. By Lemma 2.3 it extends to take M3 onto M3.
Furthermore this extension takes dD2 C <9M3 onto itself (orientation revers-
ing) so it extends to take T3 onto T3. The automorphism induced by g takes a
to a"1 and b to b~\ In particular the automorphism induced by g is precisely
conjugation by ab.

The above homeomorphisms are all orientation preserving homeomor-
phisms. For completeness we describe an orientation reversing homeomor-
phism, r. Let T : T2—> T2 be the nontrivial "covering translation" with
FT = F:T2^K2. Then r is defined on M3 by

Note r/K2= identity. Since r/T2 is just rotation half way around longitudi-
nally it is isotopic to the identity and hence extends to take T3 onto itself.
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Since r is the identity on K2 but, locally, switches points from one side of K2

to the other it is orientation reversing. As with g,, r is fiber preserving and
hence extends to R : v —» v.

II. Isotopy classes of homeomorphisms of O'

In this section we investigate the natural homomorphism of
/^id(O3) into Aut7r,(O3,x())/Inaut7r,(O3,xo). Since 77,(Q\x(l) is

isomorphic to the quaternion group it is well known (see Passman (1968),
page 74 for example) that Aut TT,(O3, X0) is isomorphic to 54( = the symmetric
group on 4 letters). The group of innerautomorphisms of v,(Q3,x0) is
isomorphic to {a, b : a2 = b2 = {abf = 1}~ Z : 0 Z_. Hence the group of out-
erautomorphisms of Vi(Q\ x0) is precisely S, (the symmetric group on 3
letters). The outerautomorphism g u has order 2 (g2^(a)= a, g]^(b) = b''
which is just conjugation by a) while g2* has order 3. Hence g u and g2*
generate Outaut TTI(Q\ xa).

Clearly any homeomorphism that is isotopic (in fact homotopic) to the
identity induces an innerautomorphism. Hence $f(Q3)—> Outaut 7r,(Q\ x»)
induces a homomorphism W : J?(Q3)^> Outaut TTI(Q\ xn). By the previous
paragraph ^ is onto. The next few results show that ^ is 1-1 also.

LEMMA 2.1. Let J be a simple closed curve on K2. Then either J bounds a
disk on K2 or else J is isotopic to one of a, ab, b or b2.

PROOF. Suppose / does not bound a disk. We assume J has been
isotoped so that it is transverse to a and intersects a as few times as possible.
Now cut K2 open along a and we get an annulus, A. The curve b becomes a
spanning arc of A. If / D a = 0 , then J is clearly isotopic to a. If J (1 a/ 0 ,
then / becomes a finite set of spanning arcs of A. If J becomes one spanning
arc, then / is isotopic to either b, a±lb, a~2b, • • •. Since a2b is homotopic to b,
it follows from Theorem 3.3 of Epstein (1966) that a"b is isotopic to either b
or ab depending on whether n is even or odd. If / becomes two spanning
arcs, then / is isotopic to a"ba"b for some n. But a"ba"b is isotopic to b2.
Finally it is easy to check that no simple closed curve / will become more than
two spanning arcs of A when we cut along a.

LEMMA 2.2. Let h :Q3—*Q3 be a homeomorphism with h „ being an
innerautomorphism. Then h is isotopic to h : Q3—> Q3 with h(M3) = M3.

PROOF. Since any homeomorphism of a 3-manifold onto itself is isotopic
to a PL homeomorphism we can assume that h is PL and using general
positioning we can assume that h(K2) intersects K2 transversely in a finite
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collection of pairwise disjoint simple closed curves J,, J2, •••,/„. Using the
product structure on M3 — K2 we can isotope h (by pushing away from K2) so
that M3 intersects the image of K2 in a collection of pairwise disjoint annuli
and Moebius bands Xi, X2, • • -,Xn with Jt being the centerline of X. For
convenience of notation, we assume that h has this property. We now isotope
h to simplify K2 D h(K2) so that we can push h(T3) onto T\

The first step is to eliminate all of the /;'s that are null homotopic on K2.
If such J, exists, then let J be a minimal such curve (that is J bounds a disk D
on K2 with int D nh(K2) = 0). It follows that J bounds a disk D' in h(K2)
also because Lemma 2.1 lists all the isotopy classes of simple closed curves on
h(K2) and of them only the null homotopic curve on h(K2) is null homotopic
in Q\ Thus D U D ' i s a 2-sphere and since Q3 is irreducible DUD' bounds a
3-cell which must miss h(K2)- D'. By pushing D' across the 3-cell we can
eliminate / as a component of K2 C\ h(K2). In fact we assume we push D' so
far that we eliminate the component of M3D h(K2) containing /. Repeating
this process we can eliminate all components of K2nh(K2) that are null
homotopic on K2 (and because of the above argument this eliminates all
components of K2 C\ h(K2) that are null homotopic on h(K2) also).

To simplify notation we assume that h already had the above properties.
That is we assume that K2 n h{K2) = /, U • • • U Jm and M3nh(K2) =
X, U • • • U Xm where 7, is a simple closed curve, X is an annulus or a
Moebius band with J; the centerline of X, and /, is not null homotopic on
either K2 or h(K2).

CASE 1: Some Jt is isotopic, on K2, to a.
Consider /, as a curve on h(K2). Since h * is an innerautomorphism we

know that h(a) is homotopic in Q3, to a±t. Hence J, is homotopic, in Q3, to a
which is homotopic to /i(a)*1. Since none of h(b), h(ab) or h(b2) are
homotopic in Q3 to h(a)~\ it must be the case that /, is isotopic to h(a) on
h(K2). Thus the centerline of h(T3) is isotopic to /, which is isotopic to the
centerline of T3. It follows that h is isotopic to h, with /i,(T3)= T3 and
/i,(M3)=M3.

CASE 2: No Jt is isotopic, on K2, to a.
In this case each X, is either a Moebius band with J, isotopic to b or ab

or an annulus with Jt isotopic to b2. In either case each component of <9X is
isotopic, on <9M\ to b. Suppose M is a component of h(K2)- U intX, with
M a Moebius band. Then the center line of M must be isotopic, on h(K2), to
h(b) or h(ab). Also, the centerline of M must be isotopic in T3 to a. Since h *
is an innerautomorphism and since there is no innerautomorphism taking
either b or ab to a there can be no such M. Hence each component of
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h(K2)- UintXj is an annulus properly embedded in T3 with boundary
isotopic, on T2, to 5. It is now easy to isotope h to ft, with h,(K2) D T3 = 0 . By
squeezing h,(M3) toward ht(K

2) we can assume further that h,(M3) C\ T3 = 0
and hence that T3C/i,(T3).

Finally we must show that T3 and h(T3) are concentric. Let A be the
annulus starting at a, following down the mapping cylinder structure of M3 to
a, then continuing on through the mapping cylinder structure to the other
component of F'\a)Q dM3. We assume that h,(K2) intersects M in a finite
collection of pairwise disjoint simple closed curves. Suppose one of these
curves, call it A, is null homotopic in A. Then, as usual, we can assume it is
minimal, that is A bounds a disk AC A with int A 0 ht(K

2) = 0 . Then A is
null homotopic on ht(K

2) also because none of the curves h,(a), h^b), h,(ab)
or h,(b2) is null homotopic in M3. Thus A bounds a disk A'C hx(K

2), A U A'is
a 2-sphere and since M3 is irreducible h, can be isotoped to eliminate A.
Similarly we can eliminate all components of A D h,(K2) that are null
homotopic on A. To simplify notation we assume that h, had this property
(that is we assume that no component of A D hi(K2) is null homotopic on A).
It follows that no component of A D hx(K

2) is null homotopic on ht(K
2)

either, because it must be isotopic in A to a and hence can not be null
homotopic inQ3. Hence A f~l h,(K2) is either empty or else consists of a family
of pairwise disjoint simple closed curves all isotopic in A. If A D hi(K2) were
empty, then we would have hi(K2)C M3- A - S1 which is impossible. Thus
A fl h,(K2)^ 0 and must consist of at .least one simple closed curve. Let A be
a component of A D h,(K2). Then A is isotopic to a on A and A is isotopic to
hi(a), ht(b), h,(ab) or h,(b2) on hx{K2). Since hlst is an innerautomorphism
we must have A isotopic to h^a) on h,(K2). Now, as in Case 1, we have the
centerline of hi(T3) isotopic to A which is isotopic to the centerline of T3.
Hence hx is isotopic to h2: Q3^> Q3 with Fi2(T

3) = T3 and h2(M
3) = M3.

LEMMA 2.3. Let h : K2, x0—* K2, x0 be a homeomorphism. If
ht(F*(Tr,(T2, eo)))C Ft(TTt(T

2, e0)), then h extends to a level preserving
homeomorphism h : M3—> M3. Furthermore ifH : K2 x / - ^ K2 x /is an isotopy
with H(x,0) = h(x), then H extends to an isotopy H : M3 x / -> M3 x / with
H(x, 0) = h.

P R O O F - T> . T* .

1 , e0 1 ,e0

IF IF
K , Xo~^ K , Xo.

Since h ^F^TT^T2, eo))C F*(Tr,(T2, e0)) it follows that /i^F, lifts to
h':(T2,e0)->(T2,e0). Define h:M3-+M3.
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h(z,t) = (h'(z),t) for (z,i)er2x/

h(x) =h(x) for xEK2

The extension of the isotopy is obtained the same way.

T x /, e0 x 0 T2 x /, e0 x 0
| F x id 1 F x id

H°(Fxid) lifts to H'. Then define

H((z,t)xs)=(H'(z,t),s) for ( 2 , ! ) x S £ ( r x / ) x /

H(xxs) =H(xxs) for xXS<EK2xI.

LEMMA 2.4. Lef h :M3->Af3 be a homeomorphism. The h is ambient
isotopic to hi: Af3 —* M3 vv/r/i h, level preserving. In particular h^K2) = K2.

PROOF. We assume that h is PL, then the result follows easily from
Lemma 2.3 and Theorem 7.1 of Waldhausen (1968). Consider the following
composition of maps K2^>M* -̂ * M 3 - ^ - K2. Since this composition is a
homotopy equivalence it induces a homeomorphism h,:K2—*K2. Since h
sends T2 = dM3 to itself it follows that the above homotopy equivalence sends
(Fm(ni(T2)) onto itself and hence by Lemma 2.3 ht extends to a level
preserving homeomorphism hi :M:I—>M3. That h is isotopic to /i, follows
from Waldhausen's result since h is clearly homotopic to fii.

The idea for the proof of the next lemma and more importantly the
impetus for believing it was true is due to J. H. Rubinstein. It is a nice addition
to the original manuscript since it provides a complete computation of ^(O3).
I am grateful for his help on this lemma.

LEMMA 2.5. The homeomorphism g, described in the previous section, is
isotopic to the identity.

PROOF. We must first define some sets to keep track of during the
isotopy. Let Nab, Na and Nb be 3-cells with x0 = a D b C int No6, Nab U Na is a
regular neighborhood of a, Nab U Nb is a regular neighborhood of b and
(N^ U Na) n (No,, U Nb) = Nab. Furthermore, we assume that (for i = a, b, ab)
we have Nt D K2 = Dt is a 2-disk on K2 with Dab UD, a regular neighbor-
hood of a in K2 and Dab U Db a regular neighborhood of b in K2.

The homeomorphism gj'gi takes K2 to a Klein bottle that intersects K2

in b and a meridian. Furthermore b is a meridian on g2!gi(^2) and the
meridian on K2 is a longitude on g^' gi(K2). By sliding gV gi(K2) around we
can get a Klein bottle, K2, that intersects K2 in a U b and a is a longitude on
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K2 while b is a meridian on K2. For convenience we adjust K2 slightly so that
K2n K2 = Dab U a U b. Finally we assume that D, = N, D K2 is a disk (of
course Dai, = Dab).

We can now start isotoping g to the identity. Let h,: Q3^> Q3 be the
homeomorphism obtained by sliding a around K2, keeping b setwise fixed, to
a'. (Define /i, first on K2, then extend to M3 using Lemma 2.3 and finally
extend to T3 using the fact that the part already defined is isotopic to the
identity.) Then hx is clearly isotopic to the identity, hence g is isotopic to h,g.
Furthermore we can assume that (for i = a,b,ab)hig{Di)=Di. Note that
hig(a)= a while hig(b)= b'\ Next we slide b around K2. More precisely,
let h2 : Q

3—>Q3 be the homeomorphism obtained by sliding b around K2,
keeping a setwise fixed, to b~\ As with hi, h2 is isotopic to the identity, so g is
isotopic to h2hig. Furthermore we can assume that (for i = a, b, ab) h2(Dj) =
D,). Note that h2hxg{a)= a, h2hig(b)= b and h2hig(Dab) = Dab = Dab. By
regular neighborhood theory we can assume that (for i = a,b,ab)
h2hig(Ni) = Ni. We can also assume that h2h,g | Dab is the identity. It is not
very clear what happens to Df = /i,g(D,) (i = a, b) under h2. But Figure 4
shows that we can in fact assume that h2(h1g(Db))= h2(Db)= Db also
(because h2 takes Nb orientation preserving onto Nb but takes Db, b
orientation reversing onto Db, b). Similarly we can assume that h2(h,g(Da)) =

N,

Figure 4

Da. In fact since h2htg takes a to a and b to b, we can assume that
h2h,g | Da U Db U Dab is the identity. The remainder of the proof is
straightforward. Let D be the disk closure (K2- (Da U Db U Dab)). Then
3D = h2h,g(dD). We can adjust h2h,g so that h2h,g(D) is in general position
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with respect to D, relative to dD. Hence h2h,g(D) D D is a collection of
pairwise disjoint simple closed curves in D. Since.they lie in D they are null
homotopic on K~ and hence can be eliminated as in the proof of Lemma 2.2.
Eventually this process isotopes h2h,g to a homeomorphism h*: Q*—> Q3

with h31 Da U Db U Dah the identity and h,(D) n D = 3D = h,(dD). By
irreducibility D U h,(D) bounds a 3-cell and we can push hy(D) across the
3-cell to D. In other words /i3 is isotopic to ht: Q3—>Q3 with Ii4(a)= a,
hi(b) = b and h4(K

2) = K2. It is easy to see that h4 is isotopic to the identity
(see Case I of the proof of Theorem 1.)

THEOREM 1. Let h :Q3^>Q3 be an orientation preserving homeomor-
phism. If h * is an innerautomorphism, then h is isotopic to the identity.

PROOF. By Lemma 2.2, h is isotopic h,: Q3-+ Q3 with h^M3) = M3. By
Lemma 2.4, h,\M3 is isotopic to h2:M

3-^M3 with h2(K
2)= K2. Using a

collar neighborhood of <9M' = <?T3 in T3 we can extend h2 to all of M3 and get
h, is isotopic to h2:Q

3-^>Q3 with h2(K
2)=K2. Since /i* is an inner

automorphism so is h2i. Hence h2(a) is a simple closed curve on K2 and it
must be conjugate as a loop in TTI(Q\ xa) to a . Thus h2(a) is isotopic on X2 to
a*'. Similarly /i2(&) is isotopic to bxl.

CASE I: h2(a) is isotopic, on AT2, to a*1 and h2(b) is isotopic to b.
Since there is an ambient isotopy taking a to a~\ b to b and X2 onto X2

we can assume that h2(a) = a and h2(b) = b. Clearly h21 K2 is isotopic to the
identity so by Theorem 7.1 of Waldhausen (1968) h2\M

3 is isotopic to the
identity. Using a collar neighborhood of dM3 = <?T3 in T3 the isotopy extends
to all of Q3. Hence h2 is isotopic to hi ; O 3 ^ - O3 with h3\ M3 = identity. Since
/ij, J T3: T3—* T3 is the identity on the boundary, it is isotopic to the identity
keeping the boundary fixed. Extending this isotopy, to be the identity on M3,
we have the desired result in this case.

CASE II: h2(a) is isotopic, on K2, to a*1 and h2(b) is isotopic, on K2,
to b \

Since there is an ambient isotopy taking a to a \ b to b and K2 to K2 we
can assume that h2(a) = a1 and h2{b) = b'. Then h2\ K2 is clearly isotopic to
g | /C2. Appealing to Waldhausen's result again it follows, as in Case I, that h2

is isotopic to g. By Lemma 2.5 g is isotopic to the identity and the result
follows.

COROLLARY. The sequence 0^>%(,d{Q3)
is exact. In particular X(Q3)/^^(Q3) = ^ (O 3 ) ~ S3 (symmetry group on three
letters).

https://doi.org/10.1017/S1446788700017407 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017407


124 T. M. Price (13) 

C O R O L L A R Y . Let h : Q 3 —* Q 3 be a homeomorphism. Then h is nomotopic 
to the identity iff h is isotopic to the identity. 

III. Project ive p lanes in S 4 

In t h i s s e c t i o n w e u s e t h e c h a r a c t e r i z a t i o n of h o m e o m o r p h i s m s of Q 3 to 
s t u d y e m b e d d i n g s of t h e p r o j e c t i v e p l a n e P2 in S 4 . W e u s e t h e following 
n o t a t i o n . T h e s y m b o l v a l w a y s r e f e r s t o t h e n o r m a l d isk b u n d l e of the 
s t a n d a r d p r o j e c t i v e p l a n e in S 4 . A s w e m e n t i o n e d e a r l i e r , t h e n o r m a l disk 
b u n d l e of a n y PL local ly flat p r o j e c t i v e p l a n e in S 4 is PL h o m e o m o r p h i c to v. 
R e c a l l t h a t Q 3 = dv w i t h t h e fibers (as a 1 - sphere b u n d l e o v e r P2) b e ing the 
m e r i d i a n s of K2

y T2, e t c . a n d t h e l o n g i t u d e s of T 3 . T h e s y m b o l s a a n d b will 
b e u s e d , as b e f o r e , t o d e n o t e e l e m e n t s of i T i ( Q 3 , * O ) a n d t o d e n o t e s imple 
c l o s e d c u r v e s in Q \ W e a l w a y s a s s u m e t h a t a is a m e r i d i a n of K2, in 
p a r t i c u l a r a g e n e r a t e s t h e k e r n e l of TTX{Q3, XQ)-^> TT\(V, x0). If P is any PL 

local ly flat p r o j e c t i v e p l a n e in S 4 w i t h n o r m a l d i sk b u n d l e v{P), t h e n we 
iden t i fy v(P) w i th v a n d h e n c e dv{P) w i th Q 3 b y a h o m e o m o r p h i s m . Of 
c o u r s e t h e i m a g e of a g e n e r a t e s k e r n e l TT,(8V{P), X)-^> TT,{V{P), X). 

T h e s y m b o l s g , a n d g 2 will b e u s e d t o d e n o t e t h e h o m e o m o r p h i s m s 
d e s c r i b e d in S e c t i o n I . W e u s e Gi t o d e n o t e t h e e x t e n s i o n t o all of v of g , . By 
t h e r e s u l t s of S e c t i o n I I , e a c h i s o t o p y c lass of h o m e o m o r p h i s m s i n d u c e s a 
u n i q u e p e r m u t a t i o n of t h e s y m b o l s a, b, ab. T h e fo l lowing t a b l e lists s o m e 
r e p r e s e n t a t i v e s of e a c h c lass . 

M a ) 
a b ab 

a gigz g2 

b id 
g2gl = 

g'gi' 

ab gi 

g2g2 = 

T H E O R E M 2. Let H:v^>v be a homeomorphism. Then h = H\Qi is 
isotopic to the identity or g,. 

P R O O F . S i n c e a g e n e r a t e s t h e k e r n e l 7 T i ( Q 3 , X0)-^> TTI(V, xa) it fo l lows t h a t 

h t(a) = a. T h e r e su l t n o w fo l lows f r o m t h e a b o v e t a b l e of i s o t o p y c lasses . 
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THEOREM 3. There exist at most two distinct locally flat embeddings of P2

in S4 with a given closed complement.

PROOF. Let / , , / 2 : P2-+ S4 be locally flat embeddings. Suppose vx and v2

are normal disk bundles of fi(P2) and fi{P2) respectively. Let X, = S4 — int iv
Then there exist homeomorphisms <f>, : ( P \ v)-> (f(P2), vt) and (f(P2), S4) is
homeomorphic to (P2, cU*,X,). Furthermore we can assume that <j>i(b)
generates kernel H,(dv,; Z ) - » H,(S4- f,(P2); Z). (Either <f>,(b) or ^(afc)
generates it. If 4>,(ab) generates it then replace <j>t by

Now suppose H: X, —»X2 is a homeomorphism. Then
4>2yH4>i \o'\ Q3—> O 3 and (t>2

lH<t>lif(b) = 6. Hence 4>2XH<j>x is either isotopic

to the identity in which case (f,(P2), S4) is homeomorphic to (/2(P2), S4) or else
4>2'H4>,\ol is isotopic to g2gi. In this latter case all we can say is that
(/,(P2), S") is homeomorphic to (fi(P2), S") iff there exists a homeomorphism
H,: Xt —» X, with Hilf(b) = 6 and / / ,*(a) = a6. In any case there are at most
two embeddings whose closed complement is homeomorphic to X,.

COROLLARY. Let P be a locally flat projective plane in S4. If the closed
complement of P is homeomorphic to the closed complement of the standard
embedding, P2, then (P, S4) is homeomorphic to {P2, S4).

PROOF. Figure 5 shows two linking projective planes whose normal disk
bundles fill up S4. Since the upper one is the standard embedding P2, it
follows that its closed complement is homeomorphic to v (see Price and
Roseman (1975) for a more detailed discussion). By the remark at the end of
the last proof it is sufficient to exhibit a homeomorphism of the closed
complement, = v, onto itself that fixes the curve generating the kernel
H,(3v; Z)—> H,(S4- P; Z) while interchanging the other curves. Since the
rolls of a and b have been reversed here this is exactly what the homeomor-
phism G, : v—* v does.

In Price and Roseman (1975) the notions of spun and twist spun
projective planes were developed. Theorem 5.4 of that paper states: If Po and
Pi are spun projective planes constructed from F2 by sewing (Nh,Mh) onto
S 4 - S1 x B2x [- 1,1] with fc(, and fc, twists respectively then S4- Po is
homeomorphic to S 4 - P, if k,,= k, mod 2. While it is not worthwhile giving
all the definitions necessary to give a rigorous proof here it is easy to check
that the homeomorphism constructed there was actually defined on the closed
complements and it takes aa to a, (a, denotes the generator of kernel
7r,((9i/(P,))—> 77,(i'(P,))). Hence that homeomorphism extends to take (Po, S4)
onto (Pi,S4). Thus we have the following.
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Figure 5
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COROLLARY. Let P<> and />, be twist spun projective planes with k0 and k,
twists respectively (as in the discussion above). If k0

 m k, mod 2, then (Po, 5")
is homeomorphic to (P,, S4).

THEOREM 4. There are exactly two 4-manifolds that can be constructed by
sewing vto itself by some homeomorphism of dv = Q3 onto itself. One being S",
the other having fundamental group Z2.

PROOF. Let h : Q3^> O3 be a homeomorphism. Clearly v\Jhv depends
only on the isotopy class of h, hence (counting orientation reversing
homeomorphisms) there are at most twelve such manifolds. If h : Q3—»• Q 3 is
orientation reversing then v{Jhv is homeomorphic (see diagram below) to
v\J,hv and rh is orientation preserving. Hence there are at most six such
manifolds.

v {J v
i identity h I R

v (J "
rh

Similarly the manifold W = v\J,Av is homeomorphic to ^Ugi v because
of the following diagram.

V

I identity
V

u
id

u

V

\G
V

Also Van Kampen's theorem gives TTX{W, XO)~ Z2. The Mayer-Vietoris
sequence yields H2(W, Z) = Z2, H,(W, Z) = 0 and H4(W, Z) = Z. Using the
same type of homeomorphism as above v\Jg^7v is homeomorphic to vVJg2v
and similarly yUglgj' v is homeomorphic to vL>g-2> v. Finally by taking the first
term of vVJ^v "identically" onto the second term of vUgi> v and the second
term of I'Ug, v "identically" onto the first term of vVJg-2* v we see that ^U^ v is
homeomorphic to v\Jgs v. Since it is easy to construct two linking projective
planes in S4 whose normal disk bundles fill up S4 (see Figure 5) (see Price and
Roseman (1975) for a more complete discussion) there must be some way of
sewing v to v to get S4. Since W- is not 5" and since the other four spaces are
all homeomorphic, they must all be homeomorphic to S4.
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