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Abstract. Consider a Riccati foliation whose monodromy representation is non-elementary
and parabolic and consider a non-invariant section of the fibration whose associated
developing map is onto. We prove that any holonomy germ from any non-invariant fibre
to the section can be analytically continued along a generic Brownian path. To prove this
theorem, we prove a dual result about complex projective structures. Let6 be a hyperbolic
Riemann surface of finite type endowed with a branched complex projective structure:
such a structure gives rise to a non-constant holomorphic map D : 6̃→ CP1, from the
universal cover of 6 to the Riemann sphere CP1, which is ρ-equivariant for a morphism
ρ : π1(6)→ PSL(2, C). The dual result is the following. If the monodromy representation
ρ is parabolic and non-elementary and if D is onto, then, for almost every Brownian path ω
in 6̃, D(ω(t)) does not have limit when t goes to∞. If, moreover, the projective structure
is of parabolic type, we also prove that, although D(ω(t)) does not converge, it converges
in the Cesàro sense.

1. Introduction
Given a complex algebraic foliation, the study of the holonomy maps is crucial since
they encode the dynamics of the leaves. This paper is devoted to the problem of analytic
continuation of these holonomy maps. This problem, which goes back to the times of
Painlevé, regained interest recently with the works of Loray [L], Il’yashenko [Il] and
Calsamiglia et al [CDFG].

Let us explain the context. Consider the following differential equation in C2:
dy
dx
=

P(x, y)
Q(x, y)

(1)

where P and Q are polynomials in C[X, Y ] without common factors.
The solutions of (1) define a singular holomorphic foliation of complex dimension one

in C2 which can be extended to a singular holomorphic foliation F of CP2.
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Let C0, C1 be two complex curves in CP2 and L be a leaf of F which intersects C0 in
p0 and C1 in p1. Assume that p0 and p1 are not singularities of the foliation and that the
curve C0 (respectively, C1) is transverse to F in p0 (respectively, p1). Let γ : [0, 1] → L
be a continuous path such that γ (0)= p0 and γ (1)= p1. Then one can find a continuous
family γp : [0, 1] → CP2 of paths parametrized by p ∈ C0 close enough to p0 such that:
(1) γp(0)= p;
(2) γp(1) ∈ C1;
(3) γp0 = γ ; and
(4) for all p, γp belongs to the leaf through p.
The germ of the holomorphic map p 7→ γp(1) in p0 is uniquely determined by the relative
(i.e. with fixed endpoints) homotopy class of γ under the above conditions and is called
the holonomy germ associated to γ .

A rather general question is to define the domain of definition of such a germ.
In [L], Loray makes the following conjecture.

CONJECTURE 1.1. (Loray) Let F be a singular holomorphic foliation in CP2. Let L1

and L2 be two non-invariant projective lines and h : (L1, p1)→ (L2, p2) be a holonomy
germ. Then h can be analytically continued along any continuous path which avoids a
countable set of points called singularities of h.

This was motivated by the following result which can be found in [CDFG, Theorem 1.1]
and which is a consequence of Theorem 1 of Painlevé (see [L]). If the polynomials P and
Q of equation (1) are such that w = P dx − Q dy is a closed one-form, then Loray’s
conjecture is true.

In the same vein, Il’yashenko asks the following [Il] questions.

Question 1.2. (Ilyashenko) Consider the foliation in C2 associated to equation (1) and let
h : (L1, p1)→ (L2, p2) be a holonomy germ between two lines. Can h be analytically
continued along a generic ray emerging from p1?

In [CDFG], the authors prove that Loray’s conjecture fails to be true. More precisely,
they prove the following results.
• For an algebraic foliation of CP2 with hyperbolic singularities and without invariant

curves (these are generic properties), there is a holonomy germ between a projective
line and a curve whose set of singularities contains a Cantor set.

• There exist algebraic foliations of CP2 admitting a holonomy germ h : (L1, p1)→

(L2, p2) between complex lines whose set of singularities is the whole L1.
Our main result is particularly linked to the second assertion. To see this, let us explain
briefly how they built such a foliation. They consider a parabolic projective structure
on the punctured Riemann sphere whose monodromy group is dense in PSL(2, C).
Suspending the monodromy representation, one obtains a CP1-fibre bundle over the
punctured Riemann sphere endowed with a non-singular foliation transverse to every fibre
and a section 1 (given by the developing map). There exist local models (introduced
by Brunella in [B]) over the cusps which allow to one compactify the CP1-fibre bundle,
the foliation and the section. After the compactification, one gets a singular holomophic
foliation on a CP1-fibre bundle over CP1 whose fibres are transverse to the foliation,
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with the exception the ones over the punctures which are invariant lines containing the
singularities of the foliation. Now consider a holonomy germ h between a transverse fibre
and the section given by a developing map of the projective structure. Then h is a local
inverse of the developing map. If the monodromy group of the projective structure is dense
in PSL(2, C), the authors prove that h has full singular set. The CP1-bundles over CP1 are
parametrized by an integer n ≥ 0. Choosing, conveniently, the local models around the
cusps, this number is n = 1, so that the ambient space is the first Hirzebruch surface F1

which has a unique exceptional curve disjoint from 1. Blow-down gives CP2 with the
desired property.

This paper is based on the following observation. With the same hypothesis, even if
the germ h has full singular set, h can be analytically continued along a generic Brownian
path, that is, the Brownian motion does not see this full set of singularities.

The foliations previously defined on Hirzebruch surfaces are examples of Riccati
foliations. More generally, a Riccati foliation is the data of (5, M, X, F), where M is
a compact complex surface, X is a compact Riemann surface, 5 : M→ X is a CP1-fibre
bundle and F is a singular holomorphic foliation transverse to all the fibres except a finite
number of them which are invariant lines for the foliation and contain the singularities.
The main theorem of this paper now follows.

THEOREM A. Let F be a Riccati foliation with a parabolic and non-elementary
monodromy representation. Let F be a non-invariant fibre and s0, s1 be two sections of
the bundle. Denote by S0 and S1 the images of X by s0 and s1. Endow F, S0 and S1 with
complete metrics in their conformal class. Assume, moreover, that the developing map
associated to S0 is onto.
(1) If h : (F, p)→ (S0, p0) is a holonomy germ, then h can be analytically continued

along almost every Brownian path in F starting at p.
(2) If h : (S1, p1)→ (S0, p0) is a holonomy germ, then h can be analytically continued

along almost every Brownian path in S1 starting at p1.

Remark 1.3. A holomorphic CP1-fibre bundle always admits a holomorphic section
(see [BPV, p. 139]).

Theorem A is a consequence of a theorem concerning complex projective structures,
which we now explain.

1.1. Complex projective structures. Let 6 be a Riemann surface. A branched complex
projective structure in 6 is a (PSL(2, C), CP1)-structure where CP1 is the Riemann
sphere and PSL(2, C) is the group of Möbius transformations acting on CP1. Such a
structure gives rise to a non-constant holomorphic map D : 6̃→ CP1 from the universal
cover of 6 to the Riemann sphere CP1 and to a morphism ρ : π1(6)→ PSL(2, C)
satisfying the equivariance relation

for all x ∈ 6̃ and for all α ∈ π1(6), D(α · x)= ρ(α) ·D(x).

The map D (well defined up to a post-composition by a Möbius transformation) is called
a developing map, the morphism ρ is called a monodromy representation and the group
ρ(π1(6)) is called a monodromy group (see §2 for more details on projective structures).
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If 6 is not compact, we will need a parabolicity hypothesis around the cusps: a
representation is said to be parabolic if the holonomy around each cusp is parabolic
(i.e. it is conjugated to the group generated by the transformation z 7→ z + 1). A complex
projective structure is said to be parabolic if, in some coordinate z around each puncture,
some developing map writes D(z)= (1/2iπ) log z. Our Theorem B is proved under the
hypothesis of parabolicity of the monodromy representation, while Theorem C is proved
under the stronger hypothesis of parabolicity of the projective structure.

1.2. The image of a generic Brownian path by the developing map. In [CDFG], the
authors prove that if the monodromy group is a dense subgroup of PSL(2, C) and if h is
a germ of D−1 in z0, then the set of singularities for the analytic continuation of h is all
the Riemann sphere CP1 (see Proposition 3.2). In other words, for any point z in CP1,
there is a continuous path c from z0 to z such that h cannot be analytically continued
along c (we will give a proof of this fact in §3). As it has been explained earlier, with the
same hypothesis, h can be analytically continued along a generic Brownian path (i.e. the
Brownian motion does not see this full set of singularities). This is stated more precisely
in the following theorem.

THEOREM B. Let 6 be a Riemann surface of finite type endowed with a branched
projective structure. Let D : 6̃→ CP1 be a developing map and ρ : π1(6)→ PSL(2, C)
be the monodromy representation associated to D. Let (x0, z0) be a couple of points in
6̃ × CP1 such that D(x0)= z0 and let h be the germ of D−1 such that h(z0)= x0. We
also define the Brownian motion in 6̃ as the one associated to the hyperbolic metric with
constant curvature −1 and the Brownian motion in CP1 as the one associated to any
complete metric in its conformal class.

Assume that D is onto and that the monodromy representation ρ is parabolic and non-
elementary.

Then the two following equivalent assertions are satisfied.
(1) For almost every Brownian path ω starting from x0, D(ω(t)) does not have any limit

when t goes to∞.
(2) For almost every Brownian path ω starting from z0, the map h can be analytically

continued along ω([0,∞[).

The equivalence of the two assertions is a direct consequence of the conformal
invariance of the Brownian motion. In order to prove the first assertion, we will use the
discretization procedure of Furstensberg–Lyons–Sullivan. In our context, this procedure
associates a sequence Xn(ω) of elements of π1(6) to every Brownian path ω in 6̃,
which corresponds, more or less, to the sequence of fundamental domains visited by
ω. The sequence Xn(ω) turns out to be the realization of a right random walk, that
is, Xn+1(ω)= Xn(ω) · γn+1(ω), the γn(ω) being independent and identically distributed.
Pushing Xn(ω) forward by ρ gives a right random walk Yn(ω) in ρ(π1(6)) < PSL(2, C).
Random walks in such matrix groups have been widely studied. A classical result of the
theory is the following. If the support of the measure µ defining the random walk Yn is
non-elementary and if ν is a µ-stationary measure on CP1, then, for almost every ω, there
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exists z(ω) ∈ CP1 such that

Yn(ω) · ν −→n→∞
δz(ω). (2)

In view of this property, Theorem B is surprising because one could think at first glance
that this contraction property would imply that D(ω(t)) −→

t→∞
z(ω).

In §6, we will give a new statement of the last theorem, including the case where D is not
onto. In this case, the opposite conclusion holds. For almost every Brownian pathω starting
from x0, there is a point z(ω) such that limt→∞ D(ω(t))= z(ω), which is equivalent to
the following: for almost every Brownian path ω starting from z0, the map h cannot be
analytically continued along ω([0,∞[).

1.3. The family of harmonic measures. At the beginning of this study, we did not think
that Theorem B was realistic. On the contrary, we expected to prove that, in both cases (D
onto and D not onto), the following would hold: for all x in 6̃, for almost every Brownian
path ω starting at x , there is a point z(ω) such that limt→∞ D(ω(t))= z(ω). The existence
of such a point z(ω) would allow us to associate to any projective structure on 6 a family
of measures (νx )x∈6̃ in P1 in the following way: if Px is the Wiener measure on the set
�x of continuous paths starting at x , for any Borel set A in P1, we would have defined

νx (A)= Px (w ∈�x such that z(ω) ∈ A).

Although D(ω(t)) does not converge when t goes to∞ (in the case where D is onto)
in the classical sense, D(ω(t)) converges almost surely in the Cesàro sense. This gives the
following theorem.

THEOREM C. Let D : 6̃→ CP1 and ρ : π1(6)→ PSL(2, C) be a couple developing
map-monodromy representation associated with a branched complex projective structure
of parabolic type on a hyperbolic Riemann surface 6 of finite type. Then, for every x in
the universal cover 6̃ and for almost every Brownian path ω starting from x, there exists
z(ω) ∈ CP1 such that

1
t
·

∫ t

0
δD(ω(s)) · ds −→

t→∞
δz(ω).

Remark 1.4.
• The limit point z(ω) in Theorem C is nothing but the attractive point z(ω) of the

random walk ρ(Xn(ω)) defined above in (2). Equivalently, z(ω) is the projectivization
of Oseledets’ contracting direction of the cocycle ρ(Xn(ω))

−1. Hence, the limit point
z(ω) does not depend on the developing map D but it only depends on the monodromy
representation ρ.

• The monodromy representation of a projective structure of parabolic type is always
non-elementary (see [DD, p. 3] and the references therein).

Then, to any complex projective structure on6 satisfying the hypothesis of the previous
theorem, one can associate a family (νx )x∈6̃ of harmonic measures on CP1: it is the
distribution law of the point z(ω) (given by the previous theorem) for a Brownian path
starting at x . This family of measures gives interesting information about the projective
structure. It has been recently studied by Deroin and Dujardin in [DD]. In a recent work
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in collaboration with Alvarez [AH], we prove the following. For all x ∈ 6̃, the image
of a generic geodesic ray starting at x by the developing map has a limit in CP1. The
distribution law of this limit point (with respect to the angular measure at x for the Poincaré
metric) is a measure µx which is proved to be equal to νx .

1.4. Organization of the paper. First, §2 is devoted to the basic definitions and
examples concerning branched projective structures. Then §3 deals with generalities about
analytic continuation of holomorphic maps. Section 4, where we prove a contraction
property for random walks in PSL(2, C), and §5, where we explain the discretization
procedure of Furstenberg–Lyons–Sullivan, provide the necessary background for the proof
of Theorem B in §6. In §7, we prove Theorem A and, finally, in §8, we prove Theorem C.

2. Projective structures

This section gives basic concepts about complex projective structures which will be useful
in the subsequent work. For further insight into this notion, we refer the reader to the
survey of Dumas [Du].

Definition 2.1. Let 6 be a Riemann surface. A branched projective structure on 6 is
a maximal atlas (φi :Ui → CP1), where the Ui are open sets in 6 and the φi are non-
constant holomorphic maps on Ui such that, on the intersection of two domains Ui ∩U j ,
the relation φi = γi j ◦ φ j holds for some Möbius transformation γi j (i.e. for some element
of PSL(2, C)).

Let φi :Ui → Vi be a chart of such an atlas. If U j is another chart such that Ui ∩

U j 6= 0, then the map γi j ◦ φ j :U j → CP1 is equal to φi on Ui ∩U j and allows us to
continue φi to U j . Continuing in this way, we obtain a globally defined holomorphic map
whose domain of definition is the universal covering space 6̃. This map, denoted by D :
6̃→ CP1 is called a developing map. D is defined up to a post-composition by a Möbius
transformation.

Associated with this, we can define a morphism ρ : π1(6)→ PSL(2, C) called a
monodromy representation which satisfies the equivariance relation

for all x ∈ 6̃ for all α ∈ π1(6), D(α · x)= ρ(α) ·D(x).

The group 0 := ρ(π1(6)) is called a monodromy group of the branched projective
structure. As the developing map D is defined up to a post-composition by a Möbius
transformation, 0 is defined up to a conjugacy by this transformation.

In this paper, we will consider Riemann surfaces of finite type: that is, compact
Riemann surfaces with a finite number of points deleted. Our Theorems B and C,
concerning projective structures, both assume that the monodromy representation is
non-elementary. Theorem B assumes that the monodromy representation is parabolic
and Theorem C assumes that the projective structure is parabolic (which is a stronger
condition). We will now recall the definitions of these notions.
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Definition 2.2.
• A representation ρ : π1(6)→ PSL(2, C) is said to be parabolic if the monodomy is

parabolic around each puncture (i.e. it is conjugated to the group generated by the
transformation z 7→ z + 1).

• A branched projective structure on a Riemann surface of finite type is said to
be parabolic if, for any puncture p, there is a neighbourhood Vp of p and a
biholomorphism φ : D(0, e−2π )− {0} → Vp such that some developing map satisfies
D ◦ φ(z)= (1/(2iπ)) log z (in this definition, the developing must be seen as a
multivalued holomorphic map from 6 to PSL(2, C)).

• A subgroup 0 of PSL(2, C) is said to be elementary if there exists a finite set in CP1

which is globally invariant by the action of 0 or if it is conjugate to a subgroup of the
projective special unitary group PSU(2, C). A representation ρ : π1(6)→ PSL(2, C)
is said to be elementary if ρ(π1(6)) is elementary.

Remark 2.3.
• If the monodromy representation is non-elementary, then the Riemann surface is

necessarily hyperbolic. Indeed, The monodromy group of a branched projective
structure on the sphere is trivial (since π1(CP1) is trivial) and the monodromy group
of a branched projective structure on a parabolic Riemann surface 6 is abelian (since
π1(6) is).

• At the universal covering level, the parabolicity of a projective structure at a puncture
p implies that the developing map in any connected component of the preimage of
Vp is holomorphically conjugated to the inclusion map. More precisely, consider the
universal covering map q :H≥1 = {Im z ≥ 1} → D(0, e−2π )− {0}, τ 7→ e2iπτ . Let
Hp be a connected component of proj−1(Vp), where proj : 6̃→6 is the universal
covering map. If φ : D(0, e−2π )− {0} → Vp satisfies D ◦ φ(z)= (1/2iπ) log z, then,
lifting φ by q and proj, one gets a biholomorphism φ̃ :H≥1→Hp satisfying D ◦
φ̃(τ )= τ . Moreover, in [AH] the following lemma is proved.

LEMMA 2.4. φ̃ is bi-Lipschitz for the distances associated to the hyperbolic metrics
in H≥1 and in Hp.

• If D(z)= (1/2iπ) log z in a coordinate z around a puncture, then D(e2iπ z)=D(z)+
1. So the parabolicity of the projective structure implies the parabolicity of the
monodromy representation. But, in general, the converse is false. Indeed, on the
puncture disc, the projective structure given by Dn(z)= (1/2iπ) log z + 1/zn has a
parabolic monodromy representation (Dn(e2iπ z)=Dn(z)+ 1) but it is not parabolic
for n ∈ N∗ (to see this, one can check, for example, that Dn(z) does not have limit
when z goes to zero).

Examples 2.5.
(1) Let 6 be a hyperbolic Riemann surface. The universal covering space of 6 is the

upper half-plane H and6 =H/0, where 0 is a subgroup of PSL(2, R)whose action
on H is free and properly discontinuous. The couple (D, ρ)= (i :H ↪→ CP1, i :
0 ↪→ P Sl(2, C)) (where i is the inclusion map) defines a projective structure on 6
called the uniformizing projective structure of 6.
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(2) Let 0 be a Kleinian group (i.e. a discrete subgroup of PSL(2, C)) such that the set
of discontinuity �(0) ∈ CP1 is not vacuous. The quotient �(0)/0 is a Riemann
surface which can be endowed with a projective structure in the following way.
We cover �(0)/0 by open sets Ui small enough and we choose local inverses si

of the projection p :�(0)→�(0)/0 defined on Ui . The si :Ui →�(0)⊂ CP1

define an atlas of 6 whose transition functions are elements of 0 (i.e. Möbius
transformations). Note that, by Ahlfors’ finiteness theorem [Ah], the Riemann
surface �(0)/0 is of finite type and the projective structure is parabolic.

(3) In the two previous examples, the developing map is not onto. Starting with the
uniformizing projective structure of6, as in example (1), there is a surgery operation
introduced by Heijal [He], called grafting, that produces new projective structures
having the same monodromy representation but such that the new developing map is
onto.

3. Analytic continuation
Recall that one of the goals of this paper is to show that, with some good assumptions
on the projective structure, any local inverse h of the developing map can be analytically
continued along a generic Brownian path. In this part, following the paper [CDFG], we
show that, however, there are many paths along which h cannot be analytically continued.
Let us start with some basic definitions about analytic continuation of holomorphic maps.

Let C0 and C1 be two Riemann surfaces and a germ of holomorphic map h : (C0, p0)→

(C1, p1). Let τ : [0, t] → C0 be a continuous path such that τ(0)= p0. We say that τ
is covered by the sequence of open discs D1, . . . , Dn if there is a sequence of times
0= t0 < t1 < · · ·< tn = t such that τ([tk, tk+1])⊂ Dk+1. We say that h can be
analytically continued along τ([0, t]) if there is a sequence of discs D1, . . . , Dn covering
τ , and holomorphic maps fk : Dk→ C1, such that the germ of f1 in p0 is h and such that
for all k ∈ {1, . . . , n − 1}, we have fk = fk+1 on Dk ∩ Dk+1.

Definition 3.1. A point q ∈ C0 is called a singularity for h if there is a continuous path
τ : [0, 1] → C0 such that:
(1) τ(0)= p0 and τ(1)= q;
(2) for all ε > 0, h can be analytically continued along τ([0, 1− ε]); and
(3) h cannot be analytically continued along τ([0, 1]).

The set of singularities could be, in principle, any subset of C0. If it is the whole C0, we
say that h has full singular set.

There may also exist an open set D ⊂ C0 containing p0 such that, for any path
τ : [0, 1] → C0 with τ(0)= p0, τ(1) ∈ ∂D and τ([0, 1[)⊂ D, h can be analytically
continued along τ([0, 1− ε]) but not along τ([0, 1]). In the case where ∂D is a topological
disc, we say that h has a natural boundary for analytic continuation.

PROPOSITION 3.2. [CDFG] Let 6 be a hyperbolic Riemann surface endowed with a
branched projective structure. Let D be a developing map and h be a germ of D−1.
(1) If the projective structure is the one given by uniformization, then h has a natural

boundary for analytic continuation.
(2) If the monodromy group is dense in PSL(2, C), then h has full singular set.
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Proof. For a complete proof, see [CDFG]. We will now state some of the ideas contained
in this proof because we think it could be helpful for the comprehension of the proof of
Theorem B.

(1) In this case, the developing map is the inclusion i :H ↪→ CP1. Then ∂H⊂ CP1 is a
natural boundary for analytic continuation of h.

(2) Let h be a germ of D−1 at z0 ∈ CP1 and p0 = h(z0). The proof is based on the
following lemma.

LEMMA 3.3. [CDFG] For all z ∈ CP1, there is a finite set A⊂ π1(6) and an infinite
sequence (αn)n∈N∗ of elements of A which have the following properties. Denoting An =

α1α2 · · · αn and A0 = id:
(a) the diameter of the ball

Bn =

{
w ∈ CP1 such that |(ρ(An))

′(w)| ≥
1
2n

}
converges to zero exponentially fast when n tends to infinity;

(b) for all n ∈ N, ρ(An)(CP1
− Bn)⊂ D(z, cst/2n); and

(c) for all n ∈ N, neither z0 nor ρ(αn)(z0) belong to Bn−1.

In this lemma (the proof of which can be found in [CDFG]), CP1 is endowed with
the standard spherical metric. In any of the two charts, this metric is written as |ds| =
|dz|/(1+ |z|2). If γ is a Möbius transformation, γ ′ is the derivative of γ and |γ ′(z)| is
the spherical norm in z. If z ∈ CP1 and α ∈ R, then D(z, α) is the spherical disc of radius
α centred at z. We now prove that the previous lemma implies the following proposition.
With properties (a) and (c) of the previous lemma, one can construct for all n ∈ N, a C∞

path cn : [0, 1] → 6̃ from p0 to αn(p0), whose length is bounded by a constant that is
independent of n and such that, for n big enough, D ◦ cn does not meet Bn−1. Then we
define the path c : [0,∞[→ 6̃ as the infinite concatenation of paths an := An−1cn (from
An−1(p0) to An(p0)). The ρ-equivariance gives

D ◦ an = ρ(An−1) ◦D ◦ cn .

As D ◦ cn does not meet Bn−1, we deduce, from property (a) of the previous lemma,
that the length of the path D ◦ an converges exponentially fast to zero and so D ◦ c(t)
converges, when t goes to infinity, toward a point in CP1. Using property (b) of the
previous lemma, this point is necessarily z (because D ◦ an ⊂ D(z, cst/2n−1)). So z is
a singularity for analytic continuation of h. �

4. Random walks
In this section, after explaining some basic facts about random walks and stationary
measures, we prove Proposition 4.4, which is the key of the proof of Theorems B and C.

In this part, 0 is a subgroup of PSL(2, C), finitely generated, and µ is a probability
measure on 0. Also, supp(µ) is the support of µ and 〈supp(µ)〉 is the group generated
by supp(µ). Define �= 0N∗ and P= µN∗ . The coordinate maps hi :�→ 0 are P-
independent and identically distributed with law µ. This part deals with the statistical
behaviour of the action on CP1 of the right random walk in 0 with law µ: Xn(ω)=

h1(ω) · · · hn(ω).
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The action of 0 on CP1 gives an action of 0 on the set P(CP1) of Borel probability
measures on CP1. If γ ∈ 0, ν ∈ P(CP1) and A is a Borel set in CP1, this action is defined
by γ · ν(A)= ν(γ−1(A)).

We also define µ∗n := µ ∗ µ ∗ · · · ∗ µ. The measure µ∗n on 0 is the push-forward of
the product measure µ⊗n on 0n by the map 0 × · · · × 0→ 0, (γ1, . . . , γn) 7→ γ1 · · · γn .
The law of Xn isµ∗n . If ν ∈ P(CP1), we also define the measureµ ∗ ν as the push-forward
on CP1 of the product measure on 0 × CP1 by the map 0 × CP1

→ CP1, (γ, x) 7→ γ · x .
So, if A is a Borel set in CP1,

µ ∗ ν(A)=
∑
γ∈0

µ(γ )ν(γ−1(A)).

Definition 4.1. The measure ν ∈ P(CP1) is said to be µ-stationary if µ ∗ ν = ν, which
means that for any Borel set A in CP1,∑

γ∈0

µ(γ )ν(γ−1(A))= ν(A).

The following results are classical.

THEOREM 4.2. (Furstenberg)
(1) There always exists a µ-stationary measure on CP1 [Fur].
(2) Let ν be a µ-stationary measure on CP1. Then, for almost every ω ∈�, there is a

measure λ(ω) ∈ P(CP1) such that the sequence of probability measures Xn(ω) · ν

converges weakly towards λ(ω) [Fur2].
(3) If 〈supp(µ)〉 is not an elementary group. Then, for almost every ω ∈�, there is

z(ω) ∈ CP1 such that λ(ω)= δz(ω) (Dirac in z(ω)) [Fur2].
(4) If 〈supp(µ)〉 is not an elementary group, then any µ-stationary measure on CP1 is

non-atomic [Wo].

4.1. The Lyapunov exponent. The positivity of the Lyapunov exponent is a central
result in the theory of random walks and is one of the key points of the proofs of
Theorems B and C.

THEOREM 4.3. (Furstenberg) If
(1)

∫
0

log ‖γ ‖ dµ(γ ) <+∞ and
(2) 〈supp(µ)〉 is not an elementary group,
then there exists λ > 0 such that P-almost surely and

1
n

log ‖Xn‖ −→ λ,

where λ is called the Lyapunov exponent of the random walk. The fact that (1/n) log ‖Xn‖

converges almost surely to λ ∈ [0,∞[ is a direct consequence of Kingman’s subadditive
ergodic theorem and requires the first hypothesis of the theorem (

∫
0

log ‖γ ‖ dµ(γ ) <
+∞). The fact that λ > 0 requires the second hypothesis and was first proved by
Furstenberg [Fur, Theorem 8.6] (see also [BLa]).
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4.2. A corollary of the positivity of the Lyapunov exponent. We work with the distance
induced by the Fubini–Study metric on CP1,

ds2
=

dx2
+ dy2

(1+ x2 + y2)2
,

and we denote the closed disc centred in x with radius α by D(x, α) and its complementary
set by (D(x, α))c. As a rather direct consequence of Theorem 4.3, we get the following
proposition (see [Hu] for a proof).

PROPOSITION 4.4. If
(1)

∫
0

log ‖γ ‖ dµ(γ ) <+∞ and
(2) 〈supp(µ)〉 is not an elementary group,
then there are constants 0< λ′ < λ′′ such that, for P-almost every ω ∈�, there is N (ω)
such that, for all n > N (ω), there are yn(ω), zn(ω) ∈ CP1 such that
(1) Xn(ω)((D(yn(ω), e−λ

′n))c)⊂ D(zn(ω), e−λ
′n) and

(2) Xn(ω)(D(yn(ω), e−2λ′′n))⊂ (D(zn(ω),
1
2 ))

c.

Remark 4.5.
• Almost surely, the sequence (zn(ω)), defined in the previous Proposition 4.4,

converges to the point z(ω), defined in Theorem 4.2(3). Indeed, let α be an
accumulation point of the sequence (zn) that is different from z. Let (ni )i∈N such
that limi→∞ zni = α. Theorem 4.2 gives

Xni · ν(D(α, (d(z, α))/2))→ δz(D(α, (d(z, α))/2))= 0.

We deduce, from Proposition 4.4, that ν(D(yni , e−λ
′ni ))→ 1. Extracting a new time,

one can suppose that yni → y ∈ CP1. Then ν({y})= 1, which contradicts the fact that
ν is a non-atomic measure.

• The limit z(ω) of the sequence (zn(ω)) has also a dynamical interpretation: it is the
projectivization of Oseledets’ contracting direction of Xn(ω)

−1. More precisely, when
applying Oseledets’ theorem to our situation (see [Ar]), we get, for almost every
ω, a one-dimensional vector space F(ω) in C2 (which depends measurably of ω)
such that

lim
n→∞

1
n

log ‖Xn(ω)
−1
· v‖ =

{
λ if v ∈ C2

− F(ω),
−λ if v ∈ F(ω)− {0, 0}.

The point z(ω) ∈ CP1 is simply the projectivization of the vectorial space F(ω)⊂ C2.

5. Brownian motion and discretization
This part deals with the Brownian motion. Firstly, we recall the classical conformal
invariance property of the Brownian motion. Secondly, we include a detailed treatment
of the discretization procedure of Furstenberg–Lyons–Sullivan which is close, but not
identical, to that of Lyons and Sullivan (see [LS, BL]).
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5.1. Brownian motion and conformal invariance. Let (M, g) be a connected
Riemannian manifold with bounded geometry. The Brownian motion on (M, g) is the
diffusion process associated to the Laplace–Beltrami operator 1. It is defined on a
probability space (�, P) and denoted by (Bt )t≥0. We will make use of the following
classical result of Lévy [Le] which states that conformal maps are Brownian paths
preserving up to a change of timescale.

THEOREM 5.1. (Lévy) Let (S1, g1) and (S2, g2) be two connected, Riemannian surfaces
and f : (S1, g1)→ (S2, g2) be a conformal map. Let (Bt )t∈[0,T [ be a Brownian motion
starting from a point b0 ∈ S1, running up to a stopping time T . Then the process
( f (Bt ))t∈[0,T [ is a changed time Brownian motion. In other words, there exists a family of
strictly increasing functions σω : [0, T (ω)[ −→ [0,+∞[ and a Brownian motion (B ′s)s≥0

starting from f (b0) such that
f ◦ B = B ′ ◦ σ.

Remarks 5.2.
(1) f ◦ B = B ′ ◦ σ means that, for all ω ∈� and for all t ∈ [0, T (ω)[, we have f ◦

Bt (ω)= B ′σω(t)(ω).
(2) If | f ′(z)| denotes the modulus of the derivative of f in z relative to the metrics g1

and g2, then the timescale change is explicitly given by

σω(t)=
∫ t

0
| f ′(Bu(ω))|

2 du.

5.2. Discretization of the Brownian motion. In the most general context, this procedure
associates a Markov chain in a discrete ∗-recurrent set X ⊂ M , with time homogeneous
transition probabilities, to the Brownian motion in a Riemannian manifold (M, g). Here
we explain the discretization in the case where M = 6̃ = D is the universal covering
space of a hyperbolic Riemann surface 6 of finite type, and X = π1(6) · 0. We follow
the presentation of [KL].

Let 6 be a hyperbolic Riemann surface of finite type. The fundamental group π1(6) of
6 acts on 6̃ (= D), the universal covering space of 6, by isometry for the Poincaré metric
of the disc. For all X ∈ π1(6), we define FX = X.D(0, δ) and VX = X.D(0, δ′), with
δ < δ′. We also require that δ and δ′ are small enough so that FX ∩ VX ′ =∅ for X 6= X ′.
Let (�x , Px ) be the set of Brownian paths starting from x in D with the Wiener measure
associated to the Poincaré metric in the hyperbolic disc. Also

⋃
X∈π1(6)

FX is a recurrent
set for the Brownian motion (because 6 is of finite type). Let X ∈ π1(6). For x ∈ FX ,
consider ε∂VX

x which is the exit measure of VX for a Brownian motion starting from x . The
Harnack constant CX of the couple (FX , VX ) is defined by

CX = sup
{

dε∂VX
x

dε∂VX
y

(z); x, y ∈ FX , z ∈ ∂VX

}
,

where (dε∂VX
x )/(dε∂VX

y ) is the Radon–Nikodym derivative. Notice that, as elements of
π1(6) act isometrically on D, the Harnack constant of (FX , VX ) does not depend on X ∈
π1(6) (i.e. there is a constant C such that for all X ∈ π1(6), CX = C). Hence, the family
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of couples (FX , VX )X∈π1(6) defines a system of Lyons–Sullivan (L–S) data in the sense of
Ballmann and Ledrappier [BL, p. 4].

If x ∈ VId and ω ∈�x , we define, recursively,

S0(ω)= inf{t ≥ 0; ω(t) /∈ VId}

and, for n ≥ 1,

Rn(ω)= inf
{

t ≥ Sn−1(ω); ω(t) ∈
⋃

FX

}
,

Sn(ω)= inf
{

t ≥ Rn(ω); ω(t) /∈
⋃

VX

}
.

We also define Xn(ω) by

X0(ω) = Id and w(Rn(ω)) ∈ FXn(ω) for n ≥ 1,

κn(ω) =
1
C

( dε
∂VXn (ω)
Xn(ω)·0

dε
∂VXn (ω)
ω(Rn(ω))

(ω(Sn(ω)))

)
.

By definition of C and κn , note that 1/C2
≤ κn ≤ 1.

Now we define (�0 × [0, 1]N, P0 ⊗ leb⊗N)= (�̃, P̃). Let

Nk : �̃ −→ N
(ω, α)= (ω, (αn)n∈N)= ω̃ 7−→ Nk(ω̃)

be the random variable defined, recursively, by

N0(ω̃) = 0,

Nk(ω, α) = inf{n > Nk−1(ω, α); αn < κn(ω)}.

The following theorem is stated in [LS] in the cocompact case but it is observed in [K,
Proposition 4] that it is also valid in the general set-up.

THEOREM 5.3. [LS, Theorem 6] The distribution law of X N1 defines a probability
measure µ on π1(6) which satisfies, for any Borel set A in D,

P̃(X N1 = x1; . . . ; X Nk = xk, ω(SNk ) ∈ A)= µ(x1)µ(x−1
1 x2) · · · µ(x−1

k−1xk)ε
∂Vxk
xk .0 (A).

COROLLARY 5.4. [LS] (X Nk )k∈N is the realization of a right random walk in π1(6) with
law µ: in other words, (γNk := X−1

Nk−1
X Nk )k∈N∗ is a sequence of independent, identically

distributed random variables with law µ.

The following two propositions will be useful later.

PROPOSITION 5.5. [KL, Corollaire 3.4] There is a constant T > 0 such that almost surely
SNk/k converges to T when k goes to infinity.

Note that there is a constant D such that, for all X ∈ π1(6) and for all z ∈ ∂FX , the
Green’s function GVX (X · 0, z)= D. This is because the Green’s function of a hyperbolic
disc centred at zero is radial. Hence the L–S data (FX , VX )X∈π1(6) are balanced (see
definition in [BL, p. 9]). This gives the next proposition.

PROPOSITION 5.6. [BL, Theorem 3.2(b)] The measure µ has full support and has a finite
first moment with respect to the distance d associated to the Poincaré metric in D: in other
words,

∫
γ∈π1(6)

d(γ · 0, 0) dµ(γ ) <+∞.
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6. Proof of Theorem B
Actually, we are going to prove the following theorem which is a reformulation of
Theorem B including the case where D is not onto. In this theorem, the Brownian motion
in D (respectively, CP1) is the one associated to the hyperbolic metric (respectively, any
complete metric in its conformal class).

THEOREM 6.1. Let 6 be a Riemann surface of finite type endowed with a branched
projective structure. Let D : 6̃→ CP1 be a developing map and ρ : π1(6)→ PSL(2, C)
be the monodromy representation associated to D. Assume that ρ is parabolic and non-
elementary. Let (x0, z0) be a couple of points in 6̃ × CP1 such that D(x0)= z0 and let h
be the germ of D−1 such that h(z0)= x0.

First case: D is onto. Then the two following equivalent assertions are satisfied.
(1) For almost every Brownian path ω starting from x0, D(ω(t)) does not have limit

when t goes to∞.
(2) For almost every Brownian path ω starting from z0, h can be analytically continued

along ω([0,∞[).

Second case: D is not onto. Then the two following equivalent assertions are satisfied.
(1) For almost every Brownian path ω starting from x0, there is a point z(ω) such that

limt→∞ D(ω(t))= z(ω).
(2) For almost every Brownian path ω starting from z0, h cannot be analytically

continued along ω([0,∞[).

Firstly, notice that, according to Remark 2.3, as the monodromy group 0 := ρ(π1(6))

is non-elementary, 6 is a hyperbolic Riemann surface. Notice also that in either of
the two cases (D onto and D not onto), the two conclusions are equivalent because of
the conformal invariance of the Brownian motion. More precisely, in the first case, if
(Bt )t∈[0,∞[ is a Brownian motion in 6̃, then (D ◦ Bσ−1(s))0≤s≤T is a Brownian motion
in CP1 stopped at time T = limt→∞ σ(t). If D ◦ Bt does not have limit when t goes
to ∞, then almost surely T =∞. Thus, almost surely, the germ h of a local inverse of
D can be analytically continued along the Brownian motion (defined for every positive
time) (D ◦ Bσ−1(s))0≤s≤∞. Conversely, if h can be analytically continued along a generic
Brownian path in CP1, then, almost surely, D ◦ Bt does not have limit when t goes to
∞. Otherwise, we would have T (ω) <∞ for ω belonging to a set A with strictly positive
Wiener measure. Hence, for all ω ∈ A, the germ h could not be analytically continued
along the Brownian path (D ◦ B

σ−1
ω (s))0≤s≤T (ω). The proof of the equivalence of the two

assertions in the second case (i.e. in the case where D is not onto) is similar.

6.1. Proof in the case where D is onto.

The discretization. In order to prove the theorem, we are going to use the discretization
procedure explained in the previous part and the contraction property 4.4 proved in §4. To
simplify the notation, we take x0 = 0 and ω ∈�0. If ω̃ = (ω, α) ∈ �̃, then the path ω can
be written as an infinite concatenation of paths

ω = β0 ∗ ω0 ∗ β1 ∗ ω1 ∗ · · · ,

https://doi.org/10.1017/etds.2015.132 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.132


Analytic continuation of holonomy germs of Riccati foliations 1901

where β0 = ω|[0,SN0 ]
, for k ≥ 0, ωk = ω|[SNk ,RNk+1 ]

and for k ≥ 1, βk = ω|[RNk ,SNk ]
. Let

ck(t)= X−1
Nk
· ωk(t − SNk ). The (ck)k∈N form a family of portions of Brownian paths

independent and identically distributed: the distribution law of their starting point is the
exit measure of VId = D(0, δ′) for a Brownian motion starting at zero and they are stopped
at time RNk+1 − SNk . So

ω = β0 ∗ X N0c0 ∗ β1 ∗ X N1c1 ∗ · · · .

Because of the ρ-equivariance,

D(ω)=D(β0) ∗ ρ(X N0)D(c0) ∗D(β1) ∗ ρ(X N1)D(c1) ∗ · · · .

Now we are going to push forward the right random walk X Nk by ρ in order to obtain a
right random walk in the monodromy group 0 and then apply Proposition 4.4. For this, we
write µ̃= ρ∗µ (where µ is the probability measure in π1(6) defined by the discretization
procedure of the previous part) and YNk = ρ(X Nk ). The process (YNk )k≥0 is a realization
of a right random walk in 0 with law µ̃. The parabolicity of the monodromy representation
implies the following (see [A, Theorem 3.4.2]) for a proof). There is a constant a
such that, for all α ∈ π1(6), we have log(‖ρ(α)‖)≤ a · d(0, α · 0). We deduce, using
Proposition 5.6, that

∫
α∈π1(6)

log(‖ρ(α)‖) dµ(α) <+∞ and so
∫
γ∈0

log(‖γ ‖) dµ̃(γ ) <
+∞. Then the hypotheses of Proposition 4.4 are satisfied. Consequently, there are 0<
λ′ < λ′′ such that, for P̃-almost every ω̃ ∈ �̃, there is N (ω̃) such that, for all k > N (ω̃),
there is yk(ω̃), zk(ω̃) ∈ CP1 such that:
(1) YNk ((D(yk, e−λ

′k))c)⊂ D(zk, e−λ
′k); and

(2) d(YNk (D(yk, e−2λ′′k)), zk)≥
1
2 .

Then the theorem follows from the next proposition.

PROPOSITION 6.2. For almost every ω̃, there is a sequence (kn)n∈N converging to infinity
such that

D(ckn ) ∩ D(ykn , e−2λ′′kn ) 6=∅ and D(ckn ) ∩ (D(ykn , e−λ
′kn ))c 6=∅.

Proposition 6.2 implies Theorem 6.1. Indeed, by Proposition 4.4, the previous
proposition implies that, for an infinite number of values of k, the portion ρ(X Nk )D(ck)

of the path D(ω) visits D(zk, e−λ
′k) and D(zk,

1
2 )

c, which proves that D(ω(t)) does not
have limit when t goes to infinity.

The technical lemma. We still have to prove Proposition 6.2. For that purpose, let us
define

Ek = {D(ck) ∩ D(yk, e−2λ′′k) 6=∅} ∩ {D(ck) ∩ (D(yk, e−λ
′k))c 6=∅}.

We need to prove that

P̃
(⋂

n≥0

⋃
k≥n

Ek

)
= 1. (3)

It turns out that there is a constant c such that, for all k ∈ N∗, P̃(Ek)≥ c/k,
which implies that

∑
k≥1 P̃(Ek)=∞. So, if the sequence (Ek)k∈N were a sequence of
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independent events, one could conclude that (3) is true using the Borel–Cantelli lemma.
Unfortunately, one can be convinced easily that the Ek are not independent: this is due to
the fact that the yk are not mutually independent. This observation makes the proof of (3)
more technical: instead of proving that P̃(Ek)≥ c/k, we are going to prove the following
lemma.

LEMMA 6.3. There exist constants c > 0 and N0 ∈ N∗ such that, for all N ≥ N0 and
k > N,

P̃(Ek | Ec
k−1, . . . , Ec

N )≥
c
k
.

Lemma 6.3 implies Proposition 6.2. Let us assume that Lemma 6.3 is proved. To prove
Proposition 6.2, it is enough to prove (3). So it is enough to prove that, for all N ∈ N,
P̃(
⋂
∞

n=N Ec
n)= 0. Let N ≥ N0. Then

P̃
( ∞⋂

n=N

Ec
n

)
= lim

k→∞
P̃
( k⋂

n=N

Ec
n

)
.

Let k > N , uk = P̃(
⋂k

n=N Ec
n) and αk = P̃(Ec

k |E
c
k−1, . . . , Ec

N ). Then

uk = αk · uk−1

= αkαk−1 · · · αN+1 · uN

≤

(
1−

c
k

)(
1−

c
k − 1

)
· · ·

(
1−

c
N + 1

)
· uN

=

k∏
n=N+1

(
1−

c
n

)
· uN

≤

k∏
n=N+1

e−c/n
· uN

= exp
(
−

k∑
n=N+1

c
n

)
· uN −→

k→∞
0.

So, for all N > N0, P̃(
⋂
∞

n=N Ec
n)= 0. And, if N < N0, then

⋂
∞

n=N Ec
n ⊂

⋂
∞

n=N0
Ec

n .
So P̃(

⋂
∞

n=N Ec
n)= 0, which finishes the proof of (3).

Proof of Lemma 6.3. The proof of this lemma will occupy the rest of this section. To do
it, we will need the following lemma.

LEMMA 6.4. There exists β > 0, r > 0, and N0 ∈ N such that, for all y ∈ CP1, there exists
x ∈ D(0, r) such that, for all k ≥ N0,

D(x, βe−2λ′′k)⊂D−1(D(y, e−2λ′′k)).

Proof. D is onto, so there exists r > 0 such that D(D(0, r))= CP1. Let 1/β =
supD(0,2r) |D′|. Let N0 ∈ N such that βe−2λ′′N0 < r . Let y ∈ CP1 and let x ∈ D(0, r)
such that D(x)= y. Let k ≥ N0 and x1 ∈ D(x, βe−2λ′′k). Then d(D(x),D(x1))≤
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supD(x,βe−2λ′′k ) |D
′
| · d(x, x1). As D(x, βe−2λ′′k)⊂ D(0, 2r), we deduce that

d(D(x),D(x1))≤ 1/β · β · e−2λ′′k
= e−2λ′′k , which finishes the proof. �

Let us notice that, for big enough k,

Ek = {D(ck) ∩ D(yk, e−2λ′′k) 6=∅}.

Indeed, for big enough k, the event D(ck) ∩ (D(yk, e−λ
′k))c 6=∅ is certain. To see this,

note that

{D(ck) ∩ (D(yk, e−λ
′k))c 6=∅} = {ck ∩D−1(D(yk, e−λ

′k))c 6=∅} =∅.

Moreover, if D is a compact disc in D, then D−1(D(yk, e−λ
′k)) ∩ D is a finite union of

topological discs whose diameters converge to zero when k goes to infinity, and the number
of these discs is bounded by the degree of D|D . So the sequence of continuous paths ck

from ∂VId to
⋃

Fγ cannot, for big enough k, be included in D−1(D(yk, e−λ
′k)).

Let N ∈ N big enough and k > N . Write Dk(ω̃)=D−1(D(yk(ω̃), e−2λ′′k)). We are
going to prove the following lemma.

LEMMA 6.5.

P̃(Ek | Ec
k−1, . . . , Ec

N )≥ inf
x∈D(0,r)

P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅}),

where r and β are given in Lemma 6.4.

Proof. From the proof of Proposition 4.4, we see that, by construction, yk depends only
on the set X N1 , . . . , X Nk (i.e. it depends on the set γN1 , . . . , γNk ) and ck depends only on
X−1

Nk
X Nk+1 = γNk+1 . As the γNi are mutually independent, we deduce that yk and ck are

independent. Thus

P̃(Ek | Ec
k−1, . . . , Ec

N )

≥ inf
y∈CP1

P̃({ck ∩D−1(D(y, e−2λ′′k)) 6=∅} | ck−1 ∩ Dk−1 =∅, . . . , cN ∩ DN =∅})

= inf
y∈CP1

P̃({ck ∩D−1(D(y, e−2λ′′k)) 6=∅})

(this is because the event {ck−1 ∩ Dk−1 =∅, . . . , cN ∩ DN =∅} and the event {ck ∩

D−1(D(y, e−2λ′′k)) 6=∅} are independent)

≥ inf
x∈D(0,r)

P̃({ck ∩ D(x, βe−2λ′′k) 6=∅})

(this last inequality comes from Lemma 6.4)

= inf
x∈D(0,r)

P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅})

(because the paths ck are independent and identically distributed). �

So we still have to prove the following lemma.
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LEMMA 6.6. There is a constant c such that, for big enough k,

inf
x∈D(0,r)

P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅})≥
c
k
.

Proof. The proof of this fact is a little bit technical. So we start with the general idea.
We will prove that the value of infx∈D(0,r) P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅}) is almost the
same as the probability that a Brownian path in C (with Euclidean metric) starting from
z = 1

2 would reach D(0, e−k) before reaching ∂D(0, 1). Using Brownian invariance by the
exponential map, this probability is equal to the probability that a plane Brownian motion
starting from z =−log 2 would reach the line x =−k before reaching the line x = 0. As
the two canonical coordinates of a plane Brownian motion are one-dimensional Brownian
motions, the previous probability is equal to P−log 2(T−k ≤ T0) (the probability that a
Brownian motion in R starting from −log 2 would reach the point −k before reaching the
point zero). For all x ∈ [−k; 0], the map f (x)= Px (T−k ≤ T0) is harmonic and satisfies
f (−k)= 1, f (0)= 0. We deduce that f (x)=−x/k. Hence the desired probability is
f (−log 2)= log 2/k.

Let us give a precise proof. Recall that Py is the Wiener measure of the Brownian motion
starting from y (Brownian motion associated to the Poincaré metric of the disc if y belongs
to the Poincaré disc and associated to the Euclidean metric if y belongs to C). Define Pm :=∫
Py dm(y), where m is the exit measure of VId = D(0, δ′) for a Brownian path starting

from zero. For a closed set A, and a Brownian path ω, denote the reaching time of the set
A by TA(ω). Let ε > 0 and x ∈ D(0, r). Choose γ ∈ π1(6) such that Fγ ∩ D(x, ε)=∅.
Then

inf
x∈D(0,r)

P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅})

≥ P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅} ∩ {γN1 = γ }).

As the event {γN1 = γ } = {X N1 = γ } contains the event {N1 = 1} ∩ {X1 = γ }, we deduce
that the previous probability is greater than

P̃({c0 ∩ D(x, βe−2λ′′k) 6=∅} ∩ {X1 = γ } ∩ {N1 = 1})

≥ P̃
(
{c0 ∩ D(x, βe−2λ′′k) 6=∅} ∩ {X1 = γ } ∩

{
α1 ≤

1
C2

})
=

1
C2 · Pm({TD(x,βe−2λ′′k ) ≤ T∪Fα } ∩ {TFγ ≤ T∪Fα }).

If k is big enough so that βe−2λ′′k < ε/2, then, by the strong Markov property, the last
quantity is

≥
1

C2 · Pm(TD(x,ε/2) ≤ T∪Fα ) · inf
y∈∂D(x,ε/2)

Py(TD(x,βe−2λ′′k ) ≤ T∂D(x,ε))

· inf
z∈∂D(x,ε)

Pz(TFγ ≤ T∪Fα ).

As x ∈ D(0, r), there exists a > 0 (which does not depend on x) such that

Pm(TD(x,ε/2) ≤ T∪Fα ) · inf
z∈∂D(x,ε)

Pz(TFγ ≤ T∪Fα )≥ a. �
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LEMMA 6.7. There exists b > 0 (which does not depend on x) such that

for all y ∈ ∂D
(

x,
ε

2

)
, Py(TD(x,βe−2λ′′k ) ≤ T∂D(x,ε))≥

b
k
.

Proof. For p ∈ C, denote the disc with centre p and radius α in C for the Euclidean metric
by Deucl(p, α). Let y ∈ ∂D(x, ε/2). There are constants c1 > 0, 0< c2 < 1 such that, for k
big enough, there is a biholomorphism 9k which identifies:
• D(x, βe−2λ′′k) and Deucl(0, c1e−2λ′′k) := D1(k);
• D(x, ε/2) and Deucl(0, c2) := D2;
• D(x, ε) and Deucl(0, 1) := D3; and
• y and c2.
By the conformal invariance of the Brownian motion

Py(TD(x,βe−2λ′′k ) ≤ T∂D(x,ε))= Pc2(TD1(k) ≤ T∂D3).

The exponential map sends:
• the line 11(k) := {x = log(c1e−2λ′′k)} onto ∂D1(k);
• the line 12 := {x = log(c2)} onto ∂D2; and
• the line 13 := {x = 0} onto ∂D3.
So, by the conformal invariance of the Brownian motion, there is a constant b such that,
for big enough k,

Pc2(TD1(k) ≤ T∂D3)= Plog(c2)(T11(k) ≤ T13)=
−log(c2)

2λ′′k − log(c1)
≥

b
k
. �

So we found a constant c = ab/C2 such that, for big enough k, infx∈D(0,r) P̃({c0 ∩

D(x, βe−2λ′′k) 6=∅})≥ c/k. This ends the proof of Lemma 6.3. �

This also completes the proof of the theorem in the case ‘D is onto’.

Remark 6.8. In Theorem B, we made the assumption that 0 is non-elementary (this
assumption was necessary to get the positivity of the Lyapounov exponent). Note that
the conclusion holds if 0 is conjugate to a subgroup of PSU(2, C). Indeed, in this case,
there exists k1 > 0 such that, for almost every ω̃ ∈� and for all n ∈ N, the path D(cn(ω̃))

contains two points at a spherical distance greater than k1. As a group conjugated to a
subgroup of PSU(2, C) quasi-preserves the spherical metric, and

there exists k2 > 0 such that, for all γ ∈ 0

and for all z, z′ ∈ CP1, d(γ · z, γ · z′) > k2 · d(z′z′).

So, almost surely, for all n ∈ N, the path D(ωn)= Yn ·D(cn) contains two points at a
distance greater than k1 · k2. So, almost surely, D(ω(t)) does not have limit when t goes
to infinity.

6.2. Proof in the case where D is not onto. Let (x0, z0) be a couple of points in 6̃ ×
CP1 such that D(x0)= z0 and let h be the germ of D−1 satisfying h(z0)= x0. We are
going to prove that, for almost every Brownian path ω starting from z0, the germ h cannot
be analytically continued along ω([0,∞[).
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Let U be the open set in CP1 defined by U :=D(6̃). Its complementary U c is a closed
0-invariant set (infinite because 0 is not elementary). As 0 is non-elementary, we are in
one of the following situations (see [S, Paragraph 1] for a proof):

(1) either 0 is dense in PSL(2, C);
(2) 0 is discrete; or
(3) replacing 0 by a subgroup of index two, if necessary, 0 is conjugate to a dense

subgroup of PSL(2, R).

Case (1) is impossible because 0 leaves invariant the closed set U c
6= CP1. In case (2), 0

is Kleinian. As the limit set 3(0) is the smallest closed 0-invariant set of CP1, 3(0)⊂
U c. As 0 is non-elementary, a theorem of Myrberg [My] (see also [Do]) asserts that the
logarithmic capacity of 3(0) is strictly positive. Hence 3(0) (and so U c) is visited by
the Brownian motion in finite time, which implies that h cannot be analytically continued
along a generic Brownian path. In case (3), U c contains a Jordan curve. So U c is also
visited by the Brownian motion.

7. Analytic continuation of holonomy germs of algebraic foliations

7.1. Riccati foliations and branched projective structures. Let (5, M, X, F) be a
Riccati foliation (see the definition in the introduction). Using the transversality of a
generic fibre with F , we can define a monodromy representation associated to such
foliations. Define {x1, . . . , xn} as the points in X such that the fibre over xi is an invariant
line. Denote 6 = X − {x1, . . . , xn}. Fix x0 ∈ X . Let α : [0, 1] →6 be a closed curve
in 6 based in x0. Let z ∈5−1(x0) := Fx0 . There is a unique path α̃ : [0, 1] → M lifting
α, belonging to the leaf through z and satisfying α̃(0)= z. The map z 7→ φα(z)= α̃(1)
is a biholomorphism of Fx0 that only depends on the homotopy class of α. Then a local
trivialization of the fibre bundle around x0 gives an identification Fx0

∼= CP1 and we obtain
a representation

ρ : π1(6, x0)−→ PSL(2, C)

called a monodromy representation of the foliation. Take any holomorphic section s : X→
M not invariant by the foliation (recall that such a section always exists; see Remark 1.3).
We can transport, by the foliation, the unique complex projective structure on Fx0 (or
on any other non-invariant fibre). We obtain a branched complex projective structure on
S := s(6)∼=6, whose monodromy representation is the monodromy representation of the
foliation (the branched points are the points of S where the foliation is tangential to S). By
definition, if p ∈ S is not a branched point and if h : (Fx0 , p0)→ (S, p) is a holonomy
germ of the foliation, then the analytic continuation of h−1 defines a developing map of
the complex projective structure on S.

We have just explained how to pass from a Riccati foliation to a complex projective
structure. Conversely, starting from a parabolic branched complex projective structure on
a Riemann surface 6 of finite type, we can obtain a Riccati foliation after suspending
the representation and compactifying with local models, as explained briefly in the
introduction (see also [DD] or [CDFG]).
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7.2. Proof of Theorem A. Item (1) is a direct application of Theorem B. Proof of item
(2) proceeds as follows. Let (si )i=0,1 be two sections of 5, Si = si (6) and Si = si (X).
Let g1 be a complete metric on S1 in its conformal class. Let h : (S1, p1)→ (S0, p0) be a
holonomy germ. We want to prove that h can be analytically continued along a Brownian
motion (Bt )t≥0 (with respect to the metric g1), starting at p1. Firstly, using the strong
Markov property, one can assume that p1 ∈ S1. Moreover, (Bt ) does not visit the points
{x1, . . . , xn}. Secondly, h can be written as h =D−1

0 ◦D1, where, for i ∈ {0, 1}, Di is a
developing map associated to the branched projective structure on Si . By the conformal
invariance of the Brownian motion, after time reparametrization, D1 ◦ Bt is a Brownian
motion in CP1 along which D−1

2 can be analytically continued, by Item (1). This concludes
the proof.

8. Proof of Theorem C
Let 6 be a hyperbolic Riemann surface of finite type. Let D : 6̃ = D→ CP1 and ρ :
π1(6)→ PSL(2, C) be a couple developing map-monodromy representation associated
with a branched complex projective structure on 6. Assume that this structure is parabolic
and recall that, with this hypothesis, ρ is necessarily non-elementary. We need to prove
that, for almost every Brownian path ω starting at 0 ∈ D, there exists z(ω) ∈ CP1 such that

1
t
·

∫ t

0
δD(ω(s)) · ds −→

t→∞
δz(ω).

As in the proof of the previous theorem, we are going to use the discretization procedure
of Furstenberg, Lyons and Sullivan. Nevertheless, the notation is slightly modified. If ω̃ =
(ω, α) ∈ �̃, then the infinite path ω can be written as an infinite concatenation of paths

ω = β0 ∗ ω0 ∗ ω1 ∗ · · · ,

where β0 = ω|[0,SN0 ]
and, for k ≥ 0, ωk = ω|[SNk ,SNk+1 ]

. For k ≥ 0, we define ck := X−1
Nk
·

ωk . Then
ω = β0 ∗ X N0c0 ∗ X N1c1 ∗ · · · .

Using ρ-equivariance of D,

D(ω)=D(β0) ∗ ρ(X N0)D(c0) ∗ ρ(X N1)D(c1) ∗ · · · .

The sequence of random variables X Nk is a realization of a right random walk in π1(6)

with law µ and the sequence YNk = ρ(X Nk ) is a realization of a right random walk in
ρ(π1(6)) with law µ̃= ρ∗µ. Let yk(ω̃) and zk(ω̃) be the two sequences of random points
in CP1 defined in Proposition 4.4. According to Remark 4.5, almost surely zk(ω̃)→ z(ω̃).

In order to prove the theorem, it is enough to prove that, for P̃-almost every ω̃ =
(ω, α) ∈ �̃ and for all ε > 0,

lim
t→∞

1
t
· leb{u ∈ [0, t] such that D(ω(u)) ∈ D(z(ω̃), ε)} = 1. (4)

For k ≥ 0, define

Tk(ω̃)= leb{t ∈ [SNk , SNk+1 ] such that D(ck(ω̃)(t)) ∈ D(yk(ω̃), e−λ
′k)}.

We get the following proposition.
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PROPOSITION 8.1. Almost surely limk→∞ Tk = 0.

Before proving this proposition, let us show why this implies the theorem. First, if we
assume that almost surely limk→∞ Tk = 0, then, almost surely,

lim
n→∞

1
n

n−1∑
k=0

Tk = 0. (5)

Now the fact that equality (5) implies (4) is a direct consequence of the following three
facts.
(1) According to Proposition 5.5, there is a constant T such that, almost surely,

lim
n→∞

SNn

n
= T .

(2) According to Remark 4.5, almost surely,

lim
k→∞

zk = z.

(3) According to Proposition 4.4, almost surely,

ρ(X Nk )((D(yk, e−λ
′k))c)⊂ D(zk, e−λ

′k).

8.1. Beginning of the proof of Proposition 8.1. Using Borel–Cantelli, it is enough to
prove that, for all ε > 0, P̃(Tk ≥ ε)≤ 2/k2. Let K be a positive constant (to be determined
later) and define

Ak = {ω̃ s.t. c0(ω̃) ∩ D(0, K log(k))c 6=∅}.

We are going to prove the following lemma.

LEMMA 8.2.
P̃(Tk ≥ ε)≤ P̃(Ak)+ sup

y∈CP1
P0(τy,k ≥ ε),

where τy,k = leb{t ∈ [0, T∂D(0,K log k)] s.t. D(ω(t)) ∈ D(y, e−λ
′k)}.

Proof. Let us define

Uk,y = leb{t ∈ [SNk , SNk+1 ] s.t. D(ck(ω̃)(t)) ∈ D(y, e−λ
′k)},

Vk,y = leb{t ∈ [SN0 , SN1 ] s.t. D(c0(ω̃)(t)) ∈ D(y, e−λ
′k)}.

As explained in the proof of Theorem 6.1, ck and yk are independent. So

P̃(Tk ≥ ε) ≤ sup
y∈CP1

P̃(Uk,y ≥ ε)

= sup
y∈CP1

P̃(Vk,y ≥ ε)

= sup
y∈CP1

(P̃({Vk,y ≥ ε} ∩ Ak)+ P̃({Vk,y ≥ ε} ∩ Ac
k))

≤ P̃(Ak)+ sup
y∈CP1

P0(τy,k ≥ ε).

The last inequality is due to the fact that, for all y ∈ CP1, {Vk,y ≥ ε} ∩ Ac
k ⊂ {τy,k ≥ ε} ×

[0; 1]N, which implies that P̃({Vk,y ≥ ε} ∩ Ac
k)≤ P0(τy,k ≥ ε). �
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Now we are going to bound the two terms of the right side of the inequality in
Lemma 8.2 by 1/k2. For the term P̃(Ak), we have the following proposition.

PROPOSITION 8.3. There exists K such that for k big enough, P̃(Ak)≤ 1/k2.

Proof. In [DD2, Proposition 2.15], the authors prove that there is α > 0 such that

E[eαSN1 ] = M <∞.

Using Markov inequality, one deduces that

P̃[SN1 ≥ t] = P̃[eαSN1 ≥ eαt
] ≤ e−αtE[eαSN1] = Me−αt .

If ω is a Brownian path, define

ξt (ω)= sup
0≤u≤t

d(ω(0), ω(t)).

Let C1 > 0 satisfying αC1 > 2. Then

P̃(Ak) ≤ P̃(Ak ∩ {SN1 ≥ C1 log(k)})+ P̃(Ak ∩ {SN1 ≤ C1 log(k)})

≤ P̃(SN1 ≥ C1 log(k))+ P0(ξC1 log(k) ≥ K log(k)).

The first term of the right hand side satisfies

P̃(SN1 ≥ C1 log(k))≤ Me−αC1 log k
≤

1
2k2 ,

for big enough k. In order to bound the second term, we will use the following estimate
(see [P, Paragraph 6] for a proof). There is c > 0 such that, for all y ∈ D and for all r ≥ 2,
Py(ξ1 ≥ r)≤ e−cr2

. Hence

Ey[eξ1 ] = 1+
∫

u>0
euPy(ξ1 ≥ u) du

≤ 1+
∫

u>0
eu−cu2

du.

The last integral converges. Let a4 be the constant satisfying ea4 = 1+
∫

u>0eu−cu2
du.

Denote the integral part of t by btc. Using successively the Markov inequality and the
strong Markov property of Brownian motion, gives

P0(ξt ≥ r) ≤ e−rE[eξt ]

≤ e−rE
[

exp
(btc−1∑

k=0

sup
k≤s≤k+1

d(ω(k), ω(s))
)]

≤ e−r
·

(
sup
y∈D

Ey[eξ1 ]

)t

.

For t = C1 log(k) and r = K log(k), one gets

P0(ξC1 log(k) ≥ K log(k))≤ k−K
· ka4C1 .

Consequently

P̃(Ak)≤
1

2k2 + k−K+a4C1 .

Choose K big enough so that −K + a4C1 <−2. We get that, for k big enough, P̃(Ak)≤

1/k2. �
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Up to now, we have fixed K to satisfy the previous proposition. In order to bound
the second term supy∈CP1 P0(τy,k ≥ ε) of the inequality in Lemma 8.2, we will need the
following proposition.

PROPOSITION 8.4. There exist two positive constants α and β such that, for all y ∈ CP1

and for k big enough, the intersection of D−1(D(y, eλ
′k)) with D(0, K log k) is included

in a union of at most kα discs with radius e−βk .

Proof. Let us fix y ∈ CP1. Let F be the Dirichlet fundamental domain associated to the
base point 0 ∈ D given by

F = {x ∈ D s.t. ∀γ ∈ π1(6), d(0, x)≤ d(γ · 0, x)}.

Let D = F ∩ D(0, K log k). First, note that

D(0, K log k)⊂
⋃

d(0,γ ·0)≤2K log k

γ · D. (6)

To see this, take z ∈ D(0, K log k). There exists γ ∈ π1(6) such that z ∈ γ · F . We have
d(0, γ−1

· z)= d(γ · 0, z)≤ d(0, z)≤ K log k. So z ∈ γ · D. Moreover, d(0, γ · 0)≤
d(0, z)+ d(z, γ · 0)≤ 2 · d(0, z)≤ 2K log k.

Second, the ρ-equivariance of D gives, for every γ ∈ π1(6),

D−1(D(y, e−λ
′k)) ∩ γ D = γ · (D−1(ρ(γ−1)D(y, e−λ

′k)) ∩ D).

A direct calculation gives

‖ρ(γ )‖2 = sup
z∈CP1

|ρ(γ−1)′(z)|. (7)

Indeed, if ρ(γ−1)=
(

a b
c d

)
, then

‖ρ(γ )‖2 = sup
V∈C2−{0;0}

‖ρ(γ ) · V ‖2

‖V ‖2

= sup
W∈C2−{0;0}

‖W‖2

‖ρ(γ−1) ·W‖2

= sup
(z,w)∈C2−{0;0}

|z|2 + |w|2

|az + bw|2 + |cz + dw|2

= sup
z∈C

|z|2 + 1
|az + b|2 + |cz + d|2

= sup
z∈C

1
|cz + d|2

·
1+ |z|2

1+ |ρ(γ−1)(z)|2

= sup
z∈CP1

|ρ(γ−1)′(z)|.

Moreover, as the monodromy representation is parabolic, we have already seen, at the
beginning of the proof of Theorem B, that there exists a constant a such that

log ‖ρ(γ )‖ ≤ a · d(0, γ · 0). (8)
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From equations (7) and (8), we deduce that if γ ∈ π1(6) is such that d(0, γ · 0)≤
2K log k, then

sup
z∈CP1

|ρ(γ−1)′(z)| ≤ k4aK ,

which implies that

ρ(γ−1)D(y, e−λ
′k)⊂ D(ρ(γ−1)y, k4aK

· e−λ
′k).

If α1 is a constant such that 0< α1 < λ
′, then, for big enough k, k4aK

· e−λ
′k
≤ e−α1k .

This implies that, for big enough k and γ satisfying d(0, γ · 0)≤ 2K log k,

D−1(D(y, e−λ
′k)) ∩ γ D ⊂ γ · (D−1(D(ỹ, e−α1k)) ∩ D) (9)

with ỹ = ρ(γ−1)y. To conclude, we will need the following lemma.

LEMMA 8.5. There exist constants N ∈ N and β > 0 such that, for big enough k and for
every ỹ ∈ CP1, the set D−1(D(ỹ, e−α1k)) ∩ D is included in an union of at most N discs
with radius at most e−βk .

Before proving the lemma, let us finish the proof of Proposition 8.4. Using (9) and
the previous lemma, we get that, for all γ satisfying d(0, γ · 0)≤ 2K log k, the set
D−1(D(y, e−λ

′k)) ∩ γ D is included in an union of at most N discs with radius at
most e−βk . Now, noting that there is α > 0 such that Card{γ ∈ π1(6) s.t. d(0, γ · 0)≤
2K log k} ≤ kα and using equation (6), we get the desired result. �

Proof of Lemma 8.5. Recall that as the projective structure is parabolic, for any puncture
p in 6, there is a neighbourhood V of p that satisfies the following. If H is the
connected component of proj−1(V ) which meets the fundamental domain F , then there
is a bi-Lipschitz biholomorphism φ̃ :H≥1→H such that some developing map satisfies
D ◦ φ̃(τ )= τ . Denote the set of all such components for each puncture by H1, . . . ,Hr .
Recall that D = F ∩ D(0, K log k) and define F0 = D ∩ (

⋃
j H j )

c. We are going to
analyse the intersection of D−1(D(ỹ, e−λ

′n)) with the compact part F0 and with D − F0

separately.

The compact part F0. Let us start with a heuristic argument. D′ has a finite number of
zeros ai in F0. Let Vi be a small neighbourhood of ai . |D′| is bounded away from zero on
F0 −

⋃
Vi . So, if ỹ ∈ CP1 and α is small, D−1(D(ỹ, α))(

⋂
F0 −

⋃
Vi ) is a finite union

of discs with radius of the order of α. For each i , in local coordinates (for Vi and D(Vi ))
the map D writes: D(z)= zni . This implies that D−1(D(ỹ, α)) ∩ Vi is the union of at
most ni discs with radius at most α1/ni .

Now we will give a rigorous proof. Denote the ε-neighbourhood of F0 by Nε(F0)=

{τ ∈ D s.t. d(τ, F0)≤ ε}. As D is a non-constant holomorphic map, there is a constant N
such that any ỹ has at most N preimages by D in Nε(F0). Moreover, in [AH, Lemma 5.1],
we proved that there exists C0 > 0 such that, for any ỹ ∈D(Nε(F0)) and any z ∈ F0,

d(D(z), ỹ)≥ C0
∏

D(w)=ỹ,w∈Nε(F0)

d(z, w).
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Let ỹ ∈ CP1. If ỹ /∈D(Nε(F0)), then, for big enough k, D−1(D(ỹ, e−λ
′k)) ∩ F0 =∅.

Otherwise, ỹ ∈D(Nε(F0)). Then if N (ỹ) denotes the number of preimages of ỹ in Nε(F0),
and if one takes z ∈D−1(D(ỹ, e−λ

′k)) ∩ F0, one gets

e−λ
′k
≥ d(D(z), ỹ) (10)

≥ C0
∏

D(w)=ỹ,w∈F0+ε

d(z, w) (11)

≥ C0

(
inf

D(w)=ỹ,w∈Nε(F0)
d(z, w)

)N (ỹ)
. (12)

This implies that

inf
D(w)=ỹ,w∈Nε(F0)

d(z, w)≤
(

e−λ
′k

C0

)1/N

.

As there exists β such that, for big enough k, (e−λ
′k/C0)

1/N
≤ e−βk , we get that z ∈

D(w, e−βk) for w a preimage of ỹ by D in F0 + ε.

The non-compact part. We are going to analyse the intersection of the set
D−1(D(ỹ, e−λ

′k)) with each portion of horodisc D ∩H j . Recall that, for each j , there
is a bi-Lipschitz biholomorphism φ̃ j : {Im(z)≥ 1} →H j such that some developing
map satisfies D ◦ φ̃ j (z)= z (see Remark 2.3). As φ̃ j is bi-Lipschitz (see Lemma 2.4),
it preserves the lengths modulo multiplications by constants. Hence, we can assume
that H j = {Im(z)≥ 1}, the developing map is the inclusion ι : {Im(z)≥ 1} → CP1 and
D ∩H j = Dhyp(i, K log k) ∩ [− 1

2 ,
1
2 ] × [1,+∞[. To evaluate the size of the preimage

of the intersection of a disc with spherical radius e−α1k with D ∩H j , we just have to
compare the spherical metric dssph and the hyperbolic one dshyp inside Dhyp(i, K log k) ∩
[−

1
2 ,

1
2 ] × [1,+∞[. Thus

dshyp =
1+ x2

+ y2

y
· dssph.

Furthermore, there is α > 0 such that Dhyp(i, K log k) ∩ [− 1
2 ,

1
2 ] × [1,+∞[⊂ [−

1
2 ,

1
2 ] ×

[1; kα], so that dshyp ≤ (
5
4 + k2α) · dssph. This implies that a disc with spherical radius

e−α1k is included in a disc with hyperbolic radius e−α1k
· ( 5

4 + k2α). There is β such that,
for k big enough, e−α1k

· ( 5
4 + k2α)≤ e−βk . This ends the proof of Lemma 8.5. �

8.2. End of the proof of Proposition 8.1. Using the previous proposition, we are going
to give a bound for the second term of the right side of the inequality in Lemma 8.2:
namely, we are going to prove that, for all ε > 0 and for k big enough,

sup
y∈CP1

P0(τy,k ≥ ε)≤
1
k2 . (13)

Then a combination of Lemma 8.2, inequality (13) and Proposition 8.3 implies that P̃(Tk ≥

ε)≤ 2/k2, which ends the proof of Proposition 8.1 and of the theorem.
The proof of equation (13) proceeds as follows. Fix y ∈ P1 and ε > 0. We recall that

τy,k = leb{t ∈ [0, T∂D(0,K log k)] s.t. D(ω(t)) ∈ D(y, e−λ
′k)}
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and that, according to Proposition 8.4,

D−1(D(y, eλ
′k))

⋂
D(0, K log k)⊂

⋃
i∈I

Di ,

where Di are hyperbolic discs with radius e−βk and Card(I )≤ kα . So

P0(τy,k ≥ ε) ≤
1
ε
· E0[τy,k]

≤
1
ε
·

∑
i∈I

E0[τDi ],

where τDi = leb{t ∈ [0,∞[ s.t. ω(t) ∈ Di }. Let Di be such an hyperbolic disc with
hyperbolic radius e−βk . Then

E0[τDi ] =

∫
Di

GD(0, z) d hyp(z),

where GD(0, z)=−(1/π) log |z| is the Green’s function. In order to give an upper bound
of this integral, we distinguish two cases.
• Either Di ⊂ Deucl(0, 1

4 )
c and −log|z| ≤ log 4 for every z ∈ Di . Hence∫

Di
GD(0, z) d hyp(z)≤ cst · volhyp(Di ) ∼

k→0
cst · e−2βk .

• Or D ⊂ Deucl(0, 1
2 ) and, for every z ∈ Di , d hyp(z)= |dz|2/(1− |z|2)2 ≤ 16

9 · |dz|2.
In polar coordinates, z = reiθ and |dz|2 = r · dr · dθ . Hence∫

Di

GD(0, z) d hyp(z)≤ cst ·
∫

Di

−log(r)r dr dθ.

As −r log r ≤ e−1 on [0, 1], we get that∫
Di

GD(0, z) d hyp(z) ≤ cst ·
∫

Di

dr dθ

≤ cst · e−βk .

The last line is due to the fact that the hyperbolic disc Di with radius e−βk is also a
Euclidean disc with radius less than e−βk .

So, for k big enough, any hyperbolic disc Di with radius e−βk , satisfies E0[τDi ] ≤

cst · e−βk . So
1
ε
·

∑
i∈I

E0[τDi ] ≤ cst · Card(I ) · e−βk
≤ cst · kα · e−βk

≤
1
k2

for big enough k.
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