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Abstract

We use the theory of Kolyvagin systems to prove (most of) a refined class number
formula conjectured by Darmon. We show that, for every odd prime p, each side of
Darmon’s conjectured formula (indexed by positive integers n) is ‘almost’ a p-adic
Kolyvagin system as n varies. Using the fact that the space of Kolyvagin systems is free
of rank one over Zp, we show that Darmon’s formula for arbitrary n follows from the
case n= 1, which in turn follows from classical formulas.

1. Introduction

In this paper we use the theory of Kolyvagin systems to prove (most of) a conjecture of Darmon
from [Dar95].

In [Gro88, Conjecture 4.1], inspired by work of the first author and Tate [MT87], and of
Hayes [Hay88], Gross conjectured a ‘refined class number formula’ for abelian extensions K/k
of global fields. Attached to this extension (and some chosen auxiliary data) there is a generalized
Stickelberger element θK/k ∈ Z[G], where G := Gal(K/k), with the property that, for every
complex-valued character χ of G, χ(θK/k) is essentially the L-value L(0, χ) (modified by the
chosen auxiliary data). Gross’ conjectural formula is a congruence for θK/k, modulo a certain
specified power of the augmentation ideal of Z[G], in terms of a regulator that Gross defined.

In a very special case, Darmon formulated an analogue of Gross’ conjecture involving first
derivatives of L-functions at s= 0. Suppose F is a real quadratic field, and Kn := F (µn) is the
extension of F generated by nth roots of unity, with n prime to the conductor of F/Q. Darmon
defined a Stickelberger-type element θ′n ∈K×n ⊗ Z[Gal(Kn/F )], interpolating the first derivatives
L′(0, χωF ), where ωF is the quadratic character attached to F/Q and χ runs through even
Dirichlet characters of conductor n. Darmon conjectured that θ′n is congruent, modulo a specified
power of the augmentation ideal, to a regulator that he defined. See § 3 and Conjecture 3.8 below
for a precise statement.

Our main result is a proof of Darmon’s conjecture ‘away from the 2-part’. In other words,
we prove that the difference of the two sides of Darmon’s conjectured congruence is an element
of 2-power order.

The idea of our proof is a simple application of the results proven in [MR04a]. For every odd
prime p we show that although neither the left-hand side nor the right-hand side of Darmon’s
conjectured congruence (as n varies) is a ‘Kolyvagin system’ as defined in [MR04a], each side
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Refined class number formulas and Kolyvagin systems

is almost a Kolyvagin system; moreover, both sides fail to be Kolyvagin systems in precisely
the same way. That is, we show that the left-hand side and right-hand side form what we call
in this paper pre-Kolyvagin systems in the sense that they each satisfy the specific set of local
and global compatibility relations given in Definition 6.2 below. It seems that pre-Kolyvagin
systems are what tend to occur ‘in nature’, while Kolyvagin systems satisfy a cleaner set of
axioms. We show that the two concepts are equivalent, by constructing (see Proposition 6.5) a
natural transformation T that turns pre-Kolyvagin systems into Kolyvagin systems and has the
properties that:

– T does not change the term associated to n= 1; and

– T is an isomorphism from the Zp-module of pre-Kolyvagin systems to the Zp-module of
Kolyvagin systems.

Since it was proved in [MR04a] that (in this situation) the space of Kolyvagin systems is a free
Zp-module of rank one, it follows that if two pre-Kolyvagin systems agree when n= 1, then
they agree for every n. In the case n= 1, Darmon’s congruence follows from classical formulas
for L′(0, ωF ), so we deduce that (the p-part, for every odd prime p of) Darmon’s conjectured
congruence formula holds for all n.

Darmon’s conjecture begs for a generalization. A naive generalization, even just to the case
where F is a real abelian extension of Q, is unsuccessful because the definition of Darmon’s
regulator does not extend to the case where [F : Q]> 2. In a forthcoming paper we will use the
ideas and conjectures of [Rub96] to show how both Gross’ and Darmon’s conjectures are special
cases of a much more general conjecture. In the current paper we treat only Darmon’s conjecture
because it can be presented and proved in a very concrete and explicit manner.

The paper is organized as follows. In § 2 we describe our setting and notation, and in § 3
we state Darmon’s conjecture and our main result (Theorem 3.9). In § 4 we recall some work
of Hales [Hal85] on quotients of powers of augmentation ideals, that will enable us to translate
the definition of Kolyvagin system given in [MR04a] into a form that will be more useful for our
purposes here. In § 5 we give the definition of a Kolyvagin system (for the Galois representation
Zp(1)⊗ ωF ). In § 6 we define pre-Kolyvagin system, and give an isomorphism between the space
of pre-Kolyvagin systems and the space of Kolyvagin systems. In § 7 (respectively, § 8) we show
that the ‘Stickelberger’ side (respectively, regulator side) of Darmon’s formula is a pre-Kolyvagin
system as n varies. Finally, in § 9 we combine the results of the previous sections to prove
Theorem 3.9.

2. Setting and notation

Fix once and for all a real quadratic field F , and let f be the conductor of F/Q. Let ω = ωF be
the quadratic Dirichlet character associated to F/Q, and τ the non-trivial element of Gal(F/Q).
If M is a Gal(F/Q)-module, we let M− be the subgroup of elements of M on which τ acts as −1.

Throughout this paper ` will always denote a prime number. Let N denote the set of
squarefree positive integers prime to f . If n ∈N let n+ be the product of all primes dividing n
that split in F/Q, and r(n) ∈ Z>0 the number of prime divisors of n+:

n+ :=
∏

`|n,ω(`)=1

`,

r(n) := #{` : `|n+}= #{` : `|n and ` splits in F}.
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For every n ∈N let µn be the Galois module of nth roots of unity in Q̄, define

Γn := Gal(F (µn)/F )∼= Gal(Q(µn)/Q)∼= (Z/nZ)×,

and let In denote the augmentation ideal of Z[Γn], which is generated over Z by {γ − 1 : γ ∈ Γn}.
There is a natural isomorphism

Γn ∼= In/I
2
n (1)

defined by sending γ ∈ Γn to γ − 1 (mod I2
n). If m|n then we can view Γm either as the quotient

Gal(F (µm)/F ) of Γn, or as the subgroup Gal(F (µn)/F (µn/m)). With the latter identification
we have

Γn =
∏
`|n

Γ`, In/I
2
n =

⊕
`|n

I`/I
2
` ,

where the product and the sum are taken over primes ` dividing n.
We will usually write the group operation in multiplicative groups such as F× with standard

multiplicative notation (for example, with identity element 1). However, when dealing with
‘mixed’ groups such as F× ⊗ Irn/Ir+1

n , we will write the operation additively and use 0 for the
identity element.

Fix an embedding Q̄ ↪→ C.

3. Statement of the conjecture

In this section we state our modified version of Darmon’s conjecture (mostly following [Dar95])
and our main result (Theorem 3.9).

If n ∈N , let ζn ∈ µn be the inverse image of e2πi/n under the chosen embedding Q̄ ↪→ C, and
define the cyclotomic unit

αn :=
∏

γ∈Gal(Q(µnf )/Q(µn))

γ(ζnf − 1)ωF (γ) ∈ F (µn)×

and the ‘first derivative θ-element’

θ′n =
∑
γ∈Γn

γ(αn)⊗ γ ∈ F (µn)× ⊗ Z[Γn].

Remark 3.1. The element θ′n is an ‘L-function derivative evaluator’ in the sense that, for every
even character χ : Γn→ C×, classical formulas (see, for example, [Sta80, § 2]) give

(log | · | ⊗ χ)(θ′n) :=
∑
γ∈Γn

χ(γ) log |γ(αn)|=−2L′n(0, ωFχ),

where Ln(s, ωFχ) is the Dirichlet L-function with Euler factors at primes dividing n removed,
and | · | is the absolute value corresponding to our chosen embedding Q̄ ↪→ C.

Suppose n ∈N . Let Xn be the group of divisors of F supported above n∞, and let
En :=OF [1/n]×, the group of n-units of F . We will write the action of Z[Γn] on En additively,
so in particular (1− τ)En = {ε/ετ : ε ∈ En}.

Let λ0 ∈Xn be the archimedean place of F corresponding to our chosen embedding Q̄ ↪→ C.

Lemma 3.2. Suppose n ∈N , and let r = r(n).

(i) We have X−n =X−n+
, E−n = E−n+

, and (1− τ)En = (1− τ)En+ .
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(ii) The group (1− τ)En is a free abelian group of rank r + 1, and is a subgroup of finite index
in E−n .

(iii) The group X−n is a free abelian group of rank r + 1. If n+ =
∏r
i=1 `i, and `i = λiλ

τ
i , then

{λ0 − λτ0 , λ1 − λτ1 , . . . , λr − λτr , } is a basis of X−n .

Proof. The only part that is not clear is that (1− τ)En is torsion-free, i.e. −1 /∈ (1− τ)En. Let
d > 1 be a squarefree integer such that F = Q(

√
d). If xτ =−x, then x/

√
d ∈Q, so x is not a

unit at the primes dividing d. Since n is prime to d, we cannot have x ∈ En. 2

Definition 3.3. A standard Z-basis of X−n is a basis of the form described in Lemma 3.2(iii).
Given a standard basis of X−n , a Z-basis {ε0, . . . , εr} of (1− τ)En will be said to be oriented if
the (regulator) determinant of the logarithmic embedding

(1− τ)En −→X−n ⊗ R, ε 7→
∑

λ|n+∞

log |ε|λ · λ

with respect to the two bases is positive. Concretely, this regulator is the determinant of the
matrix whose entry in row i and column j is log |εj |λi .

Remark 3.4. Choosing a standard basis of X−n is equivalent to ordering the prime divisors `i of
n+ and choosing one prime of F above each `i.

Any basis of (1− τ)En can be oriented either by reordering the basis, or inverting one of the
basis elements.

Definition 3.5. Suppose n ∈N and λ is a prime of F dividing n+. Define a homomorphism

[ · ]nλ : F× −→ In/I
2
n

by

[x]nλ = [x, Fλ(µn)/Fλ]− 1 (mod I2
n)

where [x, Fλ(µn)/Fλ] ∈ Γn is the local Artin symbol.

Note that if ordλ(x) = 0, then [x, Fλ(µn)/Fλ] belongs to the inertia group Γ` ⊂ Γn, so
[x]nλ = [x]`λ ∈ I`/I2

` and [x]n/`λ = 0. In general, if d|n then

[x]nλ = [x]dλ + [x]n/dλ ∈ Id/I2
d ⊕ In/d/I2

n/d = In/I
2
n.

Definition 3.6 (See [Dar95, p. 308]). Suppose n ∈N , and let r = r(n). Choose a standard
basis {λ0 − λτ0 , . . . , λr − λτr} of X−n and an oriented basis {ε0, . . . , εr} of (1− τ)En, and define
the regulator Rn ∈ E−n ⊗ Irn/Ir+1

n by

Rn :=

∣∣∣∣∣∣∣∣∣
ε0 ε1 · · · εr

[ε0]nλ1
[ε1]nλ1

· · · [εr]nλ1
...

...
...

[ε0]nλr [ε1]nλr · · · [εr]nλr

∣∣∣∣∣∣∣∣∣ ∈ (1− τ)En ⊗ Irn/Ir+1
n .

This determinant, and the ones that follow below, are meant to be evaluated by expanding by
minors along the top row, i.e.

Rn :=
r∑
j=0

(−1)jεj ⊗ det(A1j), (2)
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where A1j is the r × r matrix (with entries in In/I2
n) obtained by removing the first row and jth

column of the matrix above.

Note that this definition of Rn does not depend on the choice of Z-bases. The possible
ambiguity of ±1 is removed by requiring that the basis of (1− τ)En be oriented.

Let hn denote the ‘n-class number’ of F , i.e. the order of the ideal class group Pic(OF [1/n]).
For the rest of this section we write simply r instead of r(n) for the number of prime factors
of n+.

Theorem 3.7 (Darmon [Dar95, Theorem 4.2]). For every n ∈N , we have

θ′n ∈ F (µn)× ⊗ Irn.

For n ∈N , let θ̃′n denote the image of θ′n in F (µn)× ⊗ Irn/Ir+1
n . Let s be the number of

prime divisors of n/n+. The following is a slightly modified (see Remark 3.11(i) below) version
of Darmon’s ‘leading term’ conjecture [Dar95, Conjecture 4.3].

Conjecture 3.8. For every n ∈N , we have

θ̃′n =−2shnRn in (F (µn)×/{±1})⊗ Irn/Ir+1
n .

The main theorem of this paper is the following.

Theorem 3.9. For every n ∈N , we have

θ̃′n =−2shnRn in F (µn)× ⊗ Irn/Ir+1
n ⊗ Z[1/2].

In other words, the p-part of Conjecture 3.8 holds for every odd prime p; in still other words,
θ̃′n + 2shnRn has 2-power order in F (µn)× ⊗ Irn/Ir+1

n .
A key step in the proof of Theorem 3.9 is the following observation.

Proposition 3.10 (Darmon [Dar95, Theorem 4.5(1)]). Conjecture 3.8 holds if n= 1.

Proof. When n= 1 we have r = 0, Irn/I
r+1
n = Z, θ̃′1 = θ′1 = α1 ∈ O×F , and R1 = ε/ετ , where ε is

a generator of O×F /{±1} and |ε/ετ |= |ε|2 > 1 at our specified archimedean place. Dirichlet’s
analytic class number formula shows that

−1
2 log |α1|= L′(0, ωF ) = hF log |ε|= 1

2hF log |ε/ετ |,

where hF = h1 is the class number of F . Hence α1 =±(ε/ετ )−hF in O×F . 2

Remarks 3.11.

(i) In Darmon’s formulation [Dar95, Conjecture 4.3], the regulator Rn was defined with respect
to a basis of E−n /{±1} instead of (1− τ)En, and there was an extra factor of 2 on the right-
hand side. This agrees with Conjecture 3.8 if and only if [E−n :±(1− τ)En] = 2, i.e. if and
only if −1 /∈ NF/QEn.

(ii) The ambiguity of ±1 in Conjecture 3.8 is necessary. Namely, even when n= 1, we may
only have θ̃′1 = h1R1 in O×F /{±1}. Since α1 is always positive (it is a norm from a CM field
to F ), the proof of Proposition 3.10 shows that θ̃′1 6=−h1R1 in F× when hF is odd and O×F
has a unit of norm −1. Note that in this case θ̃′1 and −h1R1 differ (multiplicatively) by an
element of order 2 in F×, so the discrepancy disappears when we tensor with Z[1/2].
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4. Augmentation quotients

Definition 4.1. Suppose n ∈N , and let r = r(n). Let I new
n ⊂ Irn/Ir+1

n be the (cyclic) subgroup
generated by monomials

∏
`|n+

(γ` − 1) with γ` ∈ Γ`. Let Iold
n ⊂ Irn/Ir+1

n be the subgroup gener-
ated by monomials

∏r
i=1(γi − 1) where each γi ∈ Γ`i for some `i dividing n, and {`1, . . . , `r} 6=

{` : `|n+} (i.e. either one of the `i divides n/n+, or `i = `j for some i 6= j). If n= d1d2 then there
is a natural identification I new

n = I new
d1
I new
d2
⊂ Irn/Ir+1

n , and if n= ` is prime then I new
` = I`/I

2
`

and Iold
` = 0.

If d|n, let
πd : Z[Γn]� Z[Γd] ↪→ Z[Γn]

denote the composition of the natural maps. We also write πd for the induced map on Ikn/I
k+1
n

for k > 0.
The following proposition is based on work of Hales [Hal85].

Proposition 4.2. Suppose n ∈N , and r = r(n). Then:

(i) Irn/I
r+1
n = I new

n ⊕ Iold
n ;

(ii) if d|n+ and d > 1, then πn/d(I new
n ) = 0 and πn/d(Irn/I

r+1
n )⊂ Iold

n ;

(iii) I new
n = {v ∈ Irn/Ir+1

n : πn/`(v) = 0 for every ` dividing n+};
(iv) the map ⊗`|n+

Γ`→I new
n defined by ⊗`|n+

γ` 7→
∏
`|n+

(γ` − 1) is an isomorphism.

Proof. Let An be the polynomial ring Z[Y` : `|n] with one variable Y` for each prime ` dividing n.
Fix a generator σ` of Γ` for every ` dividing n, and define a map An→ Z[Γn] by sending
Y` 7→ σ` − 1. By Corollary 2 of [Hal85], this map induces an isomorphism from the homogeneous
degree-r part of An/(Jn + J ′n) to Irn/I

r+1
n , where Jn is the ideal of An generated by {(`− 1)Y` :

`|n}, and J ′n is the ideal generated by certain other explicit homogeneous relations (see [Hal85,
Lemma 2]). The only fact we need about these ‘extra’ relations is:

if f ∈ J ′n, then every monomial that occurs in f is divisible by the square of some Y`. (3)

Note that I new
n is the image in Irn/I

r+1
n of the subgroup of An/(Jn + J ′n) generated by Yn, where

Yn :=
∏
`|n+

Y`. Similarly, Iold
n is the image of the subgroup generated by all other monomials

of degree r. By (3), Yn does not occur in any of the relations in J ′n, and assertion (i) follows.
Assertion (ii) is clear, since πn/d kills those monomials that include (γ − 1) with γ ∈ Γ` for `

dividing d, and leaves the other monomials unchanged.
Fix v ∈ Irn/Ir+1

n . If v ∈ I new
n and `|n+, then πn/`(v) = 0 by (ii). Conversely, suppose that

πn/`(v) = 0 for every ` dividing n+. Choose f ∈An to be homogeneous of degree r representing v,
and suppose f has the minimum number of monomials among all representatives of v. We will
show that Yn|f , and hence v ∈ I new

n .
Fix a prime ` dividing n+. The map πn/` : Z[Γn]� Z[Γn/`] ↪→ Z[Γn] corresponds to the map

An→An defined by setting Y` = 0. Since πn/`(v) = 0, substituting Y` = 0 in f gives a relation in
Jn + J ′n, i.e. f = Y` · g + h where g is homogeneous of degree r − 1, h ∈ Jn + J ′n, and Y` does not
occur in h. But then Y` · g represents v, so the minimality assumption on f implies that h= 0.
Therefore Y`|f for every ` dividing n+, so Yn|f and v ∈ I new

n . This proves (iii).
Let g := gcd({`− 1 : `|n+}). Then gYn ∈ Jn. It follows from (3) that the monomial Yn only

occurs in elements of Jn + J ′n with coefficients divisible by g. Therefore I new
n is cyclic of order g,

and so is ⊗`|n+
Γ`. Clearly the map ⊗`|n+

Γ`→I new
n of (iv) is surjective, so it must be an

isomorphism. 2

61

https://doi.org/10.1112/S0010437X1000494X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1000494X


B. Mazur and K. Rubin

If v ∈ Irn/Ir+1
n , let 〈v〉new

n denote the projection of v to I new
n under the splitting of

Proposition 4.2(i). We will use the following lemma without explicit reference in some of our
computations in §§ 6 and 8. Its proof is left as an exercise.

Lemma 4.3. Suppose d|n, v ∈ I new
n/d , and w ∈ Ir(d)

n /I
r(d)+1
n . Then

〈vw〉new
n = 〈vπd(w)〉new

n = v〈πd(w)〉new
d .

5. Kolyvagin systems

Fix an odd prime p. To prove Theorem 3.9 we need to introduce Kolyvagin systems, as defined
in [MR04a]. (See in particular [MR04a, § 6.1], and also [MR04b], for the case of Kolyvagin systems
associated to even Dirichlet characters that we use here.)

Let F̂× denote the p-adic completion of F×. Similarly, for every rational prime ` let
F` := F ⊗Q`, O` :=OF ⊗ Z`, and define F̂×` and Ô×` to be their p-adic completions. We define
the ‘finite subgroup’ F̂×`,f to be the ‘unit part’ of F̂×` ,

F̂×`,f := Ô×` ⊂ F̂
×
` .

If `= λλτ splits in F , define the ‘transverse subgroup’ F̂×`,tr ⊂ F̂
×
` to be the (closed) subgroup

generated by (`, 1) and (1, `), where we identify F×` with F×λ × F
×
λτ
∼= Q×` ×Q×` . Then we have

a canonical splitting F̂×` = F̂×`,f × F̂
×
`,tr, and since p is odd,

(F̂×` )− = (F̂×`,f)
− × (F̂×`,tr)

−. (4)

Definition 5.1. If ` 6= p splits in F , define the finite-singular isomorphism

φfs
` : (F̂×`,f)

− ∼−→ (F̂×`,tr)
− ⊗ I`/I2

`

by

φfs
` (x) = (`, 1)⊗ ([xλ, Fλ(µ`)/Fλ]− 1) + (1, `)⊗ ([xλτ , Fλτ (µ`)/Fλτ ]− 1)

= (`, `−1)⊗ ([xλ, Fλ(µ`)/Fλ]− 1),

where x= (xλ, xλτ ) ∈ F̂×λ × F̂
×
λτ = Q̂×` × Q̂×` with xλτ = x−1

λ ∈ Ẑ×` , and [ · , Fλ(µ`)/Fλ] is the
local Artin symbol. (Concretely, note that if u ∈ Z×` then [u, Fλ(µ`)/Fλ] is the automorphism in
Γ` that sends ζ` to ζu

−1

` .) Then φfs
` is a well-defined isomorphism (both the domain and range

are free of rank one over Zp/(`− 1)Zp), independent of the choice of λ versus λτ .

Definition 5.2. Let Np := {n ∈N : p - n}. A Kolyvagin system κ (for the Galois representation
Zp(1)⊗ ωF ) is a collection

{κn ∈ (F̂×)− ⊗ I new
n : n ∈Np}

satisfying the following properties for every rational prime `. Let (κn)` denote the image of κn
in (F̂×` )− ⊗ I new

n .

(i) If ` - n, then (κn)` ∈ (F̂×`,f)
− ⊗ I new

n .

(ii) If `|n+, then (κn)` = (φfs
` ⊗ 1)(κn/`)`.

(iii) If `|n/n+, then κn = κn/`.

Let KS(F ) denote the Zp-module of Kolyvagin systems for Zp(1)⊗ ωF .

62

https://doi.org/10.1112/S0010437X1000494X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1000494X


Refined class number formulas and Kolyvagin systems

Remark 5.3. Let N+
p := {n ∈Np : all `|n split in F/Q}. In [MR04a], a Kolyvagin system was

defined to be a collection of classes {κn ∈ (F̂×` )− ⊗ (⊗`|nΓ`) : n ∈N+
p }, and φfs

` took values
in (F̂×`,tr)

− ⊗ Γ`. We use Proposition 4.2(iv) to replace ⊗`|n+
Γ` by I new

n and (1) to replace
Γ` by I`/I

2
` , which will be more convenient for our purposes here. Also, a Kolyvagin system

{κn : n ∈N+
p } as in [MR04a] extends uniquely to {κn : n ∈Np} simply by setting κn := κn+ for

n ∈Np −N+
p .

The following theorem is the key to our proof of Theorem 3.9.

Theorem 5.4. Suppose κ, κ′ ∈KS(F ). If κ1 = κ′1, then κn = κ′n for every n ∈Np.

Proof. We follow [MR04a, § 6.1], with R= Zp, ρ= ωF , T = Zp(1)⊗ ωF , and with the Selmer
structure denoted F in [MR04a]. By [MR04a, Lemma 6.1.5 and Proposition 6.1.6], the hypotheses
needed to apply the results [MR04a, § 5.2] all hold, and the core rank of T is one.

By [MR04a, Theorem 5.2.10(ii)], KS(F ) is a free Zp-module of rank one. Therefore (switching
κ and κ′ if necessary) there is an a ∈ Zp such that κ′ = aκ, i.e. κ′n = aκn for every n ∈Np.
If κ is identically zero, then so is κ′ and we are done. If κ is not identically zero, then (since the
ideal class group of F is finite) [MR04a, Theorem 5.2.12(v)] shows that κ1 6= 0. Since κ′1 = κ1 in
the torsion-free Zp-module (F̂×)− (in fact property (i) above shows that κ1 ∈ (O×F ⊗ Zp)−), we
must have a= 1. 2

6. Pre-Kolyvagin systems

Keep the fixed odd prime p. The right-hand and left-hand sides of Conjecture 3.8 are
‘almost’ Kolyvagin systems. If they were Kolyvagin systems, then since they agree when n= 1
(Proposition 3.10), they would agree for all n by Theorem 5.4, and Theorem 3.9 would be proved.

In this section we define what we call ‘pre-Kolyvagin systems’, and show that a pre-Kolyvagin
system can be transformed into a Kolyvagin system. Using Theorem 5.4, we deduce (Corollary 6.6
below) that if two pre-Kolyvagin systems agree when n= 1, then they agree for every n. In §§ 7
and 8, respectively, we will show that the left-hand and right-hand sides of Conjecture 3.8 are
pre-Kolyvagin systems. Then Theorem 3.9 will follow from Corollary 6.6 and Proposition 3.10.

If x ∈ (F̂×)− ⊗ Irn/Ir+1
n , let x` denote the image of x in (F̂×` )− ⊗ Irn/Ir+1

n , and if ` ∈Np splits
in F/Q, let x`,f ∈ (F̂×`,f)

− ⊗ Irn/Ir+1
n and x`,tr ∈ (F̂×`,tr)

− ⊗ Irn/Ir+1
n denote the projections of x`

induced by the splitting (4). Let 〈x〉new
n ∈ (F̂×)− ⊗ I new

n denote the projection of x induced by
the splitting of Proposition 4.2(i), and similarly for 〈x`〉new

n and 〈x`,f〉new
n .

Definition 6.1. If n ∈N and d=
∏t
i=1 `i divides n+, let Mn,d = (mij) be the t× t matrix with

entries in In/I
2
n,

mij =

{
πn/d(Fr`i − 1) if i= j,

π`j (Fr`i − 1) if i 6= j.

We let Md :=Md,d, where π1(Fr` − 1) is understood to be zero, so that all diagonal entries of
Md are zero. Define

Dn,d := det(Mn,d) ∈ Itn/It+1
n , Dd := det(Md) ∈ I new

d ⊂ Itn/It+1
n .

By convention we let Dn,1 =D1 = 1. Note that Dn,d and Dd are independent of the ordering of
the prime factors of d.
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Definition 6.2. A pre-Kolyvagin system κ (for Zp(1)⊗ ωF ) is a collection

{κn ∈ (F̂×)− ⊗ Irn/Ir+1
n : n ∈Np}

where r = r(n), satisfying the following properties for every rational prime `.

(i) If ` - n, then (κn)` ∈ (F̂×`,f)
− ⊗ Irn/Ir+1

n .

(ii) If `|n+, then (1⊗ πn/`)κn = κn/` πn/`(1− Fr`).

(iii) If `|n+, then 〈(κn)`,tr〉new
n = (φfs

` ⊗ 1)(〈(κn/`)`〉new
n/` ).

(iv) If `|n+, then
∑

d|n+
〈(κn/d)`,f〉new

n/d Dd = 0.

(v) If `|n/n+, then 〈κn〉new
n = 〈κn/`〉new

n/` .

Let PKS(F ) denote the Zp-module of pre-Kolyvagin systems for Zp(1)⊗ ωF .

Definition 6.3. If κ = {κn : n ∈Np} is a pre-Kolyvagin system, define κ̃ = {κ̃n : n ∈Np} by

κ̃n :=
∑
d|n+

κn/dDn,d.

Lemma 6.4. Suppose n ∈Np and d|n.

(i) If `|d, then πn/`(Dn,d) = πn/d(Fr` − 1)Dn/`,d/`.
(ii) If ` - d, then πn/`(Dn,d) =Dn/`,d.
(iii) πd(Dn,d) =Dd ∈ I new

d .

Proof. Suppose `|d. The column of πn/`(Mn,d) corresponding to ` consists of all zeros except
for πn/d(Fr` − 1) on the diagonal. The first assertion follows from this, and (ii) and (iii) follow
directly from the definition. 2

Proposition 6.5. The map κ 7→ κ̃ of Definition 6.3 is a Zp-module isomorphism PKS(F ) ∼−→
KS(F ) between free Zp-modules of rank one.

Proof. The Zp-linearity is clear. The injectivity is clear as well, since it follows easily by induction
that if κ̃n = 0 for all n, then κn = 0 for all n.

We next show that if κ is a pre-Kolyvagin system, then κ̃ is a Kolyvagin system. In other
words, we need to show for every n ∈Np that:

(a) κ̃n ∈ (F̂×)− ⊗ I new
n ;

(b) if ` - n, then (κ̃n)` ∈ (F̂×`,f)
− ⊗ I new

n ;

(c) if `|n+, then (κ̃n)`,tr = (φfs
` ⊗ 1)((κn/`)`);

(d) if `|n+, then (κ̃n)`,f = 0;

(e) if `|n/n+, then κ̃n = κ̃n/`.

Fix n ∈Np, and suppose that `|n+. Then

(1⊗ πn/`)(κ̃n) =
∑

d|n+,`-d

(1⊗ πn/`)(κn/dDn,d) +
∑

d|n+,`|d

(1⊗ πn/`)(κn/dDn,d)

=
∑

d|(n+/`)

κn/(d`) πn/`(Dn,d`) + (1⊗ πn/(d`))(κn/d)πn/`(Dn,d).
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Fix a divisor d of n+/`. By Lemma 6.4(i),

κn/(d`) πn/`(Dn,d`) = κn/(d`) πn/(d`)(Fr` − 1)Dn/`,d.

Also, (1⊗ πn/(d`))(κn/d) = κn/(d`) πn/(d`)(1− Fr`) by Definition 6.2(ii), so by Lemma 6.4(ii)

(1⊗ πn/(d`))(κn/d)πn/`(Dn,d) = κn/(d`) πn/(d`)(1− Fr`)Dn/`,d.

Thus (1⊗ πn/`)(κ̃n) = 0 for every ` dividing n. Since (F̂×)− is a free Zp-module, it follows from
Proposition 4.2(iii) that κ̃n ∈ (F̂×)− ⊗ I new

n . This is property (a) above.
By property (a), and using the fact that πd(Dn,d) ∈ I new

d , we have

κ̃n = 〈κ̃n〉new
n =

∑
d|n+

〈κn/d〉new
n/d πd(Dn,d).

If ` - n, then Definition 6.2(i) of a pre-Kolyvagin system shows that 〈(κn,d)`〉new
n/d ∈ (F̂×`,f)

− ⊗ I new
n/d

for every d, so (κ̃n)` ∈ (F̂×`,f)
− ⊗ I new

n . This is property (b).
Now suppose `|n+. For property (c), using Definition 6.2(i) we have

(κ̃n)`,tr =
∑
d|n+

(κn/d)`,trDn,d =
∑

d|(n+/`)

(κn/d)`,trDn,d.

Projecting into I new
n , and using property (a), Definition 6.2(ii), and Lemma 6.4(ii), we have

(κ̃n)`,tr = 〈(κ̃n)`,tr〉new
n =

∑
d|(n+/`)

〈(κn/d)`,trDn,d〉new
n

=
∑

d|(n+/`)

〈(φfs
` ⊗ 1)((κn/(d`))`) πn/`(Dn,d)〉new

n

=
∑

d|(n+/`)

〈(φfs
` ⊗ 1)((κn/(d`))`)Dn/`,d〉new

n

= 〈(φfs
` ⊗ 1)(κ̃n/`)〉new

n = (φfs
` ⊗ 1)(〈κ̃n/`〉new

n/` ) = (φfs
` ⊗ 1)(κ̃n/`).

This is property (c). For property (d), using property (a), Lemma 6.4(iii), and Definition 6.2(iv)
we have

(κ̃n)`,f = 〈(κ̃n)`,f〉new
n =

∑
d|n+

〈(κn/d)`,f〉new
n/d 〈πd(Dn,d)〉

new
d =

∑
d|n+

〈(κn/d)`,f〉new
n/dDd = 0.

Finally, suppose that `|n/n+. Using Definition 6.2(v) and property (a) above,

κ̃n = 〈κ̃n〉new
n =

∑
d|n+

〈(κn/d)〉new
n/dDd =

∑
d|(n/`)+

〈(κn/(d`))〉new
n/(d`)Dd = 〈κ̃n/`〉new

n/` = κ̃n/`.

This completes the proof that κ̃ is a Kolyvagin system.
Since KS(F ) is a free Zp-module of rank one [MR04a, Theorem 5.2.10(ii)], to complete the

proof it remains only to show that the map PKS(F )→KS(F ) is surjective. If κ̃ ∈KS(F ), then
(since Dn,1 = 1) we can define inductively a collection κ := {κn ∈ (F̂×)− ⊗ Irn/Ir+1

n : n ∈Np} such
that

∑
d|n+

κn/d Dn,d = κ̃n for every n. It is straightforward to check that κ is a pre-Kolyvagin
system; since we will not make use of this, we omit the proof. By Definition 6.3 the image of κ
in KS(F ) is κ̃. 2

Corollary 6.6. Suppose κ, κ′ ∈PKS(F ). If κ1 = κ′1, then κn = κ′n for every n ∈Np.
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Proof. Let κ̃ and κ̃′ be the images of κ and κ′, respectively, under the map of Definition 6.3.
Then κ̃ and κ̃′ are Kolyvagin systems, and κ̃1 = κ1 = κ′1 = κ̃′1. Therefore κ̃ = κ̃′ by Theorem 5.4,
so by the injectivity assertion of Proposition 6.5 we have κ = κ′, i.e. κn = κ′n for every n ∈Np. 2

We will use the following definition and lemma to replace property (iv) in the definition of
a pre-Kolyvagin system by an equivalent property that will be easier to verify. See Remark 6.9
below.

Definition 6.7. If n ∈N , let S(n) denote the set of permutations of the primes dividing n+,
and let S1(n)⊂S(n) be the subset

S1(n) := {σ ∈S(n) : the primes not fixed by σ form a single σ-orbit}.

If σ ∈S(n) let dσ :=
∏
`|n+,σ(`)6=` `, the product of the primes not fixed by σ, and define

Π(σ) :=
∏
q|dσ

πq(Frσ(q) − 1).

Lemma 6.8. Suppose that A is an abelian group, ` is a prime that splits in F/Q, and

xn ∈A⊗ I new
n for every n ∈Np. Then the following are equivalent:

(i) for every n divisible by `,
∑

d|n+
xn/d Dd = 0;

(ii) for every n divisible by `, xn =−
∑

σ∈S 1(n)
σ(`)6=`

sign(σ)xn/dσΠ(σ).

Proof. We show first that property (ii) implies property (i) (which is the implication we use
later in this paper). Let S′(d)⊂S(d) denote the derangements, i.e. the permutations with no
fixed points. Then we can evaluate the determinant Dd = det(Md) as follows. Let mq,q′ be the
(q, q′)-entry in Md. Then

Dd =
∑

σ∈S (d)

sign(σ)
∏
q|d

mq,σ(q) =
∑

σ∈S ′(d)

sign(σ)Π(σ), (5)

where the second equality holds since the diagonal entries of Md vanish.
Fix an n divisible by `, and let

S1 =
∑

d|n+,`-d

xn/d Dd, S2 =
∑

d|n+,`|d

xn/d Dd.

Using property (ii) we have

S1 =−
∑
d|n+

`-d

∑
σ∈S 1(n/d)
σ(`)6=`

sign(σ)〈(xn/(ddσ))`〉new
n/(ddσ)Π(σ)Dd. (6)

Fix a divisor δ of n+ that is divisible by `. We will show that the coefficient of xn/δ in S1 in (6)
is −Dδ, which exactly cancels the coefficient of xn/δ in S2. Using (5), the coefficient of xn/δ
in S1 in (6) is

−
∑
d|(δ/`)

∑
σ∈S 1(n/d)
dσ=δ/d

(
sign(σ)Π(σ)

∑
η∈S ′(d)

sign(η)Π(η)
)

=−
∑
d|(δ/`)

∑
σ∈S 1(n/d)
dσ=δ/d

∑
η∈S ′(d)

sign(ση)Π(ση).
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For every ρ ∈S′(δ) there is a unique triple (d, σ, η) such that

d|δ/`, σ ∈S1(n/d), dσ = δ/d, η ∈S′(d) and ρ= ση.

To see this, simply write ρ as a product of disjoint cycles, let σ be the cycle containing `, and
let d= δ/dσ and η = σ−1ρ. Thus the coefficient of xn/δ in S1 in (6) is (using (5) again)

−
∑

ρ∈S ′(δ)

sign(ρ)Π(ρ) =−Dδ.

Therefore
∑

d|n+
xn/d Dd = S1 + S2 = 0, so property (i) holds.

Although we will not need it, here is a simple argument to show that property (i) implies
property (ii). Suppose that X := {xn ∈A⊗ I new

n : n ∈Np} satisfies property (i). If `|n, then
(since D1 = 1) we can use property (i) recursively to express xn as a linear combination of xd
with ` - d. Thus X is uniquely determined by the subset X ′ := {xn ∈A⊗ I new

n : n ∈Np, ` - n}.
Clearly X ′ determines a unique collection Y := {yn ∈A⊗ I new

n : n ∈Np} satisfying property (ii),
with yn = xn if ` - n. We showed above that property (ii) implies property (i), so Y satisfies
property (i). Since (i) and X ′ uniquely determine both X and Y , we must have X = Y , and so
X satisfies property (ii). 2

Remark 6.9. We will apply Lemma 6.8 as follows. Let A := (F̂×`,f)
−, and let xn := 〈(κn)`,f〉new

n .
Then Lemma 6.8 says that we can replace property (iv) of Definition 6.2 of a pre-Kolyvagin
system by the equivalent statement:

(iv)′ if `|n+, then

〈(κn)`,f〉new
n =−

∑
σ∈S 1(n)
σ(`)6=`

sign(σ)〈(κn/dσ)`〉new
n/dσ

Π(σ).

7. The cyclotomic unit pre-Kolyvagin system

Fix an odd prime p. If n ∈N , let s(n) be the number of prime factors of n/n+. In this section
we will show that the collection {2−s(n)θ̃′n : n ∈Np} is a pre-Kolyvagin system. Recall that

N+
p := {n ∈Np : all `|n split in F/Q}.

Proposition 7.1 (Darmon). If n ∈Np then∑
d|n+

θ̃′n/d
∏
`|d

πn/d(Fr` − 1) = 2s(n)βn+ in (F̂×)− ⊗ I new
n

where, for n ∈N+
p , βn ∈ (F̂×)− ⊗ I new

n is the Kolyvagin derivative class denoted κ(n) in [Dar95,
§ 6], or κn in [MR04b, Appendix].

Proof. This is [Dar95, Proposition 9.4].1 (Note that κ(n) in [Dar95, § 6] and κn in [MR04b,
Appendix] are defined to lie in (F̂×)− ⊗ (Z/gcd(`− 1 : `|n)Z), after fixing generators of every
Γ`. Without fixing such choices, the elements defined in [Dar95, MR04b] live naturally in
(F̂×)− ⊗ I new

n .) 2

Theorem 7.2. The collection {2−s(n)θ̃′n : n ∈Np} is a pre-Kolyvagin system.

1 There is a typo in [Dar95, Proposition 9.4]. The last two T ’s should be TQ, as in [Dar95, Lemma 8.1].
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Proof. We need to check the five properties of Definition 6.2. For n ∈N+
p , let βn be as in

Proposition 7.1.
Since βn+ ∈ (F̂×)− ⊗ I new

n for every n, it follows easily by induction from Proposition 7.1 that
θ̃′n ∈ (F̂×)− ⊗ Irn/Ir+1

n , where r is the number of prime factors of n+. This is (i) of Definition 6.2.
Suppose `|n+. A standard property of cyclotomic units shows that

NF (µn)/F (µn/`)αn = αn/`/α
Fr−1
`

n/` .

It follows from the definition of θ′n that

(1⊗ πn/`)(θ′n) =
∑
γ∈Γn

γ(αn)⊗ πn/`(γ) =
∑

γ∈Γn/`

γ(NF (µn)/F (µn/`)αn)⊗ γ

=
∑

γ∈Γn/`

γ(αn/`/α
Fr−1
`

n/` )⊗ γ =
∑

γ∈Γn/`

γ(αn/`)⊗ γ πn/`(1− Fr`)

= θ′n/` πn/`(1− Fr`).

Since `|n+ we have s(n) = s(n/`), so this verifies property (ii) of Definition 6.2.
Projecting each of the summands in Proposition 7.1 into (F̂×)− ⊗ I new

n , one sees that all
terms with d > 1 vanish, yielding

〈2−s(n)θ̃′n〉new
n = 〈βn+〉new

n = βn+ .

Properties (iii), (iv), and (v) of Definition 6.2 follow from the corresponding properties of the
βn+ . See [MR04a, Proposition A.2] or [Rub00, Theorem 4.5.4] for property (iii), and [MR04a,
Theorem A.4] or [MR04b, Proposition A.2] for property (iv)′ of Remark 6.9. Property (v) is
immediate, since βn+ depends only on n+. 2

8. The regulator pre-Kolyvagin system

In this section we study relations among the regulator elements Rn, to show that the collection
{hnRn : n ∈Np} is a pre-Kolyvagin system.

Lemma 8.1. Suppose n ∈N , `|n+, and {λ0 − λτ0 , . . . , λr − λτr} is a standard basis of X−n with
λrλ

τ
r = `. Then {λ0 − λτ0 , . . . , λr−1 − λτr−1} is a standard basis of X−n/`, and we can choose

an oriented basis {ε0, . . . , εr} of (1− τ)En such that {ε0, . . . , εr−1} is an oriented basis of
(1− τ)En/`.

With any such bases, ordλr(εr) =−hn/`/hn and

[εr]
n/`
λr

=
hn/`

hn
πn/`(1− Fr`) ∈ In/`/I2

n/`.

Proof. Everything except the final sentence is clear. Comparing the determinants of the
logarithmic embeddings

(1− τ)En/`
ξn/`−−−−→X−n/`, (1− τ)En

ξn−−→X−n

with respect to our given bases, we see that

det(ξn) = log |εr|λr det(ξn/`)
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because log |εi|λr = 0 for 06 i < r. Since our bases are oriented, both determinants are positive.
Hence

|εr|λr = `−ordλr (εr) > 1
so ordλr(εr)< 0.

The exact sequence

(1− τ)En
ordλr−−−−−→ Z ·λr−−−→ Pic(OF [`/n])−→ Pic(OF [1/n])−→ 0

shows that
[Z : ordλr(εr)Z] = hn/`/hn,

so ordλr(εr) =−hn/`/hn as claimed. Since F (µn/`)/F is unramified at λr,

[εr]
n/`
λr

= (Frordλr (εr)
` )− 1 = ordλr(εr)(Fr` − 1) =−hn/`/hn(Fr` − 1)

in In/`/I
2
n/`. 2

Proposition 8.2. Suppose n ∈N , `|n+, and r = r(n). Then

(1⊗ πn/`)(hnRn) = hn/`Rn/` πn/`(1− Fr`) ∈ F× ⊗ Irn/Ir+1
n .

Proof. To compute Rn, fix bases for X−n and E−n as in Lemma 8.1. By definition

Rn :=

∣∣∣∣∣∣∣∣∣
ε0 ε1 · · · εr

[ε0]nλ1
[ε1]nλ1

· · · [εr]nλ1
...

...
...

[ε0]nλr [ε1]nλr · · · [εr]nλr

∣∣∣∣∣∣∣∣∣,
and then (1⊗ πn/`)(Rn) is the determinant of the matrix obtained by applying πn/` to rows
2 through r + 1 of this matrix. For i < r, εi is a unit at λr, so the local Artin symbol
[εi, F (µn)λr/Fλr ] lies in the inertia group Γ`. Hence πn/`([εi]nλr) = [εi]

n/`
λr

= 0 for i < r, and so

(1⊗ πn/`)(Rn) =

∣∣∣∣∣∣∣∣∣∣∣∣

ε0 · · · εr−1 εr

[ε0]n/`λ1
· · · [εr−1]n/`λ1

[εr]
n/`
λ1

...
...

...
[ε0]n/`λr−1

· · · [εr−1]n/`λr−1
[εr]

n/`
λr−1

0 · · · 0 [εr]
n/`
λr

∣∣∣∣∣∣∣∣∣∣∣∣
.

The upper left r × r determinant is the one used to define Rn/`, so

(1⊗ πn/`)(Rn) =Rn/`[εr]
n/`
λr

=
hn/`

hn
Rn/` πn/`(1− Fr`)

by Lemma 8.1. 2

Fix an odd prime p as in §§ 5 and 6, and keep the rest of the notation of those sections as
well.

Lemma 8.3. If n ∈Np, ` is a prime not dividing n, and r = r(n), then

(Rn)` ∈ (F̂×`,f)
− ⊗ Irn/Ir+1

n .

Proof. Since ` - n, if ε ∈ E−n then ε` ∈ (Ô×` )− = (F̂×`,f)
− ⊂ (F̂×` )−. Now the lemma is clear, since

Rn ∈ E−n ⊗ Irn/Ir+1
n . 2
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Proposition 8.4. Suppose n ∈Np and `|n+. Then

〈hn(Rn)`,tr〉new
n = (φfs

` ⊗ 1)(〈hn/`(Rn/`)`〉new
n/` ).

Proof. Note that (φfs
` ⊗ 1)(〈hn/`(Rn/`)`〉new

n/` ) ∈ (F̂×`,tr)
− ⊗ I new

n is well-defined, since Lemma 8.3

shows that (Rn/`)` ∈ (F̂×`,f)
− ⊗ Ir−1

n/` /I
r
n/`.

As in the proof of Proposition 8.2, fix a basis {λ0 − λτ0 , . . . , λr − λτr} of X−n with `= λrλ
τ
r ,

and an oriented basis {ε0, . . . , εr} of (1− τ)En as in Lemma 8.1. Then

(Rn)`,tr =

∣∣∣∣∣∣∣∣∣
(ε0)`,tr · · · (εr−1)`,tr (εr)`,tr
[ε0]nλ1

[ε1]nλ1
· · · [εr]nλ1

...
...

...
[ε0]nλr [ε1]nλr · · · [εr]nλr

∣∣∣∣∣∣∣∣∣= ordλr(εr)

∣∣∣∣∣∣∣∣∣
1 · · · 1 (`, `−1)

[ε0]nλ1
[ε1]nλ1

· · · [εr]nλ1
...

...
...

[ε0]nλr [ε1]nλr · · · [εr]nλr

∣∣∣∣∣∣∣∣∣
since (εr)`,tr = (`, `−1)ordλr (εr), and (εi)`,tr = 1 for i < r. (Recall that when we evaluate these
determinants using (2), the multiplicative notation in (F̂×` )tr changes to additive notation in
the tensor product (F̂×` )tr ⊗ Ir` /I

r+1
` , so the 1’s in the top row become 0’s, and (`, `−1)ordλr (εr)

becomes ordλr(εr) · (`, `−1).) We have ordλr(εr) =−hn/`/hn by Lemma 8.1. For i < r we have
ordλr(εi) = 0, so [εi]nλr = [εi]`λr ∈ I`/I

2
` and

φfs
` ((εi)`) = (`, `−1)⊗ [εi]nλr ∈ (F̂×` )tr ⊗ I`/I2

` .

Thus

(Rn)`,tr = −
hn/`

hn
(−1)r(−1)r−1

∣∣∣∣∣∣∣∣∣
φfs
` ((ε0)`) · · · φfs

` ((εr−1)`)
[ε0]nλ1

· · · [εr−1]nλ1
...

...
...

[ε0]nλr−1
· · · [εr−1]nλr−1

∣∣∣∣∣∣∣∣∣

=
hn/`

hn

∣∣∣∣∣∣∣∣∣∣
φfs
` ((ε0)`) · · · φfs

` ((εr−1)`)
[ε0]n/`λ1

+ [ε0]`λ1
· · · [εr−1]n/`λ1

+ [εr−1]`λ1
...

...
...

[ε0]n/`λr−1
+ [ε0]`λr−1

· · · [εr−1]n/`λr−1
+ [εr−1]`λr−1

∣∣∣∣∣∣∣∣∣∣
(we have the (−1)r because we moved column r + 1 to column 1, and the (−1)r−1 because we
moved row r + 1 to row 2). When we expand the last determinant (including expanding the
sums [εi]

n/`
λj

+ [εi]`λj ), each term that includes one of the [εi]`λj lies in I2
` (since the top row also

contributes one element of I`). Thus all such terms project to zero in I new
n , and so

〈(Rn)`,tr〉new
n =

hn/`

hn
〈det(A)〉new

n

where

A=


φfs
` ((ε0)`) · · · φfs

` ((εr−1)`)
[ε0]n/`λ1

· · · [εr−1]n/`λ1
...

...
...

[ε0]n/`λr−1
· · · [εr−1]n/`λr−1

.
But then det(A) = (φfs

` ⊗ 1)((Rn/`)`), so the proposition follows. 2
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Suppose n, n′ ∈N , n|n′, and r = r(n). Define

Sn,n′ :=

∣∣∣∣∣∣∣∣∣
ε0 ε1 · · · εr

[ε0]n
′
λ1

[ε1]n
′
λ1
· · · [εr]n

′
λ1

...
...

...
[ε0]n

′
λr

[ε1]n
′
λr
· · · [εr]n

′
λr

∣∣∣∣∣∣∣∣∣ ∈ E
−
n ⊗ Irn′/Ir+1

n′ ,

using any standard basis of X−n and oriented basis of (1− τ)En. In particular Sn,n =Rn.

Proposition 8.5. Suppose n ∈N and ` - n.

(i) If ` is inert in F/Q, then hn`〈Rn`〉new
n = hn〈Rn〉new

n .

(ii) If ` splits in F/Q and v ∈ In, then

hn〈Sn,n` v〉new
n` = 〈Rn〉new

n π`(v)−
∑

primes q|n+

hn/q〈Sn/q,n v〉new
n π`(Frq − 1)

in E−n ⊗ I new
n` .

Proof. Let r be the number of prime divisors of n+, so X−n and (1− τ)En are free Z-modules of
rank r + 1. Choose a standard basis of X−n and an oriented basis of (1− τ)En. For 16 i6 r =
r(n), let

ai = ([ε0]nλi , [ε1]nλi , . . . , [εr]
n
λi

), bi = ([ε0]`λi , [ε1]`λi , . . . , [εr]
`
λi

).

Then

Sn,n` =

∣∣∣∣∣∣∣∣∣
ε0 · · · εr

a1 + b1
...

ar + br

∣∣∣∣∣∣∣∣∣=
∑

T⊂{1,...,r}

det(AT ) (7)

where AT is the matrix whose top row is (ε0, . . . , εr) and whose (i+ 1)th row for 16 i6 r is bi
if i ∈ T and ai if i /∈ T . Note that det(A∅) =Rn, and that the entries of each bi are in I`/I

2
` .

Suppose first that ` is inert in F/Q, so (n`)+ = n+. Then 〈det(AT )〉new
n = 0 if T is non-empty

(since I new
n has no ‘` component’), so (7) shows that

〈Sn,n`〉new
n = 〈det(A∅)〉new

n = 〈Rn〉new
n .

Further, since ` is inert in F/Q we have X−n` =X−n , (1− τ)En` = (1− τ)En, and hn` = hn. Thus
Sn,n` =Rn`, and so

hn`〈Rn`〉new
(n`) = hn〈Sn,n`〉new

n = hn〈Rn〉new
n .

This is assertion (i).
Now suppose that ` splits in F/Q. Since the entries of each bi are in I`, if #(T )> 2 we have

〈det(AT )v〉new
n` = 0. Thus (7) gives

〈Sn,n` v〉new
n` = 〈det(A∅)v〉new

n` +
r∑
i=1

〈det(A{i})v〉new
n` . (8)

By definition of Rn,

〈det(A∅)v〉new
n` = 〈Rnv〉new

n` = 〈Rn〉new
n π`(v). (9)

To compute det(A{i}), let q = λiλ
τ
i , and assume that our oriented basis of (1− τ)En was

chosen so that {ε0, . . . , εr−1} is an oriented basis of (1− τ)En/q with respect to the standard
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basis of Xn/q obtained by removing λi − λτi from {λ1 − λτ1 , . . . , λr − λτr}. For 16 j 6 r − 1, εj
is a unit at λi, so [εj ]`λi = 0. Thus

det(A{i}) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0 · · · εr−1 εr
[ε0]nλ1

· · · [εr−1]nλ1
[εr]nλ1

...
...

...
0 · · · 0 [εr]`λi
...

...
...

[ε0]nλr · · · [εr−1]nλr [εr]nλr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)r+i

∣∣∣∣∣∣∣∣∣
ε0 · · · εr−1

[ε0]nλ1
· · · [εr−1]nλ1

...
...

...
[ε0]nλr · · · [εr−1]nλr

∣∣∣∣∣∣∣∣∣ [εr]`λi

= (−1)r+iSn/q,n [εr]`λi

(where the second determinant has no λi row). Further, an argument identical to that of
Lemma 8.1 shows that

[εr]`λi = (−1)r+i+1hn/q

hn
π`(Frq − 1) ∈ I`/I2

` .

Therefore

det(A{i}) =−
hn/q

hn
Sn/q,n π`(Frq − 1).

Multiplying (8) by hn and using (9) gives

hn〈Sn,n`v〉new
n` = hn〈Rn〉new

n π`(v)−
∑
q|n+

hn/q〈Sn/q,nvπ`(Frq − 1)〉new
n` .

Since Sn/q,n ∈ Irn/Ir+1
n , we have

〈Sn/q,nvπ`(Frq − 1)〉new
n` = 〈Sn/q,n πn(v)〉new

n π`(Frq − 1).

This completes the proof of the proposition. 2

If n ∈N , recall (Definition 6.7) that S(n) denotes the set of permutations of the primes
dividing n+, S1(n)⊂S(n) is the subset

S1(n) := {σ ∈S(n) : the primes not fixed by σ form a single σ-orbit},

and if σ ∈S(n) then dσ :=
∏
σ(`)6=` ` and Π(σ) :=

∏
q|dσ πq(Frσ(q) − 1).

Theorem 8.6. If n ∈Np and `|n+, then

〈hn(Rn)`,f〉new
n =−

∑
σ∈S 1(n)
σ(`)6=`

sign(σ)〈hn/dσ(Rn/dσ)`〉new
n/dσ

Π(σ).

Proof. As usual, fix a basis {λ0 − λτ0 , . . . , λr − λτr} of X−n with `= λrλ
τ
r , and an oriented

basis {ε0, . . . , εr} of (1− τ)En as in Lemma 8.1, so that {ε0, . . . , εr−1} is an oriented basis
of (1− τ)En/`. Then

(Rn)`,f =

∣∣∣∣∣∣∣∣∣
(ε0)`,f · · · (εr−1)`,f (εr)`,f
[ε0]nλ1

· · · [εr−1]nλ1
[εr]nλ1

...
...

...
[ε0]nλr · · · [εr−1]nλr [εr]nλr

∣∣∣∣∣∣∣∣∣.
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For each i, we have [εi]nλr = [εi]
n/`
λr

+ [εi]`λr . If i < r, then εi is a unit at λr so [εi]
n/`
λr

= 0. Thus

(Rn)`,f =

∣∣∣∣∣∣∣∣∣
(ε0)`,f · · · (εr)`,f
[ε0]nλ1

· · · [εr]nλ1
...

...
[ε0]`λr · · · [εr]`λr

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
(ε0)`,f · · · (εr−1)`,f (εr)`,f
[ε0]nλ1

· · · [εr−1]nλ1
[εr]nλ1

...
...

...
0 · · · 0 [εr]

n/`
λr

∣∣∣∣∣∣∣∣∣.
The map ε 7→ [ε]`λr = [ε, Fλr(µ`)/Fλr ]− 1 is an isomorphism from (F̂×`,f)

− = (Ô×` )− to (I`/I2
` )⊗

Zp, and is zero on (F̂×`,tr)
− because ` is a norm in the extension Fλr(µ`)/Fλr = Q`(µ`)/Q`. Hence

the first determinant in the equation above is zero, because the top and bottom rows are linearly
dependent. Also, if i < r then εi is a unit at λr, so (εi)`,f = (εi)` and

(Rn)`,f =

∣∣∣∣∣∣∣∣∣
(ε0)` · · · (εr−1)`
[ε0]nλ1

· · · [εr−1]nλ1
...

...
[ε0]nλr−1

· · · [εr−1]nλr−1

∣∣∣∣∣∣∣∣∣ [εr]
n/`
λr

= (Sn/`,n)` [εr]
n/`
λr
.

By Lemma 8.1, [εr]
n/`
λr

=−(hn/`/hn) πn/`(Fr` − 1). Thus

hn〈(Rn)`,f〉new
n =−hn/`〈(Sn/`,n)` πn/`(Fr` − 1)〉new

n . (10)

We can now ‘simplify’ (10) by inductively expanding the right-hand side using Proposition 8.5.
Specifically, expand 〈Sn/`,n πn/`(Fr` − 1)〉new

n using Proposition 8.5(ii). Then expand each of the
resulting 〈Sn/(`q),n/` πn/(q`)(Frq − 1)〉new

n/` using Proposition 8.5(ii) again. Continue until no terms
Sm/q,m remain. The resulting sum consists of one term

(−1)k〈hn/(q1···qk)(Rn/(q1···qk))`〉new
n/(q1···qk)

k∏
i=1

πqi(Frqi+1 − 1)

for each sequence q1 = `, q2, . . . , qk of distinct primes dividing n+ (with qk+1 = `). Identifying
this sequence with the k-cycle σ := (`, q2, . . . , qk) ∈S1(n) gives the formula of the theorem, since
sign(σ) = (−1)k−1. 2

Theorem 8.7. The collection {hnRn : n ∈Np} is a pre-Kolyvagin system.

Proof. We need to check the five properties of Definition 6.2. Property (i) is Lemma 8.3, (ii) is
Proposition 8.2, (iii) is Proposition 8.4, (iv) is Theorem 8.6 along with Remark 6.9, and (v)
is Proposition 8.5(i). 2

9. Proof of Theorem 3.9

Proof of Theorem 3.9. Fix an odd prime p. By Theorems 7.2 and 8.7, we have pre-Kolyvagin
systems

{2−s(n)θ̃n : n ∈Np}, {−hnRn : n ∈Np}.
By Proposition 3.10, θ̃′1 =−h1R1 in O×F /{±1}. Hence, by Corollary 6.6,

2−s(n)θ̃n =−hnRn in (F×)− ⊗ I new
n ⊗ Zp for every n ∈Np. (11)

If p|n ∈N , then Proposition 4.2(iv) shows that (p− 1)I new
n = 0. Therefore (F×)− ⊗ I new

n ⊗ Zp =
0 and (11) holds vacuously in this case. Since (11) holds for every n ∈N and every odd prime p,
this completes the proof of Theorem 3.9. 2
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