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Abstract

Alspach and Sutcliffe call a graph X(S, q, F) 2-circulant if it consists of two isomorphic copies of
circulant graphs X(p, S) and X(p,qS) on p vertices with "cross-edges" joining one another in a
prescribed manner. In this paper, we enumerate the nonisomorphic classes of 2-circulant graphs
X(S, q, F) such that |S| = m and \F\ = k. We also determine a necessary and sufficient condition
for a 2-circulant graph to be a GRR. The nonisomorphic classes of GRR on 2p vertices are also
enumerated.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 25, 05 C 30, 05 C 99.

1. Introduction

We consider only finite undirected graphs with no loops or multiple edges.
Definitions not given here may be found in [10]. Let Zn be the ring of integers and
Z* the multiplicative group of units in Zn. Let S be a subset of Z* with S = -S.
The circulant graph X = X(n, S) with symbol S is the graph with vertex set w0,
«!,. . . , un_1 and an edge joining M, and ttj if and only if j - i E X. Let p denote a
prime number. Turner [12] shows that two circulant graphs X(p, S) and X(p, S')
are isomorphic if and only if S' = qS for some q in Z*. He also gave an
enumerative polynomial for this class of circulant graphs. The automorphism
group A(X) of a circulant graph X = X(p, S) was determined explicitly by
Alspach [1]. If 0 c 5 c Z*, then A(X) has order \E(S)\p where E(S) is the
largest subgroup of Z* for which S can be written as a union of cosets of E(S). If
P*(p, m, d) denotes the number of nonisomorphic circulant graphs X = X(p, S)
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with degree \S\ = m and automorphism group of order dp, then

d\d,

where /x(n) is the classical Mobius function (see [5] Chapter 5).

In [2] Alspach and Sutcliffe call a graph X = X(S, q, F) 2-circulant if (i)

V(X) = V(Xt) U V(X2) where Xx = X(p, S) and X, = X(p, qS) are two iso-
morphic circulant graphs with V(Xj) = {uJ0, ujv..-,Uj p_l},j = 1, 2, (ii) E(X)
= EiXJ U E(X2) U {(«!„ u2j)\j - i G F} , (iii) q is chosen such that q2 e
E(S) and (iv) (a) if qS = S then F is any subset of Zp, (b) if #S * S theny e F
implies that -q j e F. A 2-circulant ^(S, q, F) is said to be of Type-I if it has a
representation X(5', g', F') = X(5, 9, F) with q' = 1; otherwise it is said to be of
Type-II. In this paper we enumerate separately, the nonisomorphic classes of
Type-I and Type-II 2-circulants such that |5 | = m and \F\ = k. Our method is
similar to the one used in [4].

It is not difficult to see that a GRR on 2p vertices is a Type-I 2-circulant. In
the final section, we determine a necessary and sufficient condition for a Type-I
2-circulant graph to be a GRR (Theorem 4.3). We then proceed to enumerate the
nonisomorphic classes of GRR on 2p vertices.

2. Type-I 2-circulants

In this section we shall count the number of Type-I 2-circulant graphs.
Theorem 8 of [2] asserts that X(S, q, F) with |F | # 0 is of Type-I if and only if
qS = S. Now this is possible if and only if q e E(S). So we may assume without
loss of generality that q = 1 whenever X(S, q, F) is Type-I.

Let 21{p, m, k) denote the number of nonisomorphic Type-I 2-circulant
graphs X(S, 1, F) with \S\ = m (even) and \F\ = k. We note that 2I(p, m, k) =
2I(p, m, p — k) = 2I(p, p — m — 1, p — k) for any k > 0 and m > 0. We note
further that if k = 0 or k = 1, then 2I(p, m, k) is the number of circulant graphs
X{p, S) with \S\ = m. In view of these we may assume that 2 < \F\ <
(p - l ) /2 and 0 < m < (p - l ) /2.

THEOREM 2.1 [2, Theorem 10]. Two Type-1 2-circulant graphs X(S, 1, F) and
X(S, 1, F') with 0 c F,F' c Zp are isomorphic if and only if there exists a e E(S)
such that F' = aF + cfor some c e Zp.
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Let X = X(S, 1, F) and &(k) be the collection of all subsets of Zp each
of cardinality k > 0. Suppose k < p and let F e J ^ / c ) . By Theorem 2.1,
X(S, l,F+c) = X(S, l,F+d) for any c , ( / e Zp. N o w since F + c * F+ d if
c ¥= d, each F e &(k) induces a family containing /? elements and so there are
n = (l//>)(£) families in &(k). Let these families be J ^ , . . . ,J^. Two families J^
and J^ are said to be equivalent under £ ( 5 ) , written J^ ~ JT if there exist
a e F ( S ) , F e ^ and F G JT such that aF = F' + c for some c <= Zp. Evi-
dently ~ is an equivalence relation and that if &,-~ &J, then X(S, 1, F) =
X(S, 1, F') for any F e ^ j . and / " e ^ . . By Theorem 2.1 the action of E(S) will
partition J ^ , . . . ,J^ into equivalence classes. We shall determine the number of
these equivalence classes.

Let £, be the subgroup of Z* with \E,\ = rf,-. Then J^is said to be invariant
under Et, if for every F e J*", we have a i 7 = F + c for any a e £ ; and some

LEMMA 2.2. ^is invariant under Et # 1 if and only if there exists F e & such that
F=\JaaEiorF\{0} = UaaEi.

PROOF. The sufficiency is clear. If & is invariant under Et, then for every
F e IF, we have aF = F + c for some c e Zp and any a e £,. In particular we
choose F such that c = 0. Since aF = F if and only if a e £(, it follows that either
F=UaaEloiF\{0) = UaaEl.

LEMMA 2.3. Let Al = UaaEt, A2 = U/}PEi where Et * 1. / / Ax * A2, then
A1 ¥= A2 + c for any c e Zp.

PROOF. We need only note that for £, =£ 1 and j = 1, 2, Ere /1 ./• = 0 (mod j?)
and that c\A2\ * 0 (mod p) unless c = 0 or | ^ 2 | = p. But these are ruled out by
the fact that A1 * A2.

Combining Lemmas 2.2 and 2.3, we have

LEMMA 2.4. The number of families which are invariant under some non-trivial
subgroup Etof E(S) is given by

*(F,;F) =
I T ' " ' I

1 ( |F | - l)/d,
I v '
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[41 Counting 2-circulant graphs 273

Since the identity subgroup Eo = 1 of E(S) leaves all families invariant,

* ( 1 ; F) = (l//> )(£,)•
For each / > 0 and di dividing d = \E(S)\, let J / , denote the collection of all^"

which are invariant under £, < E(S). Then \s/t\ = *(£, ; F).

LEMMA 2.5. s?{ n j / y = s/j i/am/ o/i/y // J, divides dr

PROOF. NOW dt divides dj implies that £, < Ej so that any ̂ invariant under Ej
is also invariant under Et. Now if s/( — s/j, the result is true. So we may assume
that s/j c s/t and that there is no s/k with J ^ c s/k c s/t. Let J^G S/J. By Lemma
2.2, there exists f G J^such that either f = Uaa£} or / " \ {0} = \JaaEj. Since
j ^ c s/j, J^is also invariant under £,, and the same i7 G J^will have the property
that aF = F for all a e £,. Hence either i7 = Uoa£, or F \ {0} = \JaaEr Thus
we have either F = Uaa£'7 = Uaa£, or F \ {0} = UaaEj = Uaa£,. By letting
b e Ej\ Ej, we check that dt divides dj.

Let [a, b] denote the least common multiple of a and b. Using Lemma 2.5, we
obtain the following lemma.

LEMMA 2.6. s/t ns/j=s/k if and only ifdk = [dt, dj\.

LEMMA 2.7. E(S) partitions S/J\\JJS/J into equivalence classes each containing
exactly d/dj families.

PROOF. Since £, is a subgroup of E(S), we have

E(S) = E, u g% U • • • U g^

where g is a primitive root of /> and k = {p - \)/d. Since ^ 6 j ^ . \ U ^ is
invariant under £, , there exists F G J^wi th F — \JaaEi or F \ {0} = U a a £ , .
Hence the action of E(S) on S/^UJS/J is equivalent to the action of
{1, g* , . . . ,g < n ~ 1 ) *} o n j / , \ U 7 J ^ . N o w g a * F # g " / - w h e n e v e r 0 < a # ft < n -
1. Furthermore we assert that g a *F # g 6 ^ + c for any c G Z^. This assertion is
true for Et ¥= 1 as can be seen from Lemma 2.3. It remains to show that it is true
for Et = 1. Without loss of generality we show that F ¥= g"kF + c for every
c G Z and a ¥= 0. Suppose the contrary; then F = g a *F + c for some c G Z .
But this implies that F = g~akF + d for some rf G Zp, and J^is invariant under
{1, gak, g-ak} which is a subgroup of £ ( S ) . This contradicts J ^ G S/Q \\JjS/j.

Note that the above lemma does not hold i f | F | < l , OT\F\> p - \. However
we have assumed earlier that 2 < | F | < (p - l ) / 2 . Let 2I*(p, d, dt, \F\) denote
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the number of equivalence classes insft \ Uy-«^. Then by Lemma 2.7, we have

d
—2I*(p, d, d:, \F\) = IJ/, | - U-s^, •
d> J J

Using Lemma 2.6 and applying the principle of inclusion and exclusion, we
obtain

2/*(p, d, dt, \F\) = § E ii\ -rW(£,; F).

Summing up 2I*(p, d, dt, \F\) for all dt which divides d, we obtain

2I*(p,d,\F\)= Z2I*(p,d,dl,\F\)

which is the number of equivalence classes in^ (k ) for a fixed S with |£(S)| = d.
But there are altogether /?*(/>, m, d) non-equivalence S with |£(S) | = d, 0 < \S\
< iP ~ l)/2- T n u s summing up 2I*(p, d, |F()yS*(/», m, d) for all d even (recall
that d is a common divisor of m and p - 1), we get

2I{p,m,\F\)= E 2I*{p,d,\F\)p*(p,m,d).
d even

THEOREM 2.8. 77ie number of Type-l 2-circulant graphs X = X{S,l, F) with
\S\ = m and 2 < |F | =$ {p — l ) /2 is given by

2J(p, m, \F\) = E 2/*(/>, rf, |F|)/8*(p, m, rf)

vv/iere /Ae summation ranges over all even common divisors dofm andp — 1.

EXAMPLE 1. Let p = 13, m = 6 and fc = 6. Then the common divisors dofm
and /> - 1 are 1 < 2 < 3 < 6.

(i) When d = 6,

2I*(p,6,2,6) = | E M y )•(£,; *") = 6,

2/*(/>,6,3,6) = | Ef1 y ) * ( ^ ; F ) = 2,

2/*(p,6,6,6) = | E^f X ) * ( £ / ' ' F ) = 2-
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[61 Counting 2-circulant graphs 275

Thus

2I*(p,6,6) = E 2I*(p,6, d,6) = 28,

I p-1

P*(p,m,6) = ±Y,n\j

(ii) When d = 2,

2/*(/>,2,l,6) =

- 1

^ - 1
= 1.

Ey, F) = 56,

2I*(p,2,2,6) = § E MJ T )*(EJ> F) = 1 8 '
2\dj

2I*(p,2,6) = 74,

2\dj

Hence

1

2/(/», m,6) = E 2I*(p, d,6)p*(p, m, d) = 250.
d

For the case H = Z*, we note that E(S) = Z* and that the expression
2/*(/>, d, dt, \F\) also works for d = p - 1. Hence 2/*(/>, /> - 1, |F|) =
^d\P-i2I*(p, p - \, d, \F\). However there is only one circulant graph X(p, S)
with S = Z*. Thus 2I(p, p - 1, |F|) = 2/*(/>, ^ - 1, |F|) and we have the fol-
lowing formula which counts the number of weak starred polygons of degree \F\
on 2/7 vertices. (See [6] for the definition of weak starred polygons.)

THEOREM 2.9. 2I(p,0, \F\) = 2I(p, p - 1, \F\) = , p-\,d, \F\).

3. Type-II 2-circulants

In this section we shall count Type-II 2-circulant graphs X(S, q, F) with
\S\ = m and |F | = k. We proceed by determining the conditions on q which make
X(S, q, F) Type-II 2-circulant.
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PROPOSITION 3.1. A 2-circulant graph X = X(S,q, F) with 0 c F c Zp is
Type-ll if and only if q = gk/1 a for some a e E(S), where g is a primitive root of p

= (p-l)/\E(S)\.

PROOF. NOW Z* = E(S) U gE(S) U • • • U gk~lE(S). If X is Type-II 2-cir-
culant, then qS =£ 5 and so g £ £(5) and g = gaa for some a e £(5) and
0 < a < k - 1. Now since <72 = g2oa2 G £(5) we must have g2a G £(S). But
this is possible only if 2a = 0 (mod k) or a = /c/2.

On the other hand if q = gk/2a, then qS # S. Since 0 c F c Z,, A" is a
Type-II 2-circulant graph according to Theorem 8 of [2].

COROLLARY 3.2 [2, Theorem 9]. If X = X(S, q, F) is a Type-ll 2-circulant
graph, thenp = 1 (mod4).

PROOF. Since X is Type-II 2-circulant, Proposition 3.1 asserts that k/2 =
(p - \)/2d is an integer. Since d is even, the result follows.

COROLLARY 3.3. If X = X(S, q, F) is of Type-ll 2-circulant, then 2|£(5)|
divides p — 1.

PROOF. If X = X(S, q, F) is Type-II 2-circulant, then by Proposition 3.1,
k = (p — 1) / |£(5) | is an even integer. Hence the result follows.

THEOREM 3.4 [2, Theorem 10]. Two Type-ll 2-circulant graphs X(S, q, F) and
X(S, q', F') are isomorphic if and only if there exists a e E(S) with aF = F'.

Let #(a) denote the order of a e £(S).

LEMMA 3.5. If X = X(S,q, F) is Type-ll 2-circulant, then #(q2)is even.

PROOF. Since q = gk/2a = gk/2grk, 0 < r < d - 1, we have q2 = g<2r+1>k. Since
d is even, it follows that q2" = g"<2r+1>/c = i only if n is even. Hence #(q2) is
even.

LEMMA 3.6. Let #(q2) = dt. Then for any j e F,jEv c F where dv = 2d{.

PROOF. It suffices to show that 1 G F implies Ev c F. Let 1 G F. Then by
condition (iv)(b), -q G F. Continuing we have {-\)rqr G F where 0 < r < 2dt — 2.
Then (1 , q2,.. .,q2J'~2} U -q{l, q2,... ,q2d'~2} c F. Since dl \s even by Lemma
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3.5, it follows that -q{l,q2,.. .,q2d'~2} = q{\, q2,.. .,q2d''2}. Since #(q2) =
d,, we see that q2 = gki and so q = gk'/2 = gk». Thus (1, q2,.. .,q2dl~2} U
q{\, q2,... ,q2d'~2} = Ev and the lemma follows.

Thus we see that if \F\ # 1, then F depends on the choice of q, and for this
reason we may sometimes write F = F(q). Since dv — 2di = 2#(q2) and F =
(Ja aEv or F\ {0} = Ua «£„, we have the following corollary.

COROLLARY 3.7. If X = X(S, q, F) is Type-ll 2-circulant, then 0 c F c Zp

and\F\ = 0 (mod2#(<72)) or \F\ = 1 (mod2#(q2)).

Let 38{\F(q)\) denote the collection of all F(q) of a Type-H 2-circulant
X(S, q, F(q)) with \F(q)\ > 1. Then

= {

0 otherwise.

Let (a, b) denote the greatest common divisor of a and b.

LEMMA 3.8. The action of E(S)partitions 38(\F(q)\) into equivalence classes each
containing exactly d/(2#(q2), d) elements.

PROOF. Let 2#(q2) = dv = Id,, and (2#(q
2), d) = dr Then Ev n E(S) = E,

and

E(S) = £, U g*£, U • • • u

Ev = E,U gk-E, U • • • U gd./d.-WoE,.

Since F or F \ {0} = Uaa£t, = Up/iE,, we see that the action of E(S) on
^(|F(^)|) is equivalent to the action of {1, gk,... ,g(d/d'~l)k) on SS(\F(,q)\).
Furthermore g"kF ¥= gbkF for any 0 < a * b < d/d, - 1 and this proves the
lemma.

Let 2II*(p, d, \F(q)\) denote the number of equivalence classes in
for a fixed S with \E(S)\ = d. Then by Lemma 3.8

2II*(p, d, \F{q)\) =

\F(q)\ > 1. Furthermore, if F(q) = {0}, then E(S) fixes F{q) so that
2II*(p, d, \F(q)\) = 1. Since there are altogether /?*(/>, m, d) non-equivalent S
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with \E(S)\ = d and \S\ = m, on summing 2II*(p, d, \F(q)\)fi*(p, m, d) for all
common divisors d of m and p — 1 with 2d dividing p — 1, we obtain
2II(p, m, \F(q)\), the number of Type-II 2-circulant graphs X(S, q, F(q)) with
\S\ = m.

THEOREM 3.9. The number of Type-ll 2-circulant graphs X = X(S, q, F(q)) with
\S\ = m is given by

2Il(p, m, \F{q)\) = £ 2II*(p, d, \F{q)\)i$*{p, m, d)
d

where the summation ranges over all even common divisors dofm andp — 1 with 2d
dividing p — 1.

REMARK. If S = 0 , S = Z* or F = 0, F = Zp then X(S, q, F) is Type-I
2-circulant. Hence 2II(p,0, k) = 0 = 2II(p, m,0). Note that 2II(p, m, \F(q)\)
= 2II(p, p - 1 - m, p - \F(q)\). Furthermore since 2II*(p, d, \F(q)\) =
2II*(p, d,p- \F(q)\) it follows that 2II(p, m, \F(q)\) = 2II(p, m, p - \F(q)\).

EXAMPLE 2. Let/» = 13, m = 6 and \F(q)\ = 4. Then the even common divisors
d of m and p — 1 are 2 and 6.

(i) When d = 2, #(q2) = 2 and so 2II*(p, d,4) = 3 and /?*(/>, m,2) = 2.
(ii) When d = 6, then either #(^ 2 ) = 2 or #(^ 2 ) = 6. Since 2#(q2) must

divide |F(^)|, only #(^ 2 ) = 2 is possible. So 2II*(p, d,4) = 1 and /?*(/>, w,6)
= 1.

Thus 2II(p, m, \F(q)\) = Ld2II*(p, m, d)$*(p, m, d) = 10.

4. GRR on 2p vertices

Let G be a finite group and H a subset of G with the properties (i) 1 £ H and
(ii) h ^ H implies h~l e //. Then the Cay ley graph of (5 with respect to the
generating set H is the graph XGH with V(Xc H) = G and £(ZG w) = {(g, gh)\h
G / / } . Clearly Ag w is connected if and only if (H) = G. A graph X is called a
graphical regular representation (GRR) of a group G if the automorphism group
A(X) of A is regular, as a permutation group, and isomorphic to G. Sabidussi in
[H] shows that if A" is a GRR, then X s K2, or else X is connected and X = Xc H

for some group G and some generating set H of G. In this section we shall apply
the method developed in Section 2 to count the number of GRR on 2p vertices.
A special case of our result is a partial solution (Corollary 4.7) to a problem (8b)
raised in [9]: which groups have a cubic GRR?
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We remark that the set of Type-I 2-circulant graphs coincides with the set of
Cayley graphs XD }. (Here Dp = (a, b\ap = b2 = 1, bab = a"1) denotes the
dihedral group of order 2p.) For if X = XD H, then X is of Type-I 2-circulant
X(S,l,F) with S={i\a'eH) and F = \i\a'b e H). Conversely if X =
X(S,l, F), then X is a Cayley graph on the cyclic group Zlp, or on the dihedral
group Dp [2, Theorem 6]. Moreover if X = XZi H, then X = XD H, for some
generating set H' of Dp.

Let a G Z* and c & Zp and define \pac: Dp -> Dp by ^ a c (a ' ) = aa' and
ta,c(a'b) = a "'+ c*-Then the automorphism group of Z^ is ^(ZJp) = {^aJa G Z*,
c e Z f ) [6, Lemma 2]. Now any isomorphism ^/ of X1 = XD H onto A"2 = XD H,
with 4>{H) = H' corresponds to an isomorphism (a,c) of Xx = X(S,l, F) onto
Â  = X(S', 1, f") with aS = S' and aF = F' + c. Thus $ is of the form i// = «//„_,.

). This observation proves the following lemma.

LEMMA 4.1. Let X = XDpH. Then {^ G ^ ( A " ) | ^ ( 1 ) = 1} < A(Dp).

Let X=XCH. Since (^ G A(G)\^(H) = H) < (^ e /l(X)|i//(l) = 1} and
that A'is a GRR of G if and only if (^ 6^(^)1^(1)= 1} = {1}, we have

COROLLARY 4.2. A^ K w a GRR of Dp if and only if there exists no nontrivial
group automorphism \p e A(Dp) with ^(H) = H.

THEOREM 4.3. Let X = X(S, 1, F) w/iere 0 < |S| < (p - l ) /2. Then X is a
GRR of Dp if and only if F $. tFfor any &"which is invariant under some nontrivial
subgroup ofE(S).

PROOF. If F £ ^"for any J5"which is invariant under some nontrivial subgroup
of E(S), then F G J^for some J^G J^0. This means that aF # F + c for any
c & Z unless a = 1 and c = 0. By Corollary 4.2 and the above discussion, this
implies that A" is a GRR of Dp.

Conversely let I be a GRR of Dp. Since \V{X)\ = 2p, X= XDpM, H =
{a1, aJb\i G S, j e F} . If F G J^for some J^G s/t (i > 1), then for some'l ^ a G
F,, c F(S), we have aS = S and aF = F + c for some c e Z,. Since X(S, 1, F)
= Ar(5,1, F + J ) for any d G Zp, we can assume without loss of generality that
F is such that c = 0 so that aS = S and aF = F. But then this a corresponds to a
nontrivial group automorphism \pa0 of Dp such that *pafl(H) = H. This however
contradicts Corollary 4.2 that A1 is a GRR of Dp.

Applying Theorem 4.3 and the results in Section 2, we obtain the following
result.
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THEOREM 4.4. The number of GRR X(S, 1, F) with 0 < \S\ < (p - l ) /2 is given
by

s(p,\S\,\F\)= £ 2I*(p,d,l,\F\)fS*(p,\S\,d)
d even

where the summation is extended over all even common divisors d of\S\ andp — 1.

We note that

s(p,m,k) = s(p,m, p - k) and s(p, m, k) = s(p, p - m - 1, p - k).
We remark that Theorem 4.3 is also true for S = Z*. Now there is only one
circulant graph X(p, S) with S = Z* and hence

s(p,p- 1, |F|) = 2I*{P, p-1,1, \F\) = - ~ ZM,)*{£,', F)

where the summation is over all divisors dt of p — 1 such that dt divides \F\ or
\F\ — 1. Thus we have the following result.

THEOREM 4.5. s(p,0, \F\) = (l/(p - l))Edi/x(d,)^(£,.; F).

Note that if |F | < 2 or \F\ > p - 2, then s(p, m, \F\) = 0 for any m > 0. We
are interested in the case when m = 0 and \F\ = 3. We shall omit the proof since
it is straight forward.

COROLLARY 4.6. s(p,0,3) is equal to (p — 7) /6 // 3 divides p — 1 and equal to
(p — 5 ) /6 otherwise.

A group G is said to have a CMWC GR.R if there exists a GRR Xc H of G with
/ | = 3.

COROLLARY 4.7. Z> to a cwZ>/c GRR if and only if p > 11.
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