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Abstract

Alspach and Sutcliffe call a graph X(S, ¢, F) 2-circulant if it consists of two isomorphic copies of
circulant graphs X(p, ) and X(p, ¢S) on p vertices with *“cross-edges” joining one another in a
prescribed manner. In this paper, we enumerate the nonisomorphic classes of 2-circulant graphs
X(S, g, F)such that|S| = mand |F|= k. We also determine a necessary and sufficient condition
for a 2-circulant graph to be a GRR. The nonisomorphic classes of GRR on 2p vertices are also
enumerated.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 25, 05 C 30, 05 C 99.

1. Introduction

We consider only finite undirected graphs with no loops or multiple edges.
Definitions not given here may be found in [10]. Let Z, be the ring of integers and
Z* the multiplicative group of units in Z_. Let S be a subset of Z* with § = -S.
The circulant graph X = X(n, S) with symbol S is the graph with vertex set u,,
uy,-..,U4,_; and an edge joining u; and u, if and only if j — i € §. Let p denote a
prime number. Turner [12] shows that two circulant graphs X( p, S) and X(p, S")
are isomorphic if and only if ' = ¢S for some g in Z;. He also gave an
enumerative polynomial for this class of circulant graphs. The automorphism
group A(X) of a circulant graph X = X( p, §) was determined explicitly by
Alspach [1]. If @ € S C Z3%, then A(X) has order |E(S)|p where E(S) is the
largest subgroup of Z} for which S can be written as a union of cosets of E(S). If
B*(p, m, d) denotes the number of nonisomorphic circulant graphs X = X(p, S)
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with degree |S| = m and automorphism group of order dp, then

p—1
d d. d.
* - = i} !
Bx(p.m. &) m%,“(d) m_
i d

1

where p(n) is the classical Mobius function (see [5] Chapter 5).

In [2] Alspach and Sutcliffe call a graph X = X(S, q, F) 2-circulant if (i)
V(X)= V(X)) U V(X,) where X; = X(p, S) and X, = X(p, qS) are two iso-
morphic circulant graphs with V(X)) = {u,0, u;1,...,4; ,_1},j =1, 2, (i) E(X)
= E(X)) U E(X;) U {(uy;, u,;)|j — i € F}, (iii) ¢ is chosen such that ¢*> €
E(S) and (iv) (a) if ¢S = S then F is any subset of Z,, (b) if ¢S +# S thenj € F
implies that —q j € F. A 2-circulant X(S, ¢, F) is said to be of Type-I if it has a
representation X(S’, ¢’, F') = X(S, g, F) with ¢' = 1; otherwise it is said to be of
Type-11. In this paper we enumerate separately, the nonisomorphic classes of
Type-1 and Type-1I 2-circulants such that |S| = m and |F| = k. Our method is
similar to the one used in [4].

It is not difficult to see that a GRR on 2 p vertices is a Type-I 2-circulant. In
the final section, we determine a necessary and sufficient condition for a Type-I
2-circulant graph to be a GRR (Theorem 4.3). We then proceed to enumerate the
nonisomorphic classes of GRR on 2 p vertices.

2. Type-I 2-circulants

In this section we shall count the number of Type-1 2-circulant graphs.
Theorem 8 of [2] asserts that X(S, ¢, F) with |F| # 0 is of Type-I if and only if
qS = S. Now this is possible if and only if ¢ € E(S). So we may assume without
loss of generality that ¢ = 1 whenever X(S, ¢, F) is Type-I.

Let 2I(p, m, k) denote the number of nonisomorphic Type-I 2-circulant
graphs X(S, 1, F) with |S| = m (even) and |F| = k. We note that 21(p, m, k) =
2I(p,m,p—k)=2I(p,p—m—1, p— k) forany k > 0 and m > 0. We note
further that if kK = 0 or k = 1, then 2I( p, m, k) is the number of circulant graphs
X(p,S) with |S|=m. In view of these we may assume that 2 < |F|<
(p—D/2and0<m< (p—1)/2

THEOREM 2.1 (2, Theorem 10]. Two Type-1 2-circulant graphs X(S,1, F) and

X(S,1, Fywith @ C F, F' C Z, are isomorphic if and only if there exists & € E(S)
such that F' = oF + ¢ for some c € Z,.
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Let X = X(S,1, F) and # (k) be the collection of all subsets of Z, each
of cardinality k > 0. Suppose k <p and let F € #(k). By Theorem 21,
X(S,1,F+c)=X(§,1, F+d)foranyc,d€ Z, Nowsince F+ ¢+ F + d if
¢ # d, each F € # (k) induces a family containing p elements and so there are
n = (1/p){) families in % (k). Let these families be #,...,%,. Two families %,
and #, are said to be equivalent under E(S), written &, ~ %, if there exist
a € E(S), FE#, and F' € ¥, such that aF = F’ + ¢ for some ¢ € Z,. Evi-
dently ~ is an equivalence relation and that if # ~.%, then X(S,1, F) =
X(S,1, F') for any F € #, and F’' € &#,. By Theorem 2.1 the action of E(S) will
partition .#,,...,%, into equivalence classes. We shall determine the number of
these equivalence classes.

Let E; be the subgroup of Z; with |E| = d,. Then Fis said to be invariant
under E,, if for every F € #, we have aF = F + ¢ for any a € E, and some
cEZ,

LEMMA 2.2. Fis invariant under E, # 1 if and only if there exists F € % such that
F=U_aE or F\ {0} = U,«F..

ProOF. The sufficiency is clear. If % is invariant under E,, then for every
F € #, we have aF = F + ¢ for some ¢ € Z, and any a € E,. In particular we
choose F such that ¢ = 0. Since aF = Fif and only if a € E,, it follows that either
F=U_,aE;or F\ {0} =U_«aE,.

LEMMA 2.3. Let Ay =U,aE;, A, =UzBE, where E;+ 1. If A, # A,, then
Ay # A, + cforanyce Z,.

PrOOF. We need only note that for £, # 1 and j = 1, 2, Z,EAjr = 0 (mod p)
and that ¢|4,| # 0 (mod p) unless ¢ = 0 or [4,] = p. But these are ruled out by
the fact that 4, # 4,.

Combining Lemmas 2.2 and 2.3, we have

LEMMA 2.4, The number of families which are invariant under some non-trivial
subgroup E, of E(S) is given by

(P - 1)/di) ..
if d, divides | F|,
( FI/d, 4 o
Y(E; F)= -1)/d,
(p=1)/d ) if d, divides |F| — 1,
(IF|—-1)/4,
0 otherwise.
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Since the identity subgroup E, =1 of E(S) leaves all families invariant,
¥(1; F) = (1/pXfy)-

For each i > 0 and 4, dividing d = |E(S)}, let &, denote the collection of all #
which are invariant under E; < E(S). Then || = V(E; F).

LEMMA 2.5./; N Z; = o/, if and only if d, divides d,.

PROOF. Now d, divides d, implies that E; < E; so that any #invariant under E;
is also invariant under E,. Now if &, = o7, the result is true. So we may assume
that &/, C &, and that there is no &, with &, C &, C &/,. Let #€ o/,. By Lemma
2.2, there exists F € #such that either F =U,aE, or F\ {0} =U,aE,. Since
&, C o, Fis also invariant under E;, and the same F € #will have the property
that aF = F for all a € E,. Hence either F = U, aF, or F\ {0} = U, aE, Thus
we have either F =U,aE, =U,aE, or F\ {0} =U,aE, =U, aE, By letting
b € E;\ E,, we check that d; divides d .

Let [a, b] denote the least common multiple of a and b. Using Lemma 2.5, we
obtain the following lemma.

LEMMA 2.6. &, N, = ifand only if d\ = [d,, d}].

LemMa 2.7. E(S) partitions sZ,\ U %, into equivalence classes each containing
exactly d/d, families.

PROOF. Since E; is a subgroup of E(S), we have
E(S) = Ei U ng’_ U .- U g(n_l)kE,«

where g is a primitive root of p and k = (p — 1)/d. Since F€ ¥, \U,, is
invariant under E,, there exists F € # with F =U_aFE; or F\ {0} =U,aE,.
Hence the action of E(S) on &, \U;s/ is equivalent to the action of
{1, g%...,8" " P*} on, \ U, . Now g**F # g"*F whenever 0 < a # b < n —
1. Furthermore we assert that g°*F # g”*F + ¢ for any ¢ € z,. This assertion is
true for E; # 1 as can be seen from Lemma 2.3. It remains to show that it is true
for E, = 1. Without loss of generality we show that F # g?*F + ¢ for every
c € Z, and a # 0. Suppose the contrary; then F = g°*F + ¢ for some ¢ € Z,.
But this implies that F = g~°*F + d for some d € Z,, and #1is invariant under
{1, g%, g~} which is a subgroup of E(S). This contradicts # € &/, \ U, %/,.
Note that the above lemma does not hold if |F| < 1, or |F| > p — 1. However
we have assumed earlier that 2 < |F| < (p — 1)/2. Let 2I*(p, d, d,, | F|) denote
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the number of equivalence classes in.#,\ U, 2,. Then by Lemma 2.7, we have

g-_zz*(p, d,d,|F)) = |, -

Using Lemma 2.6 and applying the principle of inclusion and exclusion, we
obtain

21*(p,d,d,»,|F|)—jZd ( ) (Ej; F).

Summing up 21*( p, d, d,, | F)) for all d, which divides d, we obtain

21%(p,d,|Fl)= XL 2I*(p,d, d,, |F|)
djd
which is the number of equivalence classes in % (k) for a fixed S with |E(S)| =
But there are altogether B*( p, m, d) non-equivalence S with |E(S)} = d, 0 <|S|
< (p = 1)/2. Thus summing up 27/*(p, d, |[F)B*( p, m, d) for all d even (recall
that 4 is a common divisor of m and p — 1), we get

2(p,m,|F)= ¥ 2I*(p,d,|F)B*(p, m, d).

d even

THEOREM 2.8. The number of Type-1 2-circulant graphs X = X(S,1, F) with
(S| =mand 2 < |F| < (p — 1)/2is given by

21(p,m, |F|) =Y 21*(p, d,|F))B*(p,m,d)
d
where the summation ranges over all even common divisors d of m and p — 1.

ExXAMPLE 1. Let p = 13, m = 6 and k = 6. Then the common divisors d of m
andp—larel <2<3<6.
(i) When d = 6,

21*(p.6,1,6) = ¢ L u(d,)¥(E; F) =
14,

21*(p,6,2,6) =2 Ep,(

2|,

( j;F)=6

3d,

(E; F)=12.

/)
20%(p,6,3,6) = 6Zu( Jw(EiF) =2
/)

21*(p,6,6,6) = ¢ Zu(

6ld;
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Thus
2I*(p,6,6) = Y. 2I*(p,6,d,6) = 28,
di6
p—1
-1
) d, d
B (p,m6) =5 ul<|l = 1.
61d; — =1
dj
(ii) When d = 2,
21*(p,2,1,6) =5 ) p(d;)¥(E; F) = 56,
lid,
d.
2I*(p,2,2,6) =% Y. ,u(—)\I'(E; F) =18,
2 7
2|d,
2I*(p,2,6) = 74,
p—1
B pm -2 TuZ)| @ 1
P, ? m IJ' 2 m = 3
2\d; —_——
dj
Hence

21(p,m,6) =Y. 2I*(p,d,6)B*(p, m,d) = 250.
d

For the case H = Z;, we note that E(S)= Z5 and that the expression
2I*(p,d,d, |F|) also works for d=p — 1. Hence 2I*(p,p — 1, |F) =
Yap-121*(p, p — 1, d, | F|). However there is only one circulant graph X(p, §)
with § = Z3. Thus 21(p, p — 1, |[F)) = 2I*(p, p — 1, |F|) and we have the fol-
lowing formula which counts the number of weak starred polygons of degree | F|
on 2 p vertices. (See [6] for the definition of weak starred polygons.)

THEOREM 2.9. 2I(p,0,|F|) = 21(p, p — L, |F) = X, ,2I*(p, p — 1, 4, |F).

3. Type-1I 2-circulants
In this section we shall count Type-II 2-circulant graphs X(S, ¢, F) with

|S} = m and | F| = k. We proceed by determining the conditions on g which make
X(S, g, F) Type-II 2-circulant.
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PROPOSITION 3.1. A 2-circulant graph X = X(S,q, F) with & C FC Z, is
Type-11 if and only if ¢ = g*/* a for some a € E(S), where g is a primitive root of p
and k = (p — 1)/IE(S)}

PROOF. Now Z¥ = E(S) U gE(S)U --- U g“'E(S). If X is Type-II 2-cir-
culant, then ¢S # S and so ¢ & E(S) and ¢ = g for some a € E(S) and
0 < a < k — 1. Now since g2 = g2%a2 € E(S) we must have g?* € E(S). But
this is possible only if 2a = 0 (mod k) or a = k /2.

On the other hand if ¢ = g“/%a, then ¢S+ S. Since  Cc FC Z,, X is a
Type-11I 2-circulant graph according to Theorem 8§ of [2].

COROLLARY 3.2 [2, Theorem 9]. If X = X(S, q, F) is a Type-11 2-circulant
graph, then p = 1 (mod 4).

PrROOF. Since X is Type-Il 2-circulant, Proposition 3.1 asserts that k/2 =
(p — 1)/2d is an integer. Since d is even, the result follows.

CoROLLARY 3.3. If X = X(S, q, F) is of Type-11 2-circulant, then 2|E(S)|
divides p — 1.

ProOOF. If X = X(S, ¢, F) is Type-II 2-circulant, then by Proposition 3.1,
k = (p — 1)/|E(S)|is an even integer. Hence the result follows.

THEOREM 3.4 [2, Theorem 10). Two Type-I1 2-circulant graphs X(S, q, F) and
X(S, q’, F’) are isomorphic if and only if there exists a € E(S) with aF = F'.

Let #(a) denote the order of a € E(S).
LEMMA 3.5. If X = X(S, q, F) is Type-11 2-circulant, then #(q?) is even.

PrOOF. Since g = g¥/%a = gk/%g"™ 0 < r < d — 1, we have g% = g@ V% Since
d is even, it follows that g2" = g"?"*Dk = 1 only if n is even. Hence #(g?) is
even.

LEMMA 3.6. Let #(q2) = d,. Then forany j € F,jE, C F whered, = 2d,.

PROOF. It suffices to show that 1 € F implies £, C F. Let 1 € F. Then by
condition (iv)}(b), —g € F. Continuing we have (-1)'q" € Fwhere0 < r < 2d;, — 2.
Then {1, ¢%,...,¢%% %} U -q{1,4%...,q*%~?) C F. Since d, is even by Lemma
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3.5, it follows that —¢{1, ¢2,...,4%% 2} = q{1, ¢%,...,q*%?}. Since #(q%) =
d,, we see that ¢>=g* and so q=gk/?2 =gk, Thus {1,4¢%...,¢*% 2}V
q{1, q%...,q*% ?} = E, and the lemma follows.

Thus we see that if |F| # 1, then F depends on the choice of ¢, and for this
reason we may sometimes write F = F(q). Since d, = 2d, = 2#(g?) and F =
U,aE, or F\ {0} = U,aFE,, we have the following corollary.

CoroLLARY 3.7. If X = X(S, q, F) is Type-11 2-circulant, then @ C F C Z,
and |F| = 0 (mod2#(q?)) or |F| = 1 (mod 2#(4?)).

Let #(|F(q)]) denote the collection of all F(q) of a Type-II 2-circulant
X(S, q, F(q)) with |F(q)| > 1. Then

(p—1)/2#(q?)
|Fl/2#(q?)
(p—1)/2#(q%)

(1F| - 1)/2#(4?)
0 otherwise.

) if |F| = 0 (mod 2#(q?)),

|B(1F(q))|=
if |[F| = 1 (mod 2#(q?)),

Let (a, b) denote the greatest common divisor of a and b.

LEMMA 3.8. The action of E(S) partitions B(|F(q))) into equivalence classes each
containing exactly d/(2#(q?), d) elements.

PROOF. Let 2#(q%) = d, = 2d,, and (2#(q?),d) = d,. Then E, N E(S) = E,

and

E(S)=E,u ngr U---U g(d/d,—l)kE”

Ev = E’ ] gkvE’ (RN g(dv/dl_l)kvE’_
Since F or F\ {0} =U,aE, =UzBE, we sec that the action of E(S) on
#(|F(q)|) is equivalent to the action of {1, g*,...,g4/%~bk} on B(|F(q)).
Furthermore g“*F # g®*F for any 0 < a+ b < d/d,— 1 and this proves the
lemma.

Let 21I*( p, d, | F(q)|) denote the number of equivalence classes in Z(|F(q)|)
for a fixed S with |E(S)| = 4. Then by Lemma 3.8

21145 4, 1)) = LD g1y,

|F(q)| > 1. Furthermore, if F(q) = {0}, then E(S) fixes F(q) so that
21I*(p, d, |F(q)]) = 1. Since there are altogether 8*( p, m, d) non-equivalent S
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with |E(S)| = d and |S| = m, on summing 2I1*(p, d, |F(q))B*(p, m, d) for all
common divisors d of m and p — 1 with 24 dividing p — 1, we obtain
21I( p, m, |F(q))), the number of Type-I1 2-circulant graphs X(S, ¢, F(q)) with
IS| = m.

THEOREM 3.9. The number of Type-11 2-circulant graphs X = X(S, q, F(q)) with
[S| = m is given by

21(p, m,|F(q))) = ¥ 21I*(p, d,|F(q))B*(p, m,d)

where the summation ranges over all even common divisors d of m and p — 1 with 2d
dividing p — 1.

REMARK. If S =@, §=Z3 or F= @, F=Z, then X(S, g, F) is Type-l
2-circulant. Hence 211( p,0, k) = 0 = 21I( p, m,0). Note that 21I( p, m, |F(q)))
=2II(p,p — 1 —m, p— |F(q)]). Furthermore since 2II*(p, d, |F(q)|) =
21I*(p, d, p — |F(q))) it follows that 21I( p, m, |F(q)]) = 21I( p, m, p — |F(q))).

ExaMPLE 2. Let p = 13, m = 6 and | F(q)| = 4. Then the even common divisors
dof mand p — 1 are 2 and 6.
(i) When d = 2, #(g?) = 2 and so 21I*( p, d,4) = 3 and B*(p, m,2) = 2.
(ii) When d = 6, then either #(g%) =2 or #(q2) = 6. Since 2#(q?) must
divide |F(q)}, only #(gq?) =2 is possible. So 2I1I*( p, d,4) = 1 and B*( p, m,6)
= 1.
Thus 21I( p, m, |F(q))) = £, 2IT*(p, m, d)B*(p, m, d) = 10.

4. GRR on 2 p vertices

Let G be a finite group and H a subset of G with the properties (i) 1 € H and
(i) » € H implies h~' € H. Then the Cayley graph of G with respect to the
generating set H is the graph X , with V(X; ) = G and E(X;; ) = {(g, gh)|h
€ H}. Clearly X y is connected if and only if (H) = G. A graph X is called a
graphical regular representation (GRR) of a group G if the automorphism group
A(X) of X is regular, as a permutation group, and isomorphic to G. Sabidussi in
[t1] shows that if X is a GRR, then X = 1?2, or else X is connected and X = X; ,
for some group G and some generating set H of G. In this section we shall apply
the method developed in Section 2 to count the number of GRR on 2 p vertices.
A special case of our result is a partial solution (Corollary 4.7) to a problem (8b)
raised in [9]: which groups have a cubic GRR?
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We remark that the set of Type-I 2-circulant graphs coincides with the set of
Cayley graphs X, ,. (Here D, = <a bla? = b? =1, bab = a‘1> denotes the
dihedral group of order 2 p) For if X=X D, H> then X is of Type-1 2-circulant
X(S,1, F) with §= {ila’€ H} and F< {ila'’b € H}. Conversely if X =
X(S,1, F), then X is a Cayley graph on the cyclic group Z, ,, or on the dihedral
group D, [2, Theorem 6]. Moreover if X = Xz, 1 then X = X, . for some
generating set H' of D,.

Let a € Z} and c € Z, and define ¢, D, > D, by ¢, (a')=a* and
¥, (a'b) = a**b. Then the automorphism group of D, is A(D,) = {{, |a € Z},
c € Z,} [6, Lemma 2]. Now any isomorphism y of X; = X, p, nonto X, = X, .
w1th xp(H ) = H’ corresponds to an isomorphism (a, ¢) of X X(S,1, F) onto

= X(8,1, F') with aS = §" and aF = F” + ¢. Thus ¢ is of the form ¢ = ¢,
1= A(Dp). This observation proves the following lemma.

Lemma 4.1 Let X = X,, ;. Then {§ € A(X)|¥(1) = 1) < A(D,).

Let X = X; . Since {y € A(G)|Yy(H)=H} < {¢ € A(X)|¢(1) =1} and
that X'is a GRR of G if and only if {{ € A(X)|y(1) = 1} = {1}, we have

COROLLARY 4.2. X D, iSa GRR of D, if and only if there exists no nontrivial
group automorphismy € A(D,) with y(H) = H

THEOREM 4.3. Let X = X(S,1, F) where 0 <|S|<(p — 1)/2. Then X is a
GRR of D, if and only if F & F for any F which is invariant under some nontrivial
subgroup of E(S).

PROOF. If F ¢ % for any % which is invariant under some nontrivial subgroup
of E(S), then F € # for some % € .&/,. This means that aF # F + ¢ for any
¢ € Z, unless & = 1 and ¢ = 0. By Corollary 4.2 and the above discussion, this
implies that X is a GRR of D,

Conversely let X be a GRR of D,. Since [V(X)|=2p, X = Xp, w H =
{a',a’bli € S, j € F}.If F € Ffor somegé“e.d (i 2 1), then for somel # a €
E, C E(S), we have aS = S and aF = F + ¢ for some ¢ € Z,. Since X(S.1, F)
= X(S,1, F + d) for any d € Z,, we can assume without loss of generality that
F is such that ¢ = 0 so that aS = S and aF = F. But then this « corresponds to a
nontrivial group automorphism y,, of D, such that ¥, ,(H) = H. This however
contradicts Corollary 4.2 that X is a GRR of D,

Applying Theorem 4.3 and the results in Section 2, we obtain the following
result.
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THEOREM 4.4. The number of GRR X(S,1, F)with0 < |S| < (p — 1)/2 is given
by
s(p,ISLIF)= X 2I*(p,d,1,|F)B*(p,1S],d)

d even

where the summation is extended over all even common divisors d of |S|andp — 1.

We note that
s(p,m,k) =S(Pam,P"k) and S(P,m,k)=s(P,P_ m — 1’p_k)
We remark that Theorem 4.3 is also true for § = Z;. Now there is only one
circulant graph X(p, §) with § = Z} and hence

1
S(P’P - 1’ |FD = 21*(p’p - 1’1’ |FD = P — 1 Zp‘(d:)\P(En F)
)

where the summation is over all divisors d; of p — 1 such that d, divides |F| or
|F| — 1. Thus we have the following result.

THEOREM 4.5. 5(p,0, |F|) = (1/(p — 1)L, n(d)¥Y(E; F).

Note that if [F| < 2 or |F| > p — 2, then s(p, m, |F|) = 0 for any m > 0. We
are interested in the case when m = 0 and |F| = 3. We shall omit the proof since
it is straight forward.

COROLLARY 4.6. 5(p,0,3) is equal to (p — 7)/6 if 3 divides p — 1 and equal to
(p — 5)/6 otherwise.

A group G is said to have a cubic GRR if there exists a GRR X;; ;; of G with
|H| = 3.

COROLLARY 4.7. D, has a cubic GRR if and only if p > 11.
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