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Abstract
Although robustness is an important consideration to guarantee the performance of designs
under deviation, systems are often engineered by evaluating their performance exclusively at
nominal conditions. Robustness is sometimes evaluated a posteriori through a sensitivity
analysis, which does not guarantee optimality in terms of robustness. This article introduces
an automateddesign frameworkbased onmultiobjective optimisation to evaluate robustness as
an additional competing objective. Robustness is computed as a sampled hypervolume of
imposed geometrical and operational deviations from the nominal point. In order to address
the high number of additional evaluations needed to compute robustness, artificial neutral
networks are used to generate fast and accurate surrogates of high-fidelity models. The
identification of their hyperparameters is formulated as an optimisation problem. In the frame
of a case study, the developed methodology was applied to the design of a small-scale
turbocompressor. Robustness was included as an objective to bemaximised alongside nominal
efficiency and mass-flow range between surge and choke. An experimentally validated 1D
radial turbocompressor meanline model was used to generate the training data. The optimisa-
tion results suggest a clear competition between efficiency, range and robustness, while the use
of neural networks led to a speed-up by four orders of magnitude compared to the 1D code.

Keywords: robust design, robustness, predesign, artificial neural networks, hyperparameter
tuning, multiobjective optimisation, NSGA-III, radial compressor, heat-pump,
microturbomachinery

1. Introduction
Manufacturing processes can rarely reach infinite accuracy; therefore, every design is
subject to manufacturing deviations. Usually, manufacturing tolerances are defined,
so that parts can be assembled, while making sure functional clearances or fits are
respected. However, besides these assembly and functional features, manufacturing
deviation can have a significant impact on the ultimate performance and even
operational range of a machine (Guenat & Schiffmann 2019). A machine design,
which offers evenly high performance over a large tolerance set is said to be robust.
Variousmethods and definitions of robust design have been explored over the years.
Hasenkamp, Arvidsson & Gremyr (2009) define robustness as a systematic effort to
achieve insensitivity to sources of unwanted variations. Arvidsson & Gremyr (2008)
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further identify four principles of robust design: awareness of variation, insensitivity
to noise factors and its application in all stages of robust design methodology. Park
et al. (2006) decompose robust design into three approaches. First, they consider the
Tagushi method, deeming it appropriate for design of experiments (DOE), but
criticise the difficulty of finding the proper scale factors to adjust the mean of the
objective function to the target value, and the lack of a rigorousmathematicalmodel.
Second, robust optimisation is scrutinised: two types of robustness are identified by
reducing the change of the objective to variation, and ensuring that constraints
satisfy the range of tolerances for the design variables. The sensitivity of a nominal
metric – its first derivative – to variations is selected as an objective, while the
prohibitive cost of computing the second derivative in a gradient descent optimisa-
tion is pointed out. An approximation of the objective function by response surface
method (RSM) is recommended to address this challenge. Third, axiomatic design is
presented where the goal is to minimise the information content in the design, a
strategy similar to Tagushi’s. Their definition of a robust design converges to one,
which can keep a high performance under deviations of the design variables from its
nominal design point. Hence, insensitivity of the performance metrics to the largest
deviations possible is the target. Under this definition, a robust design can withstand
inaccuracies from manufacturing, while ensuring quality operation.

Probabilistic and statistical approaches have been used to model the variability
of the objective and to bypass derivative computations. This allows to save
computational resources and to perform the design search in reasonable time.
McAllister & Simpson (2003) used a probabilistic formulation of collaborative
optimisation to perform multidisciplinary robust design optimisation of an
internal combustion engine. To this end, they determined the mean and variance
of the response by a first-order Taylor expansion under the assumption of small
variations. Doltsinis & Kang (2004) optimised the designs of truss and antenna
structures, in which the expected value and the standard deviation of the objective
function were to be minimised. Dow &Wang (2014) applied principal component
analysis (PCA) to characterise manufacturing variability of compressor blades.
They constructed a probabilistic model of variability using the empirical mean and
covariance of deviations. Kumar et al. (2008) saved computational time through a
Bayesian Monte Carlo (BMC) simulation. Computational fluid dynamics (CFD)
simulations evaluate the aerodynamic performance of the compressor blade, while
a probabilistic model estimates the effect of manufacturing deviations.

Robustness as a sensitivity analysis around the nominal point via direct
evaluations of the model function has so far not been considered due to its
prohibitive computational cost. However, should faster models be available, one
could directly compute the effects of deviations, in addition to obtaining valuable
information on the boundaries of the design space. As amatter of fact, it is common
knowledge that a global maximum or minimum must either be a local one in the
interior of the domain, or lies on the boundary of the domain. Hence, an accurate
representation of the feasible design space can lead to the generation of previously
unknown optimal designs during the optimisation process.

1.1. Nature of the issue

A mathematical definition of robustness that accounts for the sensitivity of the
figure of merit with respect to deviations of the decision variables, as well as for the
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spread of the feasible domain is required. Covering the entire feasible domain
under deviations of the design variables of interest from the nominal point, while
performing amulti-objective optimisation (MOO), requires a very large number of
evaluations for each design to capture a complex response surface, with hundreds
of designs evaluated at each iteration within the optimisation loop. Robustness
evaluated alongside the nominal performancemetric of interest, effectively doubles
the number of objectives in the context of MOO problem. The inclusion of
robustness in an MOO can therefore be computationally prohibitive, even for
low-order models of engineering systems. Faster, yet accurate models are therefore
required to substitute existing ones. Such surrogate models are in need of a
methodology to generate their training data, to train them, to compute the
robustness metric and to deploy them in a MOO.

1.2. Goals and objectives

The goal of this investigation is a unified framework for the accurate and efficient
inclusion of design robustness towards manufacturing deviations in a complex
MOOdesign problem. The objectives are (a) a definition of robustness in the context
of multiobjective optimisation for robust design (MOORD), (b) a framework for
surrogate modelling with artificial neural networks (ANNs), (c) the integration of
robustness as an objective and/or a constraint in MOORD and (d) the validation of
the above mentioned for the design of a robust small-scale radial compressor.

1.3. Scope of the article

The MOORD framework yields a Pareto front, where it is the designer’s respon-
sibility to select the best tradeoff among the nondominated Pareto solutions.
Confronted to the challenge of computational time and/or the lack of access to
derivatives, the idea is to use gradient-free optimisations schemes, such as genetic
algorithms (GAs) and evolutionary algorithms (EAs). To model the variability of a
metric of interest to deviations, it is opted to develop fast surrogate models. Thus,
aiming at evaluating directly the metric of interest with a fine resolution within its
feasible space. The robustness is then evaluated as a weighted discrete set, and is no
longer limited to surface representations but can be extended to hypervolumes.
The definition of robustness within the scope of MOO is introduced as MOORD,
followed by a presentation of the framework to develop fast surrogate models with
feed-forward artificial neural networks (FWANNs).

The methodology is verified on an experimentally validated meanline com-
pressor model (1D). It is used to evaluate centrifugal compressor designs at various
operating conditions to generate the data needed to train a FWANN-based
surrogate model. Since functioning designs are a minority class, proper training
of the surrogate model is ensured via oversampling and a decomposition of the
surrogate model into three FWANNs, a preliminary classifier, an efficiency pre-
dictor and a pressure ratio predictor. The ideal FWANNs are found via a nested
backpropagation (BP)-GA optimisation scheme to identify the best hyperpara-
meters of the network (e.g., learning rate, number of hidden layers and number of
nodes) and adapt the weights to minimise the error between ground-truth and
predictions. FWANN being highly parallelisable, the robustness of the isentropic
efficiency is evaluated as a sensitivity analysis around the nominal point and
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integrated as an objective in the ensuing EA-driven MOORD, where a design
pressure ratio is implemented as a constraint.

The compressor surrogate model is used to optimise a small-scale single stage
radial compressor for driving domestic scale heat pumps, while maximising its
isentropic efficiency, its efficiency-weighted mass-flow range and its robustness
against manufacturing and speed deviations for a given operating point. Further,
the influence of the input parameters of the optimisation is discussed, and the
underlying phenomena leading to a robust design identified. The resulting Pareto
front is investigated and tradeoffs established.

2. Multiobjective optimisation for robust design
In order to be robust, the performance of a design should be insensitive to
deviations of manufacturing or operating conditions over the largest possible
domain. Mathematically, this can be captured by calculating the hypervolume
HV f of deviations Δgi from the nominal point gi, weighted by the average value of
the performance metric f of interest. This weighted volume can be computed as a
sensitivity analysis around the nominal point as shown in Figure 1.

Definition 1 (Robustness). Given a performance metric f , absolute deviations
Δgi of independent variables from the nominal point gi,nom, its robustness is

Figure 1. Graphical representation of robustness evaluated as a sensitivity analysis
from the nominal point, where the value of the metric of interest is computed at each
sampled point. Here, the sensitivity analysis is done with respect to three variables g1,
g2 and g3. The hypervolume therefore degenerates to a volume, and its projected faces
are represented with dashed lines. The red dot in the middle of the hypervolume
represents the nominal point, whereas the grey scale of the dot represents the
evolution of the considered performance metric.
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computed with K samples or f k evaluations of the performance metric, as a
discrete averaged hypervolume spanning from the nominal point gi,nom

HV f ¼ f �Πi gi,nomþΔgi
� �� gi,nom�Δgi

� �� �
(1)

with

f ¼
PK

1
f k

K : the performance metric f averaged over the swept hypervolume.
The evaluation of robustness therefore leads to a feasible domain satisfying

the constraints and to an unfeasible one that violates constraints as summarised
in Figure 2. An optimum design can be found in a local minimum of the feasible
domain, or on its boundary. The response surface of design problems is often
nonconvex, highly nonlinear and discontinuous. Hence, a large number of additional
evaluations are needed around the nominal point to accurately screen both the
technically feasible boundaries and the impact on the performance metrics.

Definition 2 (Feasible domain). The domain S is defined by the absolute
deviations of independent variables Δgi from their nominal point gi,nom (see
Figure 2). Under the assumption of continuity, the feasible domain SF is evaluated
within the hypervolume of deviations from the nominal point by applying the
j constraints h1 > 0,h2 > 0,…h j > 0. The evaluations f k of the objective function
f are set to zero outside the feasible domain SF .

In engineering problems, the design space is oftenmultidimensional, which can
make it very challenging to search the entire design space (Goodfellow, Bengio &
Courville 2016).Moreover, derivatives are not always available to perform gradient
descent, or are computationally prohibitive. Heuristic approaches have been
developed to explore the space with a lower computational cost, while offering
the advantage of searching a maximum or minimum without the need to compute
gradients. EA are a class of stochastic optimisation algorithms (Zhou, Yu & Qian
2019), which have been successfully applied to solve MOOs of complex engineer-
ing systems (Picard & Schiffmann 2020).

Definition 3 (MOO). Given a search space SMOO and p objective functions
f 1, f 2,…, f p, the MOO (for maximisation) aims to find the solution s∗ satisfying:

Figure 2. Robustness evaluation of function f leads to a continuous domain defined
by SF . Outside of SF , the constraints of the problem are no longer respected and the
value of f for these samples is set to zero.
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s∗ ¼ argmax
s∈SMOO

f sð Þ¼ argmax
s∈SMOO

f 1 sð Þ, f 2 sð Þ,…, f p sð Þ
� �

: (2)

AMOORD includes the hypervolumes of deviations of each nominal perform-
ance metric.

Definition 4 (MOORD). Given a search space SMOO and p nominal objective
functions f 1,nom, f 2,nom,…, f p,nom to bemaximised, the robustness of each objective
HV f i is included in theMOO as an objective to be maximised. The target solution
s∗ then satisfies:

s∗ ¼ argmax
s∈SMOO

f 1 sð Þ, f 2 sð Þ,…, f p sð Þ,HV f 1 sð Þ,HV f 2 sð Þ,…HV f p sð Þ
� �

: (3)

Hence, extending a nominal MOO to MOORD doubles the number of object-
ives.

3. Fast modelling with ANNs
ANNs are among the many mathematical tools available in the field of machine
learning (ML) to perform classification as well as fast and accurate regression tasks.
Working with matrix multiplications, they offer great flexibility in parallelising
computation, while offering enough capacity (number of hidden layers and nodes)
to approach differential equations (Lagaris, Likas & Fotiadis 1998; Baymani et al.
2015). This offers an advantage over Bayesian methods, which require sequential
sampling. In this work, the focus is on supervised learning with FWANNs, where
the input information is passed from one layer to the next until one or several
predicted values are outputted – see Figure 3. Each artificial perceptron or neuron
is made of a weighted sum applied to the outputs of the previous layer and an
activation function returning the perceptron output. The activation introduces
nonlinearity. Among the most common activation functions and their respective
first derivatives are the sigmoid function, the hyperbolic tangent or the Rectified
Linear Unit (ReLU) (Xu et al. 2015; Nwankpa et al. 2018). Several types of cost

(a) An artificial perceptron. (b) A feed-forward artificial neural

network architecture.

Figure3.Visualisation of a feed-forward artificial neural network (FWANN)made of
several perceptrons and layers. The artificial neuron, or perceptron, takes entries
from the previous layers, multiplies them with weights, sums them, inputs the sum
into an activation function and returns the result to the perceptrons of the next layer.
Perceptrons assembled into hidden layers form the bulk of the FWANN.
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functions are used to identify the ideal neural network. For classification problems,
where a discrete set of output values is to be predicted, categorical cross-entropy
(CE) is often used according to Géron (2019). Mean squared error (MSE) or root
mean squared error (RMSE) are more often encountered for regression problems,
where the goal is to predict a continuous set of outputs.

A FWANN is trained through BP, where the goal is to minimise the loss
function representing the deviations between the predicted and the true values by
adjusting the weights and biases of the network, as proposed by Rumelhart, Hinton
& Williams (1986). The gradient with respect to the weights can therefore be
computed backwards. Thus, the simplest algorithm to find the minimum of the
cost function, so as to reduce the error between the predicted and the true values, is
gradient descent. By choosing a learning rate α, the weights of the network in each
layer are updated iteratively. The same development applies to the biases of the
network.

Finding the weights of the ANN to minimise the cost function is an optimisa-
tion problem, for which BP is an efficient algorithm (Graupe 2013). Gradient
descent, however, is prone to getting trapped into local minima of the cost function
according to Ruder (2017). Saddle points can also slow down the training by
degenerating the gradient (Goodfellow, Bengio & Courville 2016). Solutions, such
as introducing noise via mini-batch gradient descent (Montavon, Orr & Müller
2012) and optimisers such as Adam (Kingma & Ba 2017), RMSProp or Nadam
(Tato & Nkambou 2018) were developed to address these limitations.

Another challenge of surrogate modelling with ANN is the selection of the
hyperparameters, such as the number of hidden units, the number of hidden layers,
the batch size of training examples to compute the gradient and to perform one
iteration of gradient descent, the BP optimiser or the learning rate. Together with
the identification of the weights and biases, this leads to a nested optimisation
problem, where the ideal ANN hyperparameters for a given problem has to be
found first, before performing the BP-driven gradient descent to select the best
weights minimising the cost function.

Random search, and EA are among the current state of the art methods applied
to select the hyperparameters of an ANN (Papavasileiou, Cornelis & Jansen 2021).
In this work, an adaptation of the mono-objective GA developed by Harvey (2017)
is used to perform hyperparameter tuning, with the goal of minimising the cost
function of the FWANN as represented in Figure 4. The hyperparameters searched
by the GA are the following:

(i) number of perceptrons per hidden layer,
(ii) number of hidden layers,
(iii) activation functions,
(iv) kernel initialisers for the weights and biases,
(v) batch size or number of training examples to compute the gradient and

perform one iteration of gradient descent,
(vi) optimiser for the BP algorithm and
(vii) learning rate to multiply the gradient of the loss function with.

To avoid overfitting, an L2-regularisation with default parameters is applied. It
is a penalty added to the cost function that forces the BP optimisation loop to keep
the weight values low.
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In this work, the nested optimisation problem for identifying the ideal
FWANN, summarised in Figure 4, is implemented as a generic framework.
Provided a set of training data and information on the independent variables, it
can be used to automatically generate the best possible FWANN in view of
obtaining fast and accurate surrogate models that can then be used for MOORD.

4. Case study: compressor performance prediction with
neural networks

Designing turbocompressors is an iterative and time-consuming process. It is
initialised with a predesign step to identify the tip diameter and rotor speed
according to the Cordier line and based on the specified duty (Mounier, Picard
& Schiffmann 2018). In a second step, a mean line model completed by empirical
loss models is used to define the inlet and exhaust areas and blade angles. Then, the
channel geometry between the inlet and exhaust is found using a streamline
curvature method, which results in a fully define blade geometry. A Reynolds
averaged Navier–Stokes (RANS) CFD is then usually performed as a last step to
analyse and refine the final geometry of the compressor stage. While an increasing
number of design detail is added during each phase, the computational time
increases from one design stage to the next. Hence, the initialisation of the design
with the first steps is paramount as it hierarchically impacts the following ones.

The target application for the case study is a small-scale, one-stage centrifugal
compressor for domestic scale heat-pump applications, operating at an inlet
pressure Pin ¼ 2:51bar and temperature T in ¼ 273:14K, delivering a mass-flow
of _m¼ 0:024 kg s�1 and a pressure ratioΠ¼ 2, while using halocarbon R134a as a
working fluid (Schiffmann&Favrat 2010). The rotational speedN , the tip diameter
D, the shroud-tip radius ratio r2s and the blade height ratio b4 are variables open for

Figure 4. Nested optimisation of a feed-forward artificial neural network. Back-
propagation is used in gradient descent to find the best weights and biases minimis-
ing the loss function. The hyperparamaters of the network, such as learning rate,
number of perceptrons, hidden layers, and so forth are found via genetic algorithm
optimisation (hyperparameter tuning).
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optimisation, while all other variables are either dependent or fixed as defined in
Table 1.

The objective is a robust compressor design, which can withstand geometrical
deviations on r2s, b4 as well as operational deviations on N , while maintaining
a high isentropic efficiency as well as the design pressure ratio and mass-flow.

Table 1. Description of the inputs of the centrifugal compressor 1D model indicating the ranges
considered for the generation of the dataset of the surrogate model

Term Symbol Range/Value Unit

Variables

Rotational speed N 30–400 kRPM

Tip radius r4 5–75 mm

Shroud-tip radius ratio r2s ¼ r2s=r4 0.3–0.9 –

Blade height ratio b4 ¼ b4=r4 0.015–0.3 –

Evaporation temperature Tev,in �10 to 10 °C

Inlet superheat Rhcp 5–20 K

Mass-flow _m 20–400 g s�1

Fixed parameters

Impeller outlet angle β4 �40 °

Impeller inlet angle β2rms �45 °

Impeller inlet shroud angle β2s �60 °

Blades number Nblades 9 –

Inducer/impeller roughness Ra 1:2 �10�5 –

Fluid Ammonia, Pentane, R134a

Isobutane, Propane, R245fa, R1234yf

Dependent parameters

Inducer inlet radius r1 1.1r2s mm

Impeller hub radius r2h 0.35r2s mm

Diffuser outlet radius r5 1.5r4 mm

Impeller tip clearance etp 0.02b4 mm

Backface clearance eback 0.02b4 mm

Impeller length Limp 1.5r4 mm

Dynamic viscosity μ Dependent upon fluid and input conditions Pa s

Speed of sound a0 Dependent upon fluid and input conditions m s�1

Molar mass mmol Dependent upon fluid and input conditions g mol�1

Density ρ Dependent upon fluid and input conditions kg m�3

Compressibility factor Z Dependent upon fluid and input conditions –

Specific heat ratio γ Dependent upon fluid and input conditions –

Inlet pressure Pin Dependent upon fluid and input conditions Pa
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The manufacturing deviations Δr2s and Δb4 are imposed on dimensional values to
represent the tolerance achieved by a not so accurate lathe, a situation which could
be encountered in amechanical workshop. The relative deviationΔN on rotational
speed is evaluated alongside manufacturing deviations to investigate the consid-
eration of varying operating conditions within the MOORD. In addition to
maximising the efficiency, ηis and robustness HV, the efficiency-weighted mass-
flow range between surge and choke Δ _mΠ¼2 should also be maximised, in order to
offer a wide power modulation range for the heat pump.

The identification of the ideal family of compromise between the competing
design objectives (efficiency, mass-flow range and robustness) for the specific
MOORD problem is addressed by coupling a fast surrogate model to an EA.

4.1. Surrogate model architecture overview

The 1D compressor code developed by Schiffmann & Favrat (2010) is based on a
meanlinemodel completedwith empirical lossmodels. It can flag numerical errors,
surge, choke and functioning states while the outputs are pressure ratio, isentropic
efficiency and isentropic enthalpy change for a given geometry and operating
conditions. Figure 5 represents the cut view of a centrifugal compressor and its
geometric variables needed for the meanline model.

Table 1 summarises all the input variables and their ranges for the meanline
compressor model. In order to decrease the number of dimensions, the dimensional
variables are made dimensionless by applying the Buckingham-Pi theorem with base
variables of s for time, kg for mass, m for length and K for temperature. mmol is
dropped since no other variable with units of mol is present. This leads to the
definition of nondimensional model parameters such as the flow coefficient ϕ, the
reduced temperatureTr , the pressure coefficientCp, theReynolds number Re and the
Mach numberMa in addition to the shroud-tip and blade height ratios (see Table 2).

Since discrete predictions of state such as surge and choke, and continuous
predictions of efficiency and pressure ratio are targeted, a hierarchical surrogate
model has been implemented. In a first step, designs are sent to a classifier ANN
that discriminates designs into feasible and nonfeasible (due to choke, surge or
numerical modelling error) before stepping into the ANN for the prediction of the

Figure 5. A cut view of the compressor. The shroud-tip radius ratio r2s ¼ r2s=r4 and
blade height ratio �b4 ¼ b4=r4, as well as the tip radius r4 and the rotational speedΩ are
independent variables. All other variables are either dependent of the aforemen-
tioned or fixed.

10/31

https://doi.org/10.1017/dsj.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.25


isentropic efficiency ηis and prediction of the pressure ratioΠ. The workflow of this
hierarchical compressor surrogate model is presented in Figure 6.

In this case study, the design problem is started by defining the variables, the
fixed parameters and the dependent parameters of the target compressor design
according to Table 1. First, a dataset is randomly sampled using the 1D compressor
code. Then, the dimensional parameters are made dimensionless using the Buck-
ingham-Pi theorem. AGA successively trains FWANNswith the transformed data
to find the best neural network configuration (hyperparameter identification) for
the surrogate model. MSE loss on the test set is used to discriminate one network

Table 2. Set of dimensionless variables used to train the FWANNs to supplant
the 1D compressor code

Variable Symbol

Shroud-tip radius ratio r2s

Blade height ratio b4
Compressibility factor Z

Specific heat ratio γ

Flow coefficient ϕ¼ _m
ND3

Reduced temperature Tr ¼ Rhcp

Tev

Pressure coefficient Cp ¼ Pin
N2D2ρ

Reynolds number Re ¼ ρND2

μ

Mach number Ma¼ ND
a0

(a) Compressor evaluation process.

(b) Surrogate model architecture.

Figure 6. Architecture of the compressor surrogate model. In the compressor
evaluation process, design variables X are made dimensionless and standardised.
The ANN classifier discriminates functioning designs from the rest and their
isentropic efficiency η and pressure ratio Π is evaluated. These two outputs are
inverse standardised. In the surrogate model architecture, this allows for the com-
putation of nominal performance as well as a sweep of values for the computation of
robustness HV and mass-flow modulation Δ _mΠ¼2. Internal constraints are applied
to define the feasible regions in each case. The designs and their respective perform-
ance are returned.
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from the other. Optimum FWANNs are then assembled into a surrogate model
mimicking the outputs of the 1D code in a last step.

The MOO of the robust compressor runs with the surrogate model to find the
best possible design tradeoffs, that is, maximising efficiency, mas-flow range and
robustness. The validity of the FWANNs is further verified by computing the
relative error between the 1D code and the FWANNs on each Pareto-optimum
compressor design. Finally, design guidelines are drawn from the results and
compared with existing results in the literature when applicable.

4.2. Sampling

Based on the work of Mounier, Picard & Schiffmann (2018), a dataset of 4 million
points (compressor geometries and operating conditions) is generated through
random sampling, for the training of the ANNs. Since 97% of these generated
designs are nonfunctioning, the data for the functioning designs is oversampled by
sweeping the mass-flow with 4 million extra points. This rises the number of
functioning designs to 20% of the dataset. The sampling covers six working fluids
to cover representative heat-pump applications. Independent, dependent and fixed
parameters as well as their range used for the sampling are summarised in Table 1,
while Table 2 shows the subset of nondimensional numbers shown used for the
training. Figures A1 and A2 show the distribution of the data as normalised
boxplots with respect to the input dimensionless groups of the ANNs.

4.3. Training

A generation of 100 individual FWANNs is generated and evolved over 10 gener-
ations for each the classifier, the efficiency and the pressure ratio predictors. The
search space of the hyperparameters is defined for the classifier and the predictors
in Tables 3 and 4, respectively. The sampled data are split into 60% for training,
20% for validation and 20% for test. Overfitting is avoided using the L2 regular-
isation on the network weights with a penalty factor of 0.01. An early stopping
mechanism is used to save the weights of the network at the epoch with the lowest
loss on the validation set. The resulting FWANNs are discriminated with respect to
the value of the loss function (CE for the classifier, MSE for the regressions)
evaluated on the test set. The best FWANN for a target application across all
generations is retained.

4.4. Computation of robustness and evaluation of
mass-flow modulation

A matrix of design variables is created at each generation of the EA, where a row
represents the nominal design point. For the compressor case study, functioning
designs are screened after generating the corresponding dimensionless groups and
calling the ANN classifier to discriminate designs into functioning, surge, choke
and into numerical error classes.

statenom ¼ANNclassifier r2s,b4,Z,γ,ϕ,Tr ,Cp, Re ,Ma
� �

(4)

The functioning designs are then expanded in a sweep of the shroud radius r2s,
the blade height b4, and the speedN from the nominal point as shown in Figure 1 to
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assess the effect of dimensional and operational deviation on the design objectives.
Each sweep along one dimension is discretised in krob points for a combinatorial
decomposition:

sweepr2s ¼ linspace r2s,nom�Δr2s,r2s,nomþΔr2s,krobð Þ, (5)

Table 3. Description of the hyperparameters searched for the optimisation of the classifier FWANN

Term Symbol Value

Variables

Number of neurons per hidden layer n 100,101,102,…,198,199,200

Number of hidden layers l 1,2,3,4

Activation a relu, selu, tanh, softplus, softsign

Optimiser opt Nadam, Adam, Adamax, Adadelta, Adagrad,
RMSprop

Batch size bs 1000,10000,100000,1000000

Kernel initialiser ki Glorot Normal, He Normal, Lecun Normal,
Glorot Uniform, He Uniform, Lecun Uniform

Fixed parameters

Inputs inp r2s,b4,Z,γ,ϕ,Tr ,Cp, Re ,Ma
L2 penalisation βL2 0.01

Learning rate α 0.001

Table 4. Description of the hyperparameters searched for the optimisation of the predictor FWANNs
for pressure ratio and isentropic efficiency

Term Symbol Value

Variables

Number of neurons per hidden layer n 160,168,176,…,304,312,320

Number of hidden layers l 1,2,3,4

Activation a relu, selu, tanh, softplus, softsign

Optimiser opt Nadam, Adam, Adamax, Adadelta, Adagrad,
RMSprop

Batch size bs 512,1024,2048,4096,8192

Kernel initialiser ki Glorot Normal, He Normal, Lecun Normal,
Glorot Uniform, He Uniform, Lecun Uniform

Fixed parameters

Inputs inp r2s,b4,Z,γ,ϕ,Tr ,Cp, Re ,Ma
L2 penalisation βL2 0.01

Learning rate α 0.001
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sweepb4 ¼ linspace b4,nom�Δb4,b4,nomþΔb4,krobð Þ, (6)

sweepN ¼ linspace Nnom � 1�ΔNð Þ,Nnom � 1þΔNð Þ,krobð Þ: (7)

Should the sweeps transgress the lower and upper boundaries of the decision
variables as defined per the optimisation, they are changed to match their respect-
ive boundaries. The matrix with the swept hypervolume is then evaluated accord-
ing to the workflow presented in Figure 6, where nonfunctioning designs are
associated with zero efficiency and pressure ratio. The objective of robustness of
efficiency against manufacturing and operating conditions deviations is then
evaluated under the constraints of 1:9<Π< 2:1 and ηis > 0 as follows:

HV¼ ηis � r2s,max � r2s,minð Þ � b4,max �b4,minð Þ � Nmax�Nminð Þ (8)

with ηis: the average efficiency of the sample.
The functioning designs are expanded in a sweep of the mass-flow _m and the

rotational speed N from the nominal point. Each sweep is discretised in kcharac
points as follows:

sweep _m ¼ linspace _mnom�Δ _m, _mnomþΔ _m,kcharacð Þ, (9)

sweepN ¼ linspace Nnom � 1�ΔNð Þ,Nnom � 1þΔNð Þ,kcharacð Þ: (10)

The matrix of functioning designs is evaluated according to the workflow
presented in Figure 6, and surge and choke lines are identified. The objective of
mass-flowmodulation is then evaluated under the constraints of 1:9<Π< 2:1 and
η> 0 as follows:

Δ _mΠ¼2 ¼ ηis � _mchoke,Π¼2� _msurge,Π¼2
� �

(11)

with
ηis: the average efficiency of the sample,
_msurge,Π¼2: surge mass-flow under constraints and
_mchoke,Π¼2: choke mass-flow under constraints.

4.5. Optimisation methods

The NSGA-III algorithm (Deb & Jain 2014; Jain & Deb 2014) augmented with an
adaptive operator selection procedure similar to Vrugt & Robinson (2007) and
Hadka & Reed (2013) drives the optimisation of this case study. The Python
implementation by pymoo (Blank & Deb 2020) is used. A total of 325 uniformly
distributed points following Das &Dennis (1998) are set as reference directions for
NSGA-III. The objectives and constraints are defined below and the parameters
and their respective range provided in Table 5:

max ηis,HV,Δ _mΠ¼2ð Þ
N ,D, r2s, b4

s:t: ηis > 0,

1:9<Π< 2:1

(12)
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with
ηis: nominal isentropic efficiency,
HV: hypervolume generated by deviations and weighted by efficiency,
Δ _mΠ¼2: efficiency-weighted achieved mass-flow range at target pressure ratio

and
Π: pressure ratio.

The procedure for the optimisation of the compressor stage is represented in
Figure 7, where the 1D code is replaced by the surrogate model.

Table 5. Description of the parameters for the surrogate compressor model MOORD

Term Symbol Range/Value Unit

Variables

Rotational speed N 20–400 kRPM

Tip diameter D 10–150 mm

Shroud-tip radius ratio r2s ¼ r2s=r4 0.3–0.9 �
Blade height ratio b4 ¼ b4=r4 0.05–0.3 �
Fixed parameters

Inlet pressure Pin 0.251 MPa

Inlet temperature T in 273.14 K

Mass-flow _m 0.024 kg s�1

Fluid R134a

Rotational speed relative deviations ΔN 10 %

Shroud radius deviations Δr2s 10�3 m

Blade height deviations Δb4 10�3 m

Robustness sampling unit krob 31 �
Compressor map sampling unit kcharac 81 �

Figure 7. Visualisation of the compressor optimisation. The surrogate model is used
to compute the nominal isentropic efficiency ηis, robustness HV and mass-flow
modulation Δ _mΠ¼2. It is called only once per generation of the evolutionary algo-
rithm, as a matrix of candidate designs Gimp – alongside operating conditions OP,
fluid Fld and deviations Δgi – is inputted and expanded within the model.
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5. Results

5.1. ANN training

On the one hand, the use of GA to select the best ANNs alleviates the tedious task of
manually searching the network hyperparameters. On the other hand, it comes
with a computational cost. As a matter of fact, it took about 4 days to design the
ANN classifier, and 1 day for each of the predictor ANNs (pressure ratio and
efficiency) on aNvidia RTX 2080 Ti. The benefit of this procedure, however, is that
it leads to the identification of an optimal ANN for a given design problem. In
particular, since the tool is made generic enough to automatically create the best
ANN to map an input to an output for complex engineering problems. Table 6
summarises the hyperparameters of the three ANNs for the surrogate compressor
model.

The best identified multiclass classifier has two hidden layers, 140 neurons per
hidden layer, uses a softplus activation function, a Glorot Uniform weight initial-
isation, a batch size of 1000, the Nadam optimiser for the BP with a learning rate of
0.001 and L2 regularisation to avoid overfitting. The training set consists of 4.9
million designs, while the test and validation sets were respectively made of 1.6
million. The classifier ANN has an accuracy and recall of 99% on the functioning
class. The average misclassification across the four classes is of 1.83% for a 1.6
million designs test set. The confusion matrix is provided in Figure A3.

The efficiency predictor is trained on a dataset comprising only the functioning
designs (2 million designs). The dataset is split in 60/20/20% for training, valid-
ation, and testing sets, respectively. The best neural network has two hidden layers,
232 neurons per hidden layer, with the hyperbolic tangent as an activation
function, Adam as an optimiser with a learning rate of 0.001, a batch size of
4096, and a He Normal weight initialisation. The achieved MSE on the test set is of
1.18e-3. Figure A4 shows the evolution of the RMSE as a function of epochs for the
selected efficiency predictor network.

The pressure ratio predictor is trained on the same dataset as the efficiency
predictor. The best neural network found has two hidden layers, 240 neurons per
hidden layer, is using the ReLU as an activation function, Adamax as an optimiser
with a learning rate of 0.001, a batch size of 4096, and a Glorot Normal weight

Table 6. Hyperparameters of the ANNs

Hyperparameters Classifier Efficiency predictor Pressure ratio predictor

Number of hidden layers 2 2 2

Number of neurons per hidden
layer

140 232 240

Activation function softplus tanh ReLU

Optimiser Nadam Adam Adamax

Batch size 1000 4096 4096

Kernel initialiser Glorot Uniform He Normal Glorot Normal

Learning rate 0.001 0.001 0.001
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initialisation. The achieved MSE on the test set is of 5.57e-5. Figure A5 shows the
evolution of the RMSE as a function of epochs for the selected pressure ratio
predictor network.

Figure 8 shows a computing time comparison between (a) the 1D code running
on CPU, (b) the surrogate model made of ANNs running on CPU and (c) the same
ANNs running on a GPU. The log–log graph shows a linear trend for the time
taken by the 1D code to evaluate compressor designs. There is also a linear increase
of the computation time when the ANNs evaluate the designs on CPU. It is,
however, about two orders of magnitude faster than the 1D code. The ANNs
running on GPU witness a slight increase of computation time with increasing
number of evaluations. The computational time difference between the 1D com-
pressor model and the ANN-based surrogate models increases with the number of
evaluations. For a single evaluation, the ANNs running on GPU are approximately
40 times faster, while the speed-up factor increases to more than four orders of
magnitudes for 120,000 evaluations. This clearly highlights the benefit of running
ANNs on GPU. In an EA-driven MOORD generation, about 8 million points are
evaluated per generation, which takes in average 5�1swith the FWANN structure
on a Nvidia RTX 2080 Ti (GPU). Thus, the data generation investment to train the
ANNs is amortised in one generation. In contrast, the 1D-model is sequential and
one evaluation takes on average 0:19s on a single CPU core. Executed on a 8-core
Intel i9-9980HK (CPU), the surrogate model based on ANNs still surpasses the 1D
code by performing 8 million evaluations in 400�21s, compared to 20,500 points
computed in 586 s for the 1D-model on the same 8-core CPU.

5.2. EA-driven MOORD

The optimisation for efficiency, mass-flow range and hypervolume is run for
imposed manufacturing deviations on r2s and b4 of 1�10�3 m, and relative OP

Figure8.Log–log graph of computation time versus number of design evaluations for
the 1D code executed on CPU, the ANNs executed on CPU (subscript C) and the
ANNs executed on GPU (subscript G). The computation time is averaged over
10 runs for the ANNs, while single evaluations are summed for the 1D code.

17/31

https://doi.org/10.1017/dsj.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.25


deviations of 10% on N by coupling the ANN surrogate compressor model to an
NSGA-III based EA (Deb & Jain 2014; Jain & Deb 2014).

Figure 9 shows the obtained Pareto front and the selected robust design (square
marker). The x-axis represents the discrete hypervolume HV for variations of r2s,
b4 and N under constraints and weighted by efficiency, that is, the robustness of
efficiency. The y-axis shows the achievedmass-flow range in the neighbourhood of
a pressure ratio of 2. The z-axis, represented by the colormap, displays the nominal
isentropic efficiency of the design. The results clearly suggests that the three
objectives are competing against each other, that is, maximising one of the
objectives will lead to a compromise on the two others.

The relative error between both the isentropic efficiency and the pressure ratio
prediction of the ANN and that of the 1D code for the solutions on the identified
Pareto front is presented in Figure 10. The colormap suggests that the largest
deviation corresponds to an underestimation of�1.2% for mid-range efficiencies,
while the highest ones are well predicted. The pressure ratio is predicted even better
with the largest relative error ranging between �0.4 and 0.4%.

5.3. Selected solution

The compressor map of the selected solution (square marker in Figure 9) is
represented in Figure 11 and its design point as well as nominal performance
are summarised in Table 7. The selected design has a well centred compressor map
around the nominal operating point, thus yielding a high isentropic efficiency. For
an isentropic efficiency higher than 0.74, mass-flow deviations of Δ _mηis>0:74 ¼
�0:01 kg s�1 can be achieved. The (nonweighted) mass-flow range from surge to
choke is Δ _m¼ 0:038 kg s�1. While offering one of the highest efficiencies, the

Figure 9. Pareto front for 1�10�3 deviation on r2s and b4. Robustness HV is
represented on the x-axis, efficiency-weighted mass-flow modulation Δ _mΠ¼2 on
the y-axis, and the isentropic efficiency ηis is represented by a colour gradient. A
clear competition between the three objectives is suggested. Aiming at a robust design
with high efficiency, the candidate is selected on the Pareto front and represented by a
square.
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Figure 10. Relative error, on isentropic efficiency and pressure ratio respectively, for the Pareto optima
between the ANN and the 1D code. Pressure ratio is predicted with a better accuracy than isentropic
efficiency. The largest relative error observed for efficiency is of �1.2 and 0.4%. The ANN are accurate
and conservative with respect to the 1D code.

Figure 11. Compressor map of the selected compressor design. Typical of a high
efficiency design, the compressor characteristic is centred on the operating point of
_m¼ 0:024 kg s�1 andΠ¼ 2. The space on the left is delimited by the surge line, while
the one on the right is marked by the choke line. On the edges of the compressormap,
the efficiency can drop below 0.71.

Table 7. Design point and objectives of the selected design

Decision variables Objectives

N ðkRPMÞ D mmð Þ r2s mmð Þ b4 mmð Þ ηis �ð Þ HV RPMmm2ð Þ Δ _mΠ¼2 kgs�1ð Þ

192 15.9 4.6 0.77 0.80 12,860 0.028
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selected solution offers a robustness towards manufacturing and operational
deviation higher than themedian. Its efficiency-weightedmass-flow range ofΔ _m¼
0:028 kg s�1, while being low, is not the lowest of the observed solutions.

Figure 12 shows the robustness hypervolume for the selected solution. The
obliques and convex surfaces of the hypervolume suggest that it has been truncated
by the application of the constraints on isentropic efficiency and pressure ratio. The
slice of HV for the nominal speed Nnom is also presented. For nominal values of
r2s,nom ¼ 4:6 mm and b4 ¼ 0:77 mm, the design is at a maximum nominal isen-
tropic efficiency of ηis ¼ 0:8. While maintaining the isentropic efficiency above
0.72, deviations of Δr2s

ηis>0:72
¼�0:8 mm and Δb4

ηis>0:72
¼�0:2 mm can be achieved,

which considering the small dimensional values of the nominal design is remark-
able.

5.4. Relationship between variables and objectives

Figure 13 presents the Pareto optimawith respect to the variablesNs,Ds, r2s and b4.
The evolution of objectives with respect to the decision variables assembled in pair-
plots is represented with a colour gradient spanning from the lowest to the highest
observed objective value. The left column of graphs shows the evolution of HV,
while the middle one addresses variations of Δ _mΠ¼2, and the right one displays
variation of ηis.

Specific speed Ns and specific diameter Ds are dimensionless groups used to
characterise turbomachinery. The specific diameter (Eq. (13)) and speed (Eq. (14))
correspond to a nondimensional representation of the compressor rotor speed and
the compressor tip diameter (Korpela 2020). Larger Ns are typical of axial com-
pressors with larger flow rates, whereas centrifugal machines yield lowerNs due to
lower flow rate and higher pressure rise. Specific speeds and diameters of known

Figure 12. The evaluation of robustness for the selected solution as a hypervolume of deviations from the
nominal point is limited to a volume in this case study. Isentropic efficiency at the sampled points is
represented by a colour gradient. A slice at the nominal rotational speed is represented on the right. On
the edges of the feasible domain, the value of efficiency can drop below 0.71.
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Figure13.Evolution of each of the four decision variables against the three objectives.
Decision variables of the Pareto optima are graphed in pair-plots and coloured by
objective value. The left column represents the robustnessHV, while the middle one
represents the efficiency-weighted mass-flow range Δ _mΠ¼2 and the right one the
isentropic efficiency ηis. Specific speedNs and specific diameterDs instead of N and
D are picked to favour comparison.

21/31

https://doi.org/10.1017/dsj.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.25


turbomachines functioning at their best efficiency have been used by Cordier to
build the ‘Cordier’ diagram, which identifies the specific diameter for a given
specific speed that yields maximum efficiency. It is an early design selection tool
created in the 1950s (Dubbel 2018) that was further extended by Balje in the 1980s
(Balje 1981).

The first row is a plot of Ds against Ns defined as follows:

Ds¼D Δhisj j0:25
_min=ρð Þ0:5 , (13)

Ns¼Ω _min=ρð Þ0:5
Δhisj j0:75 , (14)

with
Ω: rotational speed in rad/s,
Δhis: isentropic variation of enthalpy between inlet and outlet,
_min: inlet mass-flow and
ρ: inlet fluid density in kg m�3.

Similar to Mounier, Picard & Schiffmann (2018), the solutions lie within a
narrow band of Ns,Dsð Þ pairs. There is a clear trend of maximisingHV for higher
specific speed and low specific diameter. Increasing Ds and reducing Ns leads to a
lower robustness. The inverse trend is observed for the achieved efficiency-
weighted mass-flow range between surge and choke, Δ _mΠ¼2, which reduces with
higherNs and lowerDs. The observed correlation is not as strong as for robustness,
since there is a limited number of designs with Δ _mΠ¼2 < 0:035 kg s�1 for 0:4<
Ns< 0:5 and 5<Ds< 6. The trend is weaker for ηis, where designs of low
efficiencies can be found for different Ns,Dsð Þ pairs, which corroborates with
results by Mounier, Picard & Schiffmann (2018). Note, however, that designs with
0:30<Ns< 0:44 and 5:6<Ds< 6:7 all have a very high isentropic efficiency with
ηis > 0:79, except one.

The plots in the second row suggest that robustness HV increases with r2s and
with Ns. For fixed values of r2s, increasing Ns decreases the mass-flow range
Δ _mΠ¼2. Fixing Ns while increasing r2s leads to a decrease of efficiency ηis.

The third row displays the variation of r2s with Ds. The HV decreases with
decreasing r2s and increasing Ds. Δ _mΠ¼2 increases for fixed values of r2s and
increasing Ds. ηis decreases for fixed values of Ds and increasing r2s.

The fourth row is a representation of blade height ratio b4 against specific speed
Ns. Increasing b4 andNs leads to higher values of robustness, while fixing the values
of blade height ratio and increasing the specific speed decreases the mass-flow range
achieved between surge and choke at a pressure ratio of 2. The opposite trend is
observed for isentropic efficiency: fixing b4 and increasing Ns leads to higher ηis.

The fifth row represents the variation of b4 with respect to Ds. Higher robust-
nessHV is achieved for lowerDs and higher b4. The inverse relation decreasesHV.
Fixing values of b4 and increasing Ds leads to higher Δ _mΠ¼2. Finally, fixing values
of Ds and increasing b4 leads to reduced efficiency.

The last row displays the evolution of b4 with respect to r2s.HV increases with
the shroud-tip radius and blade height ratio. The variation of mass-flow range is
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less pronounced. The best designs with respect to Δ _mΠ¼2 are mainly located in the
lower left region, for 0:44< r2s < 0:6 and 0:05< b4 < 0:10. Furthermore, the upper
region of the band formed by the Pareto optima contains the worst designs with
respect to mass-flow modulation.

6. Discussion

6.1. Artificial neural networks

For the compressor design problem addressed as a case study in this work, a speed-
up of four orders of magnitude has been achieved compared to the 1D code using
ANN-based surrogate models. This speed-up can be further increased since it is
only limited by the memory capacity of the GPU. The relative difference between
the 1D code and the ANN-based surrogate model is minimal for the computation
of the compressor performance (1.2% maximum difference on the isentropic
efficiency and 0.4% on the pressure ratio), while surge and choke are also well
predicted. Accurate results coupled with a massive speed-up of the ANNs open the
path to a new, faster design process.

Typically, the state-of-the-art turbocompressor design methodology is initia-
lised with a first design that is based on unified performancemaps, such as the ones
offered by Balje. This starting point provides an idea on the ideal rotor speeds and
tip diameter. In the next step, a 1D-meanline methodology model is used to
identify the compressor inlet and discharge geometries. High-fidelity models are
used only towards the end of the process, and since they are computationally
expensive, they are rather used in an analysis mode rather than for design. As a
consequence, the bulk of the geometry definition occurs early in the design process.
The process of a sequential engagement of more complex models in a design
process calls for accurate starting points to minimise the number of design
iterations. This is the reason why predesign maps have to be updated, when
applications go beyond the validity range of available resources as pointed out
by Mounier, Picard & Schiffmann (2018), and by Capata & Sciubba (2012).

However, the replacement of the 1D-meanlinemodel with amuch faster ANN-
based surrogate model allows to merge the utilisation of the predesign maps and
the optimisation with the meanline model into a single and much faster step. In
addition, the ANN-based surrogatemodel can be used to extend the design process
to include the performance across the complete compressor map, while including
computationally expensive features such as robustness.

The introduced methodology to automatically generate a fast surrogate model
therefore opens the door to an efficient robust design process and to a direct
evaluation of the entire compressor map, which significantly alleviates the design
of compressors that need to satisfy various operating conditions while maximising
efficiency and mass-flow range.

6.2. Tradeoffs

The Pareto front in Figure 9 suggest a competition between the three objectives.
The robustness to manufacturing deviations cannot be improved while ensuring a
high degree of mass-flow range at a fixed pressure ratio. Maximising the nominal
isentropic efficiency does not result in a more robust design either. This goes
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against the common belief that maximising one of the nominal performance
metrics will result in increased safety margin when deviating from the nominal
point. This corroborates with results by Capata & Sciubba (2012) who found
similar results when designing low Reynolds number turbocompressors.

6.3. Design guidelines

Lower rotational speeds, diameters and values of shroud-tip radius ratio and blade
height ratio yield a compressor map centred on the highest isentropic efficiency ηis
point for the given operating conditions.

A design maximising the efficiency-weighted hypervolumeHV compensates a
small tip diameter with higher rotational speed, shroud-tip radius and blade height
ratios. This is a design with a high specific speed (Ns) and a low specific diameter
(Ds), and high shroud-tip radius ratio (r2s) and high blade height ratio (b4). This
leads to a centring of the design in the hypervolume of deviations. These results are
in line with Mounier, Picard & Schiffmann (2018) and their description of the
evolution of the design space withNs andDs, while maintaining a good efficiency.

A solution maximising the achieved efficiency-weighted mass-flow range at a
pressure ratio of 2 Δ _mΠ¼2 is an anti-symmetric design of the one maximising the
hypervolume. On the one hand, largeDs, smallNs, and smaller r2s and b4 produce a
design on the edge of surge. On the other hand, this design allows for a large
increase of mass-flow as it is somewhat oversized for its nominal operating
conditions.

7. Conclusion
In this article, a unified and automated framework to perform robust design in a
MOO setting has been presented. Using fast and parallelisable surrogate models
such as ANNs, the computation of robustness expressed as a weighted sensitivity
analysis from the nominal point can be included both as an objective and/or as a
constraint for complex design problems, where the response surface of competing
design objectives is highly nonlinear and nonconvex. The generation of data for the
surrogate model training and testing and the relevant oversampling to alleviate
unbalanced classes has been described, as well as the nested BP-GA optimisation to
train the neural networks and find the best hyperparameters and weights to
minimise the prediction error.

This framework was then applied to the design of a small-scale radial com-
pressor. Nominal isentropic efficiency, mass-flow modulation and robustness of
isentropic efficiency were included as objectives in an NSGA-III driven MOO
under constraints of pressure ratio in the vicinity of two, and feasible design
(no surge and no choke). The optimisation results clearly suggest a tradeoff
between isentropic efficiency, mass-flow range and robustness, which discards a
common practice that maximising one of the performance metrics necessarily
offers a higher degree of robustness towards operational and manufacturing
deviation. Further, the use of FWANNs suggests an acceleration of the computa-
tional time by four orders ofmagnitude compared to the original 1Dmeanline base
code thanks to parallel computing on GPU, for a deviation below 1.2% on the
prediction of the performance metrics (isentropic efficiency and pressure ratio).
Within the frame of compressor design, the novel design methodology allows
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unprecedented possibilities in early design phases, such as the introduction of
robustness towards manufacturing and operational deviation as well as the assess-
ment of the compressor across the complete compressormap. Compared to state of
the art approaches that require designmaps and time-consumingmodelling, this is
made possible by benefiting from the significant decrease of the computational cost
by using ANNs as a means to replace high-fidelity models.

Future work should focus on analysing prediction outliers from the neural
networks and assess the risk they pose for the quality of the converged Pareto front.
A retraining process of the surrogate model based on Pareto solutions should also
be implemented to reduce prediction error on solutions of interest. More design
variables should also be included to allow for a wider variety of compressor designs.

Finally, this work can be summarised by the following achievements:

(i) Definition of robustness in the context of MOO as a weighted hypervolume
defined by the geometrical/operational deviations around a nominal design
point, weighted by the average performance metrics of interest. The high
number of additional points to compute the hypervolume calls for high speed
models. The surrogate model framework developed in this work offers
sufficient speed-up to compute robustness in the context of a MOORD.

(ii) Development of a generic framework to create FWANN-based surrogates of
high-fidelity models for diverse engineering applications. The framework is
designed so that the identification of the ideal ANN hyperparameters is
formulated as an optimisation problem. As a consequence the neural network
topology is automatically adapted to the complexity of the underlying model.

(iii) Parallelisable FWANNs reduce the computational time by four orders of
magnitude compared to the original compressor 1D code. The speed-up is a
combination of the surrogate model architecture and of the fact that the
neural networks can be evaluated by hyperparallelisation on GPU. As a
consequence, in order to be able to fully capitalise on the ANNs for design,
it is highly recommended to use a GPU instead of a CPU.

(iv) A robust design of a radial compressor was optimised four orders of magni-
tude faster than with ameanline 1D code with direct evaluations of deviations
and the construction of a compressor map within the optimisation loop. This
method is disruptive and can help the engineer to select the optimal tradeoffs
for a given compressor application, andmove forward with the design process
including robustness and the evaluation of the full compressormap in a timely
fashion.

Nomenclature

Roman Symbols
a speed of sound/ANN activation function (m s�1)
b blade height/ANN bias (m/�)
b blade height to tip radius ratio
bs ANN batch size
Cp pressure coefficient
Ds specific diameter
f objective function/performance metric (context dependent unit)
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G geometry field (context dependent unit)
h specific enthalpy (J kg�1)
HV hypervolume of deviations (context dependent unit)
inp ANN inputs
k sweep sampling
ki ANN kernel initialiser
l ANN number of hidden layers
_m mass-flow (kg s�1)
n ANN number of hidden units (neurons) per hidden layer
N rotational speed (RPM)
Ns specific speed
opt ANN optimiser
P pressure (Pa)
r impeller radius (m)
r radius ratio
Re Reynolds number
S search space
T temperature (K)
Tr reduced temperature
w ANN weight
Z compressibility factor

Greek Symbols
α ANN learning rate
β ANN regularisation penalisation
Δ variation of a given variable
η efficiency
γ specific heat ratio
μ viscosity (Pa s)
Ω rotational speed (rad s�1)
ϕ flow coefficient
Π pressure ratio/product
ρ density (kg m�3)

Subscripts
ev evaporation
F feasible
i ith element
imp impeller
in inlet
is isentropic
L2 L2 regularisation
nom nominal
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Acronyms
Adam Adaptive Moment Estimation
ANN Artificial Neural Network
BMC Bayesian Monte Carlo
BP Backpropagation
CE Cross-Entropy
CFD Computational Fluid Dynamics
CPU Central Processing Unit
DOE Design of Experiments
EA Evolutionary Algorithm
FWANN Feed-Forward Artificial Neural Network
GA Genetic Algorithm
GPU Graphics Processing Unit
HV Hypervolume of Deviations as Metric of Robustness
LAMD Laboratory for Applied Mechanical Design
ML Machine Learning
MOO Multi-Objective Optimisation
MOORD Multi-Objective Optimisation for Robust Design
MSE Mean Squared Error
Nadam Nesterov Momentum Adaptive Moment Estimation
NSGA Nondominated Sorting Genetic Algorithm
OPO Operating Conditions
PCA Principal Component Analysis
RANS Reynolds Averaged Navier–Stokes
ReLU Rectified Linear Unit
RSM Response Surface Method
SM Surrogate Model
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Appendix

FigureA1.The distribution of the data for themulticlass classifier is represented with
normalised boxplots. A total of 1,841,648 designs are errors, 2,564,775 are function-
ing, 330,741 are in surge and 3,554,436 are in choke.
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FigureA2. The distribution of the data is represented with normalised boxplots, after
selecting only functioning designs. It is used to train the ANNs predicting efficiency η
and pressure ratio Π. Their distributions have also been added.
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FigureA3.Confusionmatrix for the FWANN classifying the states of the compressor
for the test set: numerical error (0), functioning (1), surge (2) and choke (3). Given in
thousands and rounded.
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Figure A4. Evolution of RMSE in function of number of epochs for the FWANN
predicting efficiency. Overfitting is avoided by interrupting the network training
when the validation error starts increasing again. Training and validation converge
towards a 4% asymptote after 500 epochs.

Figure A5. Evolution of RMSE in function of number of epochs for the FWANN
predicting pressure ratio. Overfitting is avoided by interrupting the network training
when the validation error starts increasing again. Training and validation converge
towards a 1% asymptote after 500 epochs.
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