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SUMMARY

Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across
different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the
reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be
successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we
discuss howwell positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite
biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of
quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to
acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein
interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is
readily accessible to the user-community and can be translated and integrated with other relevant data types.
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INTRODUCTION

“I should like you to consider that these func-
tions. . .follow from the mere arrangement of the
machine’s organs every bit as naturally as the move-
ments of a clock or other automaton follow from the
arrangement of its counter-weights and wheels.” Rene
Descartes (1596–1650); Treatise of Man (Descartes
and Hall, 1972)

Descartes’ visionary approach to understanding the
functioning of the human body almost 400 years ago
brought him into conflict with the scientific establish-
ment of the time, but marked the beginning of a new
way of thinking in the natural sciences: one which
saw the inexorable rise of a reductionist approach to
resolving scientific problems. His appeal to “Divide
each difficulty into as many parts as is feasible and
necessary to resolve it” now underpins the way we
think about science and has facilitated great advances
in biomedicine, including an understanding of the
mechanisms which control the replication, trans-
fer and evolution of genetic information from
one generation to another. Indeed, it is since the
discovery of the structure of DNA and the

development in the later part of the 20th Century of
tools to identify and manipulate individual genes
and their products, that reductionist biology
reached its high point through the paradigm of
gene-centred, hypothesis-driven, experimentation.
With gene identification becoming increasingly easy
(including for most pathogens and hosts) and the
availability of cheap commercial systems to manip-
ulate gene expression both in vitro and in vivo, such
experiments were irresistible. In infectious diseases
research, this approach was successful in revealing
many important biological functions that have
transformed our understanding of the mechanisms
which underpin host-pathogen interactions. Yet,
within this vast amount of genomics data resides
the challenge to reductionist thinking itself. The
birth (or re-birth) of “Systems Biology” marks the
beginning of a retreat from reductionism – a process
encouraged by the fact that we are all being hopelessly
outpaced by the scale of the biological data available.
Some now argue that although reductionism has
successfully identified most of the components and
many of the interactions of biological systems, it
offers no convincing concepts or methods to under-
stand how system properties emerge (Sauer et al.
2007). By contrast, systems biology attempts to link
high throughput molecular sciences such as geno-
mics, proteomics and metabolomics by integrating
data across different levels of structure and scale
with the aim of understanding pathways, functional
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nodules and large-scale organisation (Oltvai and
Barabasi, 2002). A systems approach is characterized
by multi-disciplinary collaboration including the
natural sciences, mathematics, computer science,
engineering and medicine; and in its most tractable
form it enables the linking of experiment and
modelling processes. Above all, systems biology is
about assembling, rather than disassembling struc-
ture; integration rather than reduction and “requires
that we develop ways of thinking about integration
that are as rigorous as our reductionist programmes,
but different” (Noble, 2006).

Whether systems biology evolves to become the
new paradigm for biological science experimentation
in the 21st Century remains to be seen, but it is
certainly here to stay. If it is to be a success then the
technological tools required to implement its possi-
bilities need to be fit for purpose. In the next few
years the genomes from all known parasites either are,
or will be available at the click of a mouse and the
same will be true for most host species. The re-
cording, storage and querying of genome sequence
data is challenging because of its size, but is
comparatively straightforward since genomes are
basically stable entities which can be annotated and
applied as a road map to the organism across multiple
experimental scenarios. By contrast, the phenome,
defined by the totality of all traits of an organism, or
of one of its sub-systems (Mahner and Kary, 1997) is
decidedly not stable and presents huge challenges in
terms of analysis, representation and interpretation.
Expression changes as measured by mRNA abun-
dance using high-throughput mRNA sequencing
provide great possibilities to provide signatures, for
example, of how host cells or tissue respond to
parasite challenge. These data are of course highly
dynamic and more complex than sequence data,
requiring careful regard of statistics during exper-
imental design and need to consider the value of
steady-state observations versus turnover. Although
forming an integral part of the message signature in a
biological system, mRNAs are of course not the
functional molecules in a cell. Ultimately it is the
dynamic of protein expression that is the most
relevant functional measurement. Proteins, which
more than any other component in the cell are the
‘counter-weights and wheels.’ of ‘the clock’, are in a
constant state of flux and activation and as such
provide an even greater analytical challenge than the
measurement of mRNA.

In the past 12 years significant advances have been
made in analysing the proteomes of parasites and
their hosts. In 2002 only a handful of research
publications existed on parasites and proteomics,
whereas in 2011 over 70 articles were published in
that year alone, with the field totalling over 2000
citations (ISIWeb of Knowledge). The rapid growth
of the field has been facilitated by major technical
advances allowing access to a wide spectrum of

researchers. However, significant limitations still
exist in the technologies constituting the science of
proteomics, some of which present a real challenge to
the emergence of systems biology as a tool to study
host-parasite interactions. In this review we examine
the current status of parasite proteomics and the scale
of the tasks ahead. We review the current status of
large-scale identification proteomics and discuss the
need to apply more sophisticated quantitative pro-
teomics approaches as we move from the era of
descriptive proteomics to one in which we are
concerned with understanding the dynamics of
protein expression. We review recent developments
in the availability of user-friendly publicly accessible
interfaces for parasite proteomics data and their
potential for integrating transcriptomics and other
data into a wider systems biology analysis. Finally we
discuss the relationship between the proteome and
transcriptome and ask ourselves: to what extent have
we even begun to acquire the necessary baseline data
required to realise a systems approach to host-pathogen
interactions?

HIGH-THROUGHPUT IDENTIFICATION OF

PARASITE PROTEOMES

Before the availability of annotated parasite genomes,
‘top-down’ approaches in which intact proteins were
analysed directly by mass spectrometry (MS) (along
with non-MS based approaches such as amino acid
sequencing by Edman degradation), were the only
practical way to obtain protein sequence information.
These approaches were challenging, laborious and
had significant limitations, one of which was that they
were suited to only very low-throughput exper-
iments. Advances both in MS instrumentation and
better annotated genomes meant that so-called
‘bottom-up’ proteomics was possible in which MS
is used to analyse enzymatically-digested or chemi-
cally produced peptides from protein samples. The
resulting MS fragmentation spectra (or fingerprint)
can then be used to infer sequence by matching to a
database derived from annotated genome sequence
data. With genome sequence data now abundant, this
approach is what most people today recognise as
‘proteomics’ and is especially suited to high-through-
put experiments in which thousands of proteins can
be identified from a sample in a single run on a
suitably configured mass spectrometer. In high-
throughput identification experiments, proteins
samples can be analysed whole, or as sub-proteomes
produced by a variety of approaches such as fraction-
ation, organelle separation or affinity purification.
Before MS takes place, separation at either the
protein level or of peptides is almost always
performed to reduce sample complexity. Protein
separation is typically achieved by techniques such
as gel electrophoresis or other forms of chromato-
graphy followed by in-gel digestion, while peptide
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separation is achieved by using liquid chromato-
graphy before analysis by tandem mass spectrometry
(MS/MS). A typical workflow for high-throughput
identification proteomics in parasite systems is shown
in Fig. 1. Once the MS spectra have been produced
identifications are made by matching the experimen-
tal peptide MS data, usually mass/charge (m/z) data,
to a theoretically calculated peptide m/z database
using search engines such as Mascot (Perkins et al.
1999), SEQUEST (Yates et al. 1995) and X!Tandem
(Craig and Beavis, 2004).
The field of parasitology has been quick to exploit

emerging proteomics technologies. Early studies
typically used in-gel digestion of protein spots se-
parated by two-dimensional electrophoresis (2-DE)
and identification made using peptide mass finger-
printing (PMF) on a MALDI-ToF instrument,
initially on excretory–secretory (ES) products from
parasitic worms (Jefferies et al. 2001; Yatsuda et al.
2003) then on more complex life stage proteomes
(Cohen et al. 2002; Curwen et al. 2004). The more
widespread use of CID (collisional induced dis-
sociation) based LC-MS/MS analysis of peptides
allowed the high-throughput identification of mul-
tiple proteins present in 1DE or 2DE spots or in
whole digests – fractionated or un-fractionated. The
advances in MS instrumentation enabled a more
comprehensive analysis of parasite proteomes. Two
pioneering examples took advantage of high-
throughput proteomics for the analysis of the life
cycle of Plasmodium falciparum (Florens et al. 2002;
Lasonder et al. 2002). These global strategies were
used to analyse the changes that the parasite under-
goes as it traverses its life cycle inmultiple hosts. Both
studies utilised pre-fraction strategies, on-line multi-
dimensional protein identification technology (Mud-
PIT) which used the complementary separation

power of strong cation exchange and reverse phase
chromatography or 1-D gel electrophoresis com-
bined with MS/MS analysis to identify both parasite
and human proteins. Evidence for the translation of
more than 1000 predicted ‘hypothetical ‘proteins
were confirmed by use of high throughput proteomic
techniques. Similar multiple separation technologies
(MudPIT, 2-DE, and gel-LCMS) were used on the
proteomes of other Apicomplexa including Cryptos-
poridium parvum (Sanderson et al. 2008) and Tox-
oplasma gondii (Xia et al. 2008). In the case of
T. gondii in particular, peptide evidence was also used
to help correctly assign exon-intron boundaries and
make important refinements to the annotation of the
genome (Xia et al. 2008). At present, much of the
parasite high-throughput identification proteomics
data is focused on protozoan parasites, probably
largely due to the greater number of advanced
annotated genomes compared to those available for
helminths. There are now over 15 protozoan species
with on-going proteomics projects, half of which
have greater than 30% coverage and are headed by
Plasmodium and Toxoplasma, each with around 70%
coverage (Table 1). The next few years will see a
similar advance in proteomics identification data for
helminths as many of the genomes come on-line.
However, some helminth parasites such as Schistoso-
ma mansoni do have advanced proteomics pro-
jects (Curwen et al. 2004; van Balkom et al. 2005;
Braschi and Wilson, 2006; Guillou et al. 2007).
Some helminth studies have concentrated on sub-
proteomes where the focus has been on the host-
parasite interface and the possible roles played by
excretory/secretory (ES) material on the host im-
mune system. The ES of Brugia malyai has been
extensively characterized using proteomic tech-
niques. Several proteins with immune regulation

Fig. 1. A schematic diagram for a proteomics workflow. A typical workflow for a high-throughput identification and
quantification proteomics experiment. The workflow consists of four major steps: sample collection, protein extraction
and purification, sample fractionation (in either protein or peptide space) and mass spectrometry analysis. Various entry
points for quantitative proteomics are shown by arrowed boxes. The collected raw mass spectra data are then analysed
by various bioinformatics pipelines illustrated in Fig. 2.
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properties were identified in the ES of individual life
stages (Hewitson et al. 2008; Moreno and Geary,
2008) as well as in other nematodes such as
Teladorsagia circumcincta (Craig et al. 2006). Further
comprehensive analysis of the B. malyai secretome
was achieved by (Bennuru et al. 2009), identifying
over 800 proteins total in the analysis of several life
stages of the parasite.

Advances in MS instrumentation and protein
separation technology will continue to increase the
number of identifications that can be obtained from a
single sample. Increasing resolution and accuracy
have improved the reliability of these identifications,
as has the use of more sophisticated bioinformatic
tools to improve processing of the MS/MS data and
to ensure identifications are supported statistically. It
is surely only a matter of time until relatively ex-
tensive proteomics coverage has been reported for
most parasites of relevance to human and animal
health. However, it is worth considering the extent to
which a fully comprehensive proteome for some
organisms is really achievable. Issues with sample
preparation, incomplete tryptic digestion (Brown-
ridge and Beynon, 2011), dynamic range, bias against
certain classes of proteins, imperfect genome annota-
tion, and concerns over peptide coverage, detect-
ability and specificity (‘proteotypic’ peptides) (Beck
et al. 2011) make full coverage of a proteome
challenging. Extensive pre-fractionation of the pro-
tein or peptide samples can go some way to overcome
some of these problems, but in doing so add a great
deal of experimental redundancy as well as greatly
increasing instrument analysis time and cost. Finally,
parasites are characterized by often possessing com-
plex life-cycles, sometimes in multiple hosts or
survival in the external environment. A truly
comprehensive proteome for any parasite is therefore

never expressed at any one moment; rather it is a
dynamic and responsive facet of the host-parasite
system for which a great range of temporal data is
required before a full picture can be achieved.

ADVANCES IN QUANTITATIVE PROTEOMICS IN

PARASITE AND HOSTS

Measurement of the changes in the abundance of
proteins from one condition to the next, or determin-
ing changes in the protein composition of protein
complexes and organelles under different conditions,
are key data which can help us understand how the
proteome responds in a dynamic host-parasite
interaction. Quantification is now one of the foremost
topics in proteomics and the most recent proteomic
platforms are now geared not only to provide id-
entification, but also some form of quantitative data.
There are two main approaches used in quantitative
proteomics: label-based methods and label-free
methods.

Common labelling techniques involve either
stable isotope labelling through in vivo metabolic
labelling, chemical modification or labelling by
fluorescent dyes. Popular chemical labelling includes
proteins labelled with isotope-coded affinity tags
(ICAT) (Gygi et al. 1999) and iTRAQ, which uses
a multiplexed set of isobaric reagents that yield
amine-derivatised peptides for relative and absolute
quantitation (Ross et al. 2004). In vivo labelling
metabolically labels proteins by incorporation of
stable isotope labels with amino acids in cell culture
(SILAC) (Ong et al. 2002). Fluorescent dye labelling
is used in 2-DE fluorescence difference gel electro-
phoresis (2-DE DIGE) (Unlu et al. 1997).
More recently, label-free quantification has gained
popularity due to cheap and easy experimental

Table 1. Current proteomics projects in protozoan parasites. There are over 15 protozoan species with on-
going proteomics projects, half of which have greater than 30% coverage. EuPathDB (www.eupathdb.org)
(Aurrecoechea et al., 2010) acts as one of the main portals for eukaryotic pathogen proteomics

Website Species
Taxon
ID

Predicted
Proteome

Proteomics
Data

Proteome
Coverage

Enriched
Subproteome
Data

Multiple Life
Clycle
Stages Data

AmoebaDB E. histolytica 294381 8306 2442 29·40% Yes No
CryptoDB C. parvum 353152 3805 1320 34·69% Yes Yes
GiardiaDB G. intestinalis

Assemblage A
184922 5901 1744 29·55% Yes No

PlasmoDB P. berghei 5823 4904 1999 40·76% Yes No
P. falciparum 36329 5524 3940 71·33% Yes Yes
P. vivax 126793 5435 311 5·72% No No
P. yoelii 352914 7724 674 8·73% No Yes

ToxoDB T. gondii 508771 7993 5425 67·87% Yes Yes
TrichDB T. vaginalis 412133 59672 1830 3·07% Yes No
TriTrypDB L. infantum 5671 8241 538 6·53% No Yes

L. braziliensis 420245 8357 40 0·47% Yes No
L. major 347515 8412 502 5·97% N.A. N.A.
L. mexicana 5665 8250 1682 20·39% Yes No
T. brucei 185431 10533 3850 36·55% Yes No
T. cruzi 353153 10342 1512 14·62% Yes Yes
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implementation. Label-free techniques directly use
raw data from parallel MS runs to compare relative
proteins abundance in different runs. Spectral
counting and intensity-based methods are among
the most commonly used approaches. Spectral co-
unting infers protein abundance using the number of
peptide-spectrum matches (PSMs) in a given run.
However, due to different ionization efficiencies
caused by biophysical properties of each peptide,
the raw spectral counting has been proved to be less
reliable as a quantification indication. Several soft-
ware packages have been developed to normalize
spectral counting, such as APEX (Lu et al. 2007) and
emPAI (Ishihama et al. 2005). Intensity-based
methods align precursor ion spectra of the same pe-
ptide from parallel runs according to their retention
times (RT), and protein quantification is acquired by
summing ion intensities that have been matched to
peptides for a given protein. This approach has been
implemented by several commercial software
packages such as Progenesis LC-MS (NonLinear
Dynamics) and Protein Lynx Global Server
(Waters), as well as open-source packages such as
MaxQuant (Cox and Mann, 2008), OpenMS (Sturm
et al. 2008) and MSight (Palagi et al. 2005).

Label-based quantitative proteomics in host-parasite
systems

Which quantitative approach to adopt depends on the
nature of the host-parasite system under investi-
gation. If the parasite can be cultured then in vivo
metabolic labelling with a stable isotope can be
achieved. SILAC (stable isotope labelling with
amino acids in cell culture) has been extensively
performed in cell culture, with virtually the entire
proteomes of diploid and haploid yeast being
compared using SILAC (de Godoy et al. 2008).
There are only a few instances of in vivo metabolic
labelling being used with parasites. Abundance
changes in the proteome of the trophozite stages of
the malarial parasite Plasmodium falciparum follow-
ing chloroquine and artemisinin treatment were
examined using a stable isotope approach that used
14N-isoleucine and 13C6,

15N1-isoleucine combined
with a MudPIT peptide separation method (Prieto
et al. 2008). The role of the antibiotic paromomycin
on the global proteomes of susceptible and resistant
strains of the protozoan parasite Leishmania donovani
was examined with SILAC, using the conventional
13C6 L-lysine-HCl and 13C6

15N4 L-arginine-HCl
heavy isotopes (Chawla et al. 2011). Changes in the
relative abundance and phosphorylation of protein
components of the invasion motor complex during
host cell invasion by the apicomplexan parasite
Toxoplasma were also monitored by SILAC based
quantitative proteomics (Nebl et al. 2011). While
some progress has been made with single cell

parasites in cell culture, larger multicellular parasites
are less amenable to SILAC labelling. Recent work
by two groups has developed methodologies to
perform SILAC based proteomics on the nematode
C. elegans, using metabolically labelled E. coli as a
food source in order to label the worms. Larance et al.
(2011) characterized C. elegans protein abundance
changes after heat shock treatment and Fredens et al.
(2011) followed the C. elegans proteome response
to the knockdown of the transcription factor nuclear
hormone receptor 49 (NHR-49) with RNAi. Nearly
4700 proteins were identified (approx. 20% of pre-
dicted proteome) and 3470 of these quantified, with
330 significantly up- or down-regulated. SILAC
based quantification benefits from high accuracy and
the fact that the labelled ‘heavy’ proteome is es-
sentially indistinguishable from the ‘light’ or normal
proteome and can be combined early-on in the
procedure, at the cell level or just after lysis, meaning
that less variation or inaccuracies will be introduced
during sample preparation and pre-fractionation
beforeMS analysis. The success of these experiments
opens up the possibility of using SILAC with other
parasitic nematodes.
Many parasites cannot easily be labelled in vivo

making SILAC an impractical approach. An alterna-
tive labelling technique is therefore to post-label by
chemically modifying peptides or protein prep-
arations from experiments using tagged stable isotope
or fluorescent dyes. Difference gel electrophoresis
(DIGE) can be used to label up to three different
samples with a fluorescent dye. The samples are then
mixed and analysed by 2D electrophoresis. Differ-
ences in protein abundance between the samples can
be measured by excitation at different wavelengths
and gel images are matched and analysed by image
analysis software such as DeCyder™ (GE Health-
care). This technique helps reduce the variability
between samples run on separate 2DE gels. DIGE
has been used to monitor the changes in the host
cell proteome to invasion by Toxoplasma gondii,
highlighting significant changes in key metabolic
pathways and in post-translational protein modifi-
cation (Nelson et al. 2008), measuring the key protein
changes during Neospora differentiation (Marugán-
Hernández et al. 2010) and identifying changes in the
abundance of proteins involved with energy metab-
olism in the head proteome of theAnophelesmosquito
after infection with Plasmodium (Lefevre et al. 2007).
The plasma proteomes of several individuals infected
with Leishmania donovani were compared to control
individuals using DIGE (Rukmangadachar et al.
2011) identifying several putative biomarkers. Schis-
tosoma japonicum schistosomula from hosts with
differing susceptibility to the parasite were also
examined using DIGE (Hong et al. 2011) and several
proteins were shown to be differentially expressed
between schistosomula, highlighting the adaptation
of S. japonicum to different host environments.
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The most widespread of the stable isotope tag
techniques is iTRAQ. Up to eight different samples
can be labelled with isobaric tags that react with the
primary amino groups of peptides. The samples can
then be mixed and analysed in the same MS run.
During MS the tags are fragmented into reporter
groupswith a differentmass for each tag, the intensity
of which can be used to derive the relative abundance
of corresponding peptides in the starting sample.
Protein abundance changes in the malaria parasite
P. falciparum following doxycycline treatment were
measured using iTRAQ (Briolant et al. 2010) as was
the differential protein expression over the life stages
of Trypanosoma congolense (Eyford et al. 2011). The
protein abundance differential measured using
iTRAQ was used to distinguish putative mitosomal
proteins from co-purified contamination in Giardia
intestinalis extracts (Jedelský et al. 2011). Combining
quantitative iTRAQ proteomic profiling with tran-
scriptomics showed that the expression of merozoite
proteins in Plasmodiun falciparum were regulated
post-translationally during invasion pathway switch-
ing as an adaptation to variations of the host cell
(Kuss et al. 2011).

Label-free quantitative proteomics in parasite systems

Label-free methodologies are becoming an increas-
ingly popular and widely used first approach to
quantitative proteomics, although they do present
statistical and bioinformatic challenges. The prin-
ciple behind this technique is that two samples can be
compared without the need tomodify or label protein
preparations using the mass spectra alone. Spectral
counting is a straightforward way to obtain semi-
quantitative data on protein abundances within a
sample and is often automatically performed on
peptide identification data sets (e.g. emPAI in the
Mascot search engine). This way quantitative data
can be obtained from intensive highly fractionated
shotgun identification proteomics. Schrimpf et al.
(2009) have identified more than half of the predicted
C. elegans proteins and using a modified spectral
counting algorithm estimate the abundances of over
1000 proteins. This information was used to validate
gene models and to compare the abundance of
orthologous proteins in another organism. Bennuru
et al. (2011) identified approximately 60% of the
predicted gene products from adults, microfilariae,
L3 larvae and ES products of the lymaphatic filarial
worm Brugia malayi. Abundance was estimated
using simple spectral counting. Several high-
throughput proteomics studies have focused on the
proteome of Schistosoma parasites. The proteomes of
several developmental stages of S. japonicum as well
as tissues at the host-parasite interface were charac-
terized in tandem with transcriptomics (Liu et al.
2006) in parallel with a proteomic study of the
host proteins that are associated with S. japonicum

(Liu et al. 2007) and the parasites excretory/secretory
proteins (Liu et al. 2009). Label-free quantitative
proteomics of the early gametocyte phase of
P. falciparum identified that proteins involved in
erythrocyte remodelling were enriched (Silvestrini
et al. 2010).

An alternative to spectral counting is to align
separate LC-MS/MS runs of peptide mixtures and to
calculate the differences in intensities of the same
peptides detected in each run. This approach tends to
be more accurate than spectral counting but requires
expensive instrumentation to ensure reproducibility.
Software, both commercial and free, is available to
perform the alignment and ion intensity comparison
functions. To date no examples of its application to
host-proteome interactions have been published, but
the potential for increased accuracy with this
approach means that its application is unlikely to be
overlooked by the field.

Absolute protein quantification

The approaches described so far have been in terms of
relative quantification. The precise determination of
the concentration of specific protein is known as
absolute quantification. This is performed by stable
isotope dilution, where a reference standard to which
a stable isotope has been incorporated is added in
known amounts to the sample mixture. The reference
peptide is in all respects the same as the analyte
peptide apart from the mass difference due to the
isotopic label. When analyzed by MS the ratio of the
intensities of the analyte and standard ions will allow
the calculation of the concentration of the analyte as
the concentration of the standard is known. The
reference standards can be synthesized chemically
individually, e.g. AQUA peptides (Gerber et al.
2003) or expressed from synthetic genes in E. coli
using stable isotopically enriched media e.g.
QconCAT Absolute quantification (Beynon et al.
2005), can provide the copy number of proteins in a
cell under a certain state, an important input for
systems biology modelling. These absolute values
can be compared across several studies including
those from different groups and be more easily
integrated into transcriptomic and metabolic system
data. The use of absolute quantification in parasite
studies is only just starting to emerge. The relative
and absolute amounts of Schistosome tegument
proteins have been determined using a QconCAT
methodology (Castro-Borges et al. 2011). Of course
any isotope dilution experiment requires that the
analyte be already characterized (in contrast to
discovery based proteomics).

Targeted quantitative proteomics

So far we have discussed high-throughput proteo-
mics approaches which have made no a priori
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assumptions as to the proteins to be analysed. Whilst
this is highly valuable as a tool to help generate
assumption-free hypotheses, it has the disadvantage
of pushing separation techniques and instrumenta-
tion to its limits because of the diversity of protein
species and the dynamic range of the targets. Such an
approach is unlikely ever to unravel a truly complete
proteome and is even less able to make good quan-
titative measurements across such a wide dynamic
range. Targeted proteomics approaches are now
being developed that enable the MS instrument
measurements to be focused only on specific peptides
from predetermined sets of selected proteins. These
techniques have the potential for greater accuracy
since the instrumentation and bioinformatics can be
tuned to a relatively small sub-set of protein targets.
Selected reaction monitoring (SRM) is typically used
to selectively record fragmentation events that are
specific for the peptides of interest (Lange et al. 2008;
Bertsch et al. 2010). Targeted proteomics allows a
rapid and accurate quantitative profiling of a repeated
set of proteins across samples from different con-
ditions. A triple quadrupole mass spectrometer
(QQQ) is used to achieve peptide targeting in SRM
experiments. The first quadrupole is used to isolate
precursor ions in a narrow mass range and the
selected ions are then fragmented in the second
quadrupole. The third quadrupole is used to specifi-
cally detect a set of fragment ions that is characteristic
for the target peptides. This sequential isolation of
targeted ions enables a great reduction in background
noise and makes this approach the most sensitive MS
strategy available. An application of this strategy has
been used to obtain the absolute quantity of low
abundance proteins in P. falciparum crude cell
extracts (Southworth et al. 2011).

PROTEIN MODIFICATIONS AND INTERACTIONS

Post-translational modifications

Proteins can undergo a great range of chemical
modifications after translation. These post-transla-
tional modifications (PTMs) can determine protein
localisation, activity state, turnover, structure, as well
as interactions with other proteins, cells or organ-
isms. While >1000 PTMs have been assembled in
UNIMOD (www.unimod.org) withmore likely to be
found, PTMs are generally not well characterized in
parasites. Understanding the roles of these PTMs in
parasite regulation, survival and pathogenesis as well
their contribution to the adaptation and evolution of
the host require both highly sensitive and precise
detection and reliable high-throughput method-
ologies to quantify protein changes in a complex
mixture.
The low dynamic range, stability and sometimes

transient changes of protein modifications combined
with attempting to relate these modifications to

biological events create a challenge to modern
technologies. There are many proteomic approaches
to studying PTMs, ranging from bottom-up and top-
down mass spectrometry, gel and gel-free techniques
and affinity based methodologies.
Classically, gel-based techniques paired with mass

spectrometry (MS) have been used to highlight
PTMs. Two-dimensional electrophoresis separates
proteins by their charge and molecular weight. The
resolving power of this technique can separate
differentially expressed modified forms of a given
protein. Further selectivity in the detection of
specific PTMs by using certain stains, metabolic
labelling, antibodies or specific probes can aid in
detection and identification of PTMs and have been
used to identify phosphorylated proteins in erythro-
cytes infected by the human malaria parasite Plas-
modium falciparum (Wu et al. 2009). Fluorescent or
colorimetric stains for gels or western blots (e.g. Pro-
Q Diamond stain, Invitrogen) allow simple selective
detection of phosphoproteins (Nunes et al. 2010).
A more sensitive technique for phosphoprotein
detection is the radiolabelling of proteins by 32P
incorporation (Leykauf et al. 2010) or immunoblot-
ting (Wu et al. 2009). Glycosylated protein can also
be detected using specific stains such as Pro-Q–

Emerald (Invitrogen) conjugated lectins or differen-
tial glycosidase digestion (Rebello et al. 2011).
The scarcity of many PTMs requires the enrich-

ment of the sub-population of select modified
proteins. Affinity based enrichment can be performed
at the protein or peptide level and targets specific or
groups of PTMs. Immobilised metal ion affinity
chromatography (IMAC) utilises the affinity of
chelated Fe(III) or Ga(III) ions to the phosphate
group of phosphopeptides. Crude protein mixtures
from Leishmania donovai extracts were enriched for
phosphoproteins using IMAC then digested with
trypsin and analysed for life stage specific phospho-
protein abundance (Hem et al.2010).Oxides ofmetals
such as titanium, zirconium and aluminium, can also
be used to isolate phosphoproteins selectively. Anti-
pSER/pThr/pTyr antibodies also facilitate the en-
richment of phosphoproteins by immunoprecipita-
tion followed by separation by 1-DE or 2-DE gels.
Specific antibodies can also act to isolate other PTMs,
for example the global analysis of acetylation,methyl-
ation and nitration of peptides. Carbohydrate-
binding proteins (lectins) are used to enrich for
glycoproteins andglycopeptides using affinity chrom-
atography. Affinity resins that bind polyubiquitin
protein conjugates are commercially available.
PTMs can also be specifically targeted by chemical

derivatization. Affinity tags can be introduced by
beta elimination of phosphoric acid from pSER or
pThr followed by the addition of affinity groups
such as biotin to allow enrichment of phosphopro-
teins by chromatography. Solid phase extraction of
glycopeptides can be achieved by immobilsation of
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carbohydrates to a hydrazide activated resin followed
by release by PNGase F and analysis with LC-MS/
MS. Hydrophilic interaction liquid chromatography
(HILIC)-based methods can also be used to isolate
glycopeptides. Recently hexapeptide libraries have
been applied to large-scale glycomics analysis (Huhn
et al. 2011) and arrays have been used to profile
glycans (Lepenies and Seeberger, 2010; Lonardi et al.
2010; Ruhaak et al. 2010).

Covalent PTMs of cysteine are mediators of redox
regulation and signalling. Cysteines are involved in
many biochemical reactions, crucial in redox reac-
tions and when involved in disulfide bonds, influence
protein structure and stability. S-nitrosylation,
s-glutathioylation, palmitoylation and prenylation
are all PTMs of cysteine found in parasites (Jortzik
et al., 2011).

Protein-protein interactions

Most cellular processes are governed by protein-
protein interactions. These can range from the
interaction of two proteins to the formation of large
macromolecular complexes consisting ofmany differ-
ent proteins in differing ratios. Interactions can be
strong or transient. There are several methods for
experimentally determining protein-protein inter-
action. The two most widely used are the yeast two-
hybrid system and affinity purification coupled with
MS (Tandemaffinity purification,TAP),where the c-
terminus of a bait protein is fused to a TAP tag. The
TAP tag consists of a calmodulin-binding peptide
(CBP) and a IgG binding domain from protein A,
separated by a TEV protease cleavage site. The TAP-
tagged bait protein is isolated from a cell lysate using
IgG-coated beads. After washing, the bait protein is
released from the beads by incubating with TEV
protease. A second round of purification uses calmo-
dulin-coated beads to isolate the bait protein (and
associated binding partners) via the CBP tag. Bound
proteins are eluted and analysed with SDS-PAGE
andmass spectrometry. The yeast two-hybrid system
measures the interaction of a bait protein which is
fused to theDNAbinding domain of the yeast protein
Gal4 and the prey protein, which is fused to the
transactivation domain of Gal4. When the bait and
prey interact, a downstream reporter gene is activated.
A variation of this technique has been used to
investigate interaction networks in P. falciparum
(LaCount et al., 2005), identifying 2846 unique
interactions involving 1312 proteins and highlighting
a group of interacting proteins involved with host cell
invasion, including 19 uncharacterized proteins.

BIOINFORMATICS RESOURCES FOR PARASITE

PROTEOMICS

There are two major limiting steps in any proteomics
experiment. One is the limit imposed by the MS

instrumentation itself and second, but equally as
crucial, is the bioinformatic processing of the large
quantity of data generated by modern proteomics
platforms. The involvement of various bioinfor-
matics tasks in processing and interpreting proteo-
mics data is summarised in Fig. 2. The scale and
complexity of the data generated by such a workflow
means that it is essential to develop integrated
database pipelines if complex proteomics data are
generated for multiple host-parasite systems.
Proteomics databases for parasites are an essential
component of ensuring that these data are stored and
rendered accessible for easy use by the community.
Subsequently, the focus is then on downstream
interpretation in relation to protein function and
localization prediction, pathway and network analy-
sis, since these are the aspects of bioinformatics which
have the potential to turn an elegant data gathering
exercise into one which can reveal genuine insights
into function. KEGG (Kanehisa and Goto, 2000),
MetaCyc (Caspi et al. 2011) and Reactome (Croft
et al. 2011) are such tools developed to facility
pathway browsing and data analysis.

Data repositories for parasite proteomics data

Several public repositories host proteomics data for
the research communities, such as the Proteomics
identifications database (PRIDE) (Jones et al. 2006),
the Global Proteome Machine databases (GPMDB)
(Craig et al. 2004) and PeptideAtlas (Desiere et al.
2006). While these databases are useful for storage
and re-querying of proteomics data generated, the
integration of proteomics data with organism-specific
genomic and proteomics resources provides an
essential technical step to data interpretation (Xia
et al. 2008). For parasites the most advanced example
of this is the hosting of proteomics data in EuPathDB
(Aurrecoechea et al. 2010). Although these data deal
with only protozoan parasites the easily accessible
format has opened up proteomics data to the entire
research community in a way that was difficult to
envisage, even a few years ago. Proteomics data
repositories for helminths are generally less unified
and well resourced, possibly reflecting the fact that
the respective genome sequencing projects lag behind
those of the protozoa, although this is likely to change
in the near future. WormBase (Yook et al. 2011), for
example, now supports 15 helminth species with
growing proteomics data resources.

Proteomics resources at EuPathDB

EuPathDB acts as a portal to eukaryotic pathogens
(Aurrecoechea et al. 2010). It is an integrated genome
database composed of a family of dedicated pathogen
databases including PlasmoDB, ToxoDB (also
serves Neospora caninum), CryptoDB, GiardiaDB,
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TrichDB, TriTrypDB, AmoebaDB and Microspor-
idiaDB. More detailed introductions to these data-
bases have been published through online tutorials,
individual websites and journal publications (Heiges
et al. 2006; Gajria et al. 2008; Aurrecoechea et al.
2009a,b, 2010; Aslett et al. 2010). In this review, a
selection of the important features that are relevant to
parasite proteomics research will be highlighted.
Proteomics data of T. gondii and C. parvum

pioneered the full integration of proteomics data
into EuPathDB (Sanderson et al. 2008; Xia et al.
2008). The latest version of EuPathDB (v2.12) hosts
proteomics data for 26,035 proteins from 16 species
(http://eupathdb.org/eupathdb/). Data analysis tools
have been developed to facilitate the browsing,
functional prediction and comparison of proteomics
data with other types of genomic data.
Fig. 3 shows how protein expression data for

particular genes can be viewed on individual gene
record pages using ToxoDB v7.2 as an example,
where colour coded peptides are mapped to the gene
sequence according to the experiments that identified
them. Protein expression evidence can also be
queried according to the experiments and samples
using ‘Identify Genes based on Mass Spec. Evidence.’
tool (Fig. 4). Once a group of proteins of interest has
been acquired based either on existing proteomics
studies or user supplied lists, additional data analysis
tools can be used to interact with genome infor-
mation, functional predictions and other type of
genome wide ‘omics’ data using ‘Add Step.’ tool in
the results page. Fig. 4 also shows the comparison of
proteomics data with mRNA expression data from

RNA sequencing experiments, where the relation-
ship of the two datasets can be analysed side by side.
This function has vastly improved the interaction of
proteomics data with existing knowledge and other
genomics data and is a first step to enabling a truly
‘trans-omics’ approach to studying parasite biology.
In addition to these text based tools, the Generic
Genome Browser (GBrowse) has also been incorpor-
ated in ToxoDB to improve visualization of data
mining. GBrowse is a web-based application for
displaying genomic annotations and other features
developed by GMOD (Generic Model Organism
Database project) (Stein et al. 2002). The implemen-
tation of ToxoDB allows expressed peptides to be
visualized in relation to various gene models and the
genomic region from which the sequence is predicted
to have been produced. Fig. 4 shows the peptides
identified from one of the proteomics datasets aligned
with unified MS/MS peptides and one RNA-Seq
datasets for a particular gene TGME49_100100.
A more recent development involves the use of an

automated proteogenomic pipeline for integration of
mass spectrometry (MS) based proteomics evidence
into genome databases (Krishna et al. 2011). The
pipeline uses MS data for confirming official gene
models on the database, but also examines whether
there is supporting evidence for alternate annotations
at particular loci and for identifying novel genes. The
pipeline is currently being used to assist proteomics
data integration and gene annotation for a number of
EuPathDB supported species, including T. gondii,
N. caninum and C. parvum. Similar to other generic
tools developed in EuPathDB, the algorithms used in

Fig. 2. A bioinformatics pipeline for large-scale proteomics data storage, querying and interpretation. The involvement
of various bioinformatics tasks in processing and interpreting proteomics data is summarised. Raw mass spectra data
collected from an experimental pipeline are subjected to proteomics identification packages, where protein identifications
are acquired based on the comparison between raw data and protein sequence databases. The results are then analysed
by appropriate quantification packages where relative or absolute quantifications of the analyte proteins are calculated.
Protein function and localization prediction and pathway analysis tools have been developed to infer the biological
meaning of the identification and quantification data. Proteogenomic and database integration pipelines are available to
facilitate data integration with online databases and improve genome annotation using alternate annotations.
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the pipeline are not specific to any organism, thus
enabling the pipeline to be used in conjunction with
any genome.

Around 590T. gondii genes are annotated to
ToxoDB metabolic pathways, which were automati-
cally reconstructed from KEGG pathways maps.
Many of the pathways are not organism specific and
based on the presence of one or two enzymes present
in other pathways or on the basis of less precise partial
EC number annotations. A recent effort has been
made to develop a manually curated metabolic
pathways database for apicomplexan parasites using
biochemical and physiological evidences available in
the literature as well as proteomics evidence and gene
annotations available on EuPathDB. The result is
currently hosted at Liverpool Library of Apicom-
plexan Metabolic Pathways (www.llamp.net).

With the increasing availability of quantitative
parasite proteomics data and that collected from host
cell systems, new interfaces need to be developed to
enable analysis of these data. While quantitative
proteomic data can probably be visualised in a similar

way to transcriptomic data, a lack of data analysis
tools for other protein features is holding back the
wider integration and analysis of multiple ‘omics’
data. Not least is the complete lack of a platform on
which host response data can be displayed and
analysed alongside parasite data – something that is
essential if we are to use these tools to answer
questions about host-parasite interactions.

In a recent development outside EuPathDB,
MOPED (Model Organism Protein Expression
Database) provides for the rapid browsing of protein
expression information in several model organisms
including Caenorhabditis elegans (Kolker et al. 2012).
It also offers data comparison tools to produce
overlap plot and heatmaps between existing data
and user-uploaded data with user-specified ex-
pression value thresholding (Kolker et al. 2012). A
local data analysis tool, GProX, (Graphical Proteo-
mics Data Explorer) is also available for comprehen-
sive analysis, inspection and visualization of
quantitative proteomics data (Rigbolt et al. 2011).
Although the MOPED and GProX are currently

Fig. 3. Screenshot of protein expression data of individual genes displayed on ToxoDB. A screenshot illustrating
protein expression data for gene a Toxoplasma gondii gene TGME49_086420 viewed on an individual gene record page.
Colour coded peptides are mapped to the gene sequence according to the various experiments and laboratories that
identified them.
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limited to proteomics data only, a similar interface
could be readily adapted on genome databases to
facilitate large scale quantitative trans-omics studies.

Post-identification bioinformatic analysis

Once the protein identification and quantification has
been determined, signature-based resources can be
used to infer function and subcellular localizations
where one or more protein signatures can be
identified. Protein signatures are defined by either a
regular expression method that shows patterns of
conserved amino acid residues (Sigrist et al. 2002) or
the Hidden Markov Model (HMM) method which
provides a statistical profile based on probabilities of
finding an amino acid at a given position in the
sequence (Krogh et al. 1994). There are many
publicly available signature databases of protein
families and domains, including sequence-based
PROSITE (Sigrist et al. 2002), Pfam (Finn et al.
2008), PRINTS (Attwood et al. 2003) PANTHER

(Mi et al. 2007) and structure-based SUPERFAM-
ILY (Wilson et al., 2007) and Gene3D (Yeats et al.
2006). Protein signatures can be used in combination
to predict protein functions. For example, proteins
with no significant sequence similarity but which
have similar functions might be expected to share
some common features like post-translational modifi-
cations, protein-sorting signals and similar sub-
cellular localizations. In parasitology research, the
identification of signal peptide and transmembrane
domains are of special interests. The entry of virtually
all proteins into the secretory pathway is controlled
by signal peptides (Gierasch, 1989; vonHeijne, 1990)
and transmembrane proteins support essential bio-
logical functions acting as receptors, transporters or
channels, which is essential in host-parasite inter-
actions (Dowse and Soldati, 2005; O’Donnell et al.
2006; Baxt et al. 2008).
Universal software packages were developed to

predict certain protein features based on a set of
trained rules, such as Signal P for signal peptide

Fig. 4. Workflows for two important tools for proteomics informatics research on ToxoDB . Starting on ToxoDB the
frontpage, protein expression evidence can be queried according to the experiments and samples using ‘Identify Genes
based on Mass Spec. Evidence.’ tool. The results can be compared with other genome information using ‘Add Step’ tool
in the result page. The example shown is the comparison of proteomics results with one of the RNA sequencing datasets
(RNA Seq Evidence). ‘Genome Browser’ can also be accessed from ToxoDB frontpage, where various genome
information (named tracks) can be selected to be aligned in a defined genomic region. Individual genes from proteomics
results can also be viewed directly in GBrowse from the result page. The example shown is proteomics evidence of gene
TGME49_100100 aligned with RNA Seq evidence acquired.
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prediction (Bendtsen et al. 2004), TMHMM for
transmembrane domain prediction (Krogh et al.
2001) and PSORTb for general sub-cellular localiz-
ation prediction (Yu et al. 2010). Additional organ-
ism-specific prediction tools and databases were also
developed to predict important features in the
organism under study, with more targeted training
data. For example, PSEApred (Verma et al. 2008),
PlasMit (Bender et al. 2003) and ApiLoc (http://
apiloc.biochem.unimelb.edu.au/apiloc/apiloc) for
apicomplexan parasites.

TRANSCRIPTOMICS AND PROTEOMICS IN

PARASITE SYSTEMS

Gene expression process can be simply summarized
using the central dogma of Gene-Transcription-
Translation. However, many levels of control and
regulation events during this process introduce
uncertainty to the system where a simple one-to-
one expression is not achieved. Early comparisons
between transcriptomics data and proteomics data
have generally indicated a weak correlation (de Sousa
Abreu et al. 2009; Maier et al. 2009). The same
phenomenon has also been observed in some para-
sites and has been summarized in reviews of models
systems such as Apicomplexa (Kooij et al. 2006;
Wastling et al. 2009) and Schistosoma (Hokke et al.
2007). These studies highlighted the discrepancies of
mRNA and protein expression and the important
involvement of the regulation of expression, which is
likely to involve biological explanations such as
selective protein degradation and variations in
protein turn-over rates (Yen et al. 2008; Doherty
et al. 2009) as well as post-translational regulations
such as mRNA decay and translational repression
(Hakimi and Deitsch, 2007; Shock et al. 2007;
Filipowicz et al. 2008).

However, despite the biological reasons, technical
factors have also restricted the full insight of the
correlation between transcriptome and proteome,
namely the incomplete transcriptomics survey and
rather basic quantitative proteomics techniques. The
lack of simultaneously collected sample for both
proteomics and transcriptomics analyses also con-
tributes to the discrepancies observed. The recent
introduction of high-throughput sequencing of
mRNA and microRNA (Hall, 2007; Lister et al.
2009; Wang et al. 2009), and the development of
quantitative proteomics techniques, in particular the
absolute quantification methods, have significantly
improved our ability to measure the correlation
between transcriptome and proteome in biological
systems. Studies carried out by Schwanhäusser et al.
(2011) on mouse NIH3T3 cells and Nagaraj et al.
(2011) on human Hela cells are among the first large-
scale comparisons between RNA-Seq data and
intensity-based absolute quantification (iBAQ) pro-
teomics data from simultaneously collected samples

and report correlation coefficient of between 0·41 and
0·6 (Spearman) (Nagaraj et al. 2011; Schwanhausser
et al. 2011).

CONCLUSIONS

In the first decade of the 21st Century we have
witnessed the beginnings of a new era in biomedical
research in which we see scientific reductionism
being challenged by the availability of vast collections
of biological information. Much of this information,
gathered in defined experimental contexts, constitu-
tes genomic and genome-related expression data
generated by technologies such as transcriptomics
and proteomics. Together with other related data
such as metabolomics, glycomics and lipidomics,
attention has turned to ways in which individual
streams of information can be processed as a whole,
rather than remaining as an isolated descriptor of the
action of individual components. The desire to
combine these data into a unified system is in part
driven by the pragmatic view that biological events
are the result of the concerted action of individual
system components. However, more than that,
biological systems also exhibit emergent properties;
and these properties cannot be fully predicted by the
sum of the component parts. In host-parasite
interactions, emergent properties are likely to be even
more complex because the host-parasite relationship
is a product of the interaction of two genetically
distinct biological systems. Such systems interact in
often unpredictable ways – after all, if they were
completely predictable, science would have been far
more successful in developing vaccines, drugs that
were less susceptible to resistance and solved some of
the paradoxes of parasite evolutionary biology. It is
an interesting observation that the most successful
vaccines are live-attenuated vaccines whose develop-
ment has often by-passed a detailed understanding of
the ‘black-box’ of the host-parasite system itself.
When we try and break our knowledge down into its
component parts to develop sub-unit vaccines for
example, the outcomes are far less impressive.
Moreover, efforts to understand the system as a
whole must extend not just in the scope of the data,
but in scale also; instead of considering the system
only at an individual organism level we must be
cognisant of population responses of both parasites
and hosts.

So has Descartes’ reductionist vision really had its
time – soon to be eclipsed by a return to a holistic
view of the system? And if so, what are the
implications for the facilitating technologies of
systems biology such as proteomics? As with most
paradigm shifts, any change will represent more of an
evolution than a revolution. Few will seriously
contend that we no-longer need to examine the fine
detail of discrete biological components and their
biochemical actions. On the contrary, experiments on
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discrete gene function are arguably as important as
ever since reliable information on protein function,
localisation and modification is an essential element
in generating accurate systems models. It is worth
considering also the vast number of genes in parasite
genome databases that are still annotated as ‘un-
known function’, even though protein expression
data generated by proteomics experiments such as
those described here show clearly that they exist as
functional molecules. Similarly, our understanding
of protein expression, including information on post-
translational modifications and absolute protein
expression and turnover requires far more refinement
before we can be confident that it will fulfil its role in
meaningful systems modelling. As we have seen in
this review, coverage of accurate quantitative proteo-
mics is still relatively poor and focused on proteins
with high to medium level expression. A trade-off
still exists between our ability to identify proteins
(which we can do in large numbers) and our ability to
make accurate quantitative measurements. Finally,
the non-linear relationship between transcription,
protein expression and activity, still needs to be
defined in host and parasite. These advances will
require continued advancement of instrumentation
and concomitant development in proteome bioinfor-
matics as dramatic as any of those we have seen in the
last decade.
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