6

Magnetic monopoles in larger gauge groups

Having studied in some detail the monopole that arises when SU(2) is broken to
U(1), let us now consider the possibilities that occur with larger, and possibly
more realistic, gauge groups. Perhaps the most important of these are the groups
that occur in grand unified theories. As we will see, magnetic monopoles are a
generic prediction of all such theories.

6.1 Larger gauge groups—the external view

Although our primary interest is in monopoles with nonsingular cores, which
arise when a gauge group G is spontaneously broken to a subgroup H with
mo(G/H) nontrivial, I will begin by focusing on the long-range field, the part
outside the monopole core, and determine the possible magnetic charges. This is
essentially an extension of Dirac’s analysis to the case where the unbroken gauge
group H is larger than U(1) and, in general, non-Abelian. Like Dirac’s analysis,
this analysis applies equally well to singular point monopoles and to nonsingular
solitons. Also as with the Dirac analysis, we will find that in some cases there
are allowed magnetic charges for which there are no nonsingular monopoles.
Let us therefore start by assuming that we have an unbroken gauge group H,
and that the magnetic components Fj; of the field strength have long-range tails
that fall as 1/72. Let us further assume that the vector potential can be expanded
in inverse powers of r, with its Cartesian components falling as 1/r or faster, and
that!
A; = @ +0(1/r?), (6.1)
where A; and f; should be understood to be matrices representing elements of
the Lie algebra of H. The 1/7? terms do not contribute to the 1/r? part of the

1 In order to simplify the notation, the gauge fields in this section have been rescaled so as to
absorb the gauge coupling constant.
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6.1 Larger gauge groups—the external view 109

magnetic field, and so will henceforth be omitted. If we now go over to spherical
components, these assumptions imply that Ap and A, are independent of r at
large distance. Finally, we will restrict ourselves to static fields with no electric
charge, and with Ag = 0.

The first step is to choose a gauge where A, = 0 outside a sphere of radius
R. (Excluding the region r < R avoids any issues of singularities at the origin,
and has no effect on the fields at large distance.) This can be done by means of
a gauge transformation with

-1 _ < 1 " A (!
U (r,@,qﬁ)—Pep[g/Rdr AT(T,9,¢):|, (6.2)

with the P denoting path ordering. With this gauge choice and our dropping of
the 1/r? terms in A;, the only nonzero component of the field strength is Fyg,
which is independent of 7.

Next, we set Ag = 0 in this asymptotic region by means of an r-independent
gauge transformation obtained in a similar fashion by integrating along arcs of
fixed ¢ starting at the north pole and moving downward. The field equation

0= Du(yg F*) (6.3)
then implies that Ay, the only nonzero component of the gauge potential, is of
the form

Ay =Cl(o) + QJZ[—W) cos . (6.4)
m

To avoid a singularity at the north pole, 8 = 0, we must set C(¢) = —Q (@) /47.
The field equation

0= Da(yg ™) (6.5)
then tells us that @, is independent of ¢, so that

1
Ay = EQM(COSQ -1) (6.6)
and (returning to Cartesian components)

B; = —%eiijjk = =M (6.7)

This looks very much like the U(1) case, with a Coulomb magnetic field and

a Dirac vector potential with its string along the negative z-axis. There are two

crucial differences. First, the U(1) charge was simply a number, whereas now Qs

is a matrix in the appropriate representation of the Lie algebra. Second, Q,;, like

B; itself, is not gauge invariant, but only gauge covariant. Had we made other
gauge choices, it could even have varied with angle.

Despite these differences, the derivation of the quantization condition goes

through pretty much as before. Requiring that the potential of Eq. (6.6) be
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110 Magnetic monopoles in larger gauge groups

related by a single-valued gauge transformation to an equivalent potential with
the Dirac string along the positive z-axis gives the condition [96-98]

el@M =T (6.8)

The corresponding condition in the U(1) case, Eq. (5.12), was required to hold
for all electric charges ¢ that are present in the theory. Similarly, Eq. (6.8) must
hold with @); a matrix in any representation of the Lie algebra that actually
occurs in the theory.

Let us start by considering the case where the unbroken gauge symmetry has
the algebra of SU(2), with the generators taken to be the T, (a = 1,2,3) with
the standard normalization. Since any element in the Lie algebra can be rotated
by a global gauge transformation to be proportional to T3, there is no loss of
generality in writing

Qn = AmkTs5. (6.9)

The quantization condition then becomes

et s — 1, (6.10)
so that for every eigenvalue t3 we must have

2%kts = n, (6.11)

with n an integer.

If all of the fields in the theory transform under integer “spin” representa-
tions of SU(2), then the t3 will all be integers and k can be either an integer
or an integer plus 1/2. If there are also fields transforming under half-integer
representations, then k& must be an integer.

These conditions can be rephrased by being more careful about specifying the
gauge group, keeping in mind that SO(3) and SU(2) share the same Lie algebra.
The allowed eigenvalues of T3 are known as weights. These are all integers for
SO(3), and either integers or half-integers for SU(2). If the theory only has fields
in integer representations, and thus only integer weights, then the gauge group
can be taken to be either SO(3) or SU(2); let us choose the former. If there
are also fields transforming under half-integer representations, then the gauge
group is unambiguously SU(2). What we have found is that if the “electric”
gauge group is SU(2), then the “magnetic weight” k must be a weight of the
“magnetic group” SO(3). Conversely, if the electric group is SO(3), then the
allowed magnetic weights are those of SU(2).

Configurations with different values of k are not all physically distinct. Because
a global gauge transformation can reverse the sign of 75, monopoles with mag-
netic weights k and —k are gauge equivalent and can be continuously transformed
one into the other. (It is possible to continuously connect these two discrete val-
ues because for the interpolating configurations (s is not simply a multiple
of T3.)
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6.1 Larger gauge groups—the external view 111

This leads to a curious phenomenon. Consider a configuration with two mono-
poles, each with magnetic charge Qs = 2775, held fixed at some separation
much larger than their core size. Outside the monopole cores there is an obvi-
ous solution of the field equations in which the magnetic field is equal to 2775
times the ordinary electrostatic field corresponding to two like-sign unit charges.
However, changing the sign of one of the charges by a gauge rotation leads us
to another quasi-Abelian solution, of lower energy, formed from the electrostatic
field of two charges with opposite sign. If the field and charges are initially in the
former solution, even the slightest perturbation should be enough to cause them
to transform into the latter, radiating off the excess energy in the process.

In this process, the total charge (i.e., that seen at spatial infinity) will have
changed from 4773 to 0. By considering configurations with more monopoles, we
can see that configurations with total charges differing by any integer multiple of
47T can be continuously connected (although the intermediate configurations
may not be solutions of the static field equations). Hence, two configurations can
be continuously deformed into one another if they both have integer, or both
have half-integer magnetic weights. What if one has an integer and the other a
half-integer magnetic weight?

One can define a topological quantity that shows that these cannot be con-
nected [99]. Consider a sphere at very large radius, where the gauge fields can
be assumed to take on their asymptotic form. This sphere can be covered by
a family of loops, each of which begins and ends at the north pole. One such
family consists of loops C'(7) that go from the north pole (§ = 0) to the south
pole (6 = 7) along the arc ¢ = 0 and then back along the arc ¢ = 277, As 7
ranges from 0 to 1, these cover the sphere.

Each such loop defines a group element

—i/ dZ-A] : (6.12)
()

where A; is understood to be a matrix and the P indicates path ordering. This
Wilson loop is gauge invariant, so we can evaluate it in a gauge where Ay = 0 on
the sphere. For nonzero 5, there is a gauge singularity at the south pole, with
Ay # 0. Including an infinitesimal section around this singularity, we can view
the Wilson loop as being composed of three parts: (1) 0 < § < 7, with ¢ = 0;
(2) 0 < ¢ <277, with 6 = 7; and (3) 0 < 0 < 7, with ¢ = 277. Since Ay = 0,
the first and last segments do not contribute to the line integral. With Ay given

h(r) = Pexp

by Eq. (6.6), the integral is straightforward to evaluate, and we have
h(7) = exp [iTQn] - (6.13)

Clearly h(0) = I. By the quantization condition of Eq. (6.8), we also have
h(1) = I. Thus, h(7) for 0 < 7 < 1 defines a loop in the (electric) gauge group
H and so can be assigned to an element of 71 (H). If H is the simply connected
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112 Magnetic monopoles in larger gauge groups

SU(2), then 7; has only a single element, and the topological invariant is trivial.
If instead H = SO(3), then 7 has two elements, one arising when & is an inte-
ger and the other when it is a half-integer. Hence, a configuration with integer
magnetic weight cannot be continuously deformed into one with a half-integer
magnetic weight.

Now note that the energy in the long-range Coulomb field of a monopole is
proportional to tr@3%,. Since configurations with the same topological charge
can have different values for this quantity, one might wonder if solutions with
higher values were unstable and could decay to solutions with lower values of
tr Q3,. This instability is not completely obvious, both because there might be
an energy barrier along the path joining the two solutions, and because we have
not considered the fields in the core region. These concerns are dispelled by
detailed analysis of small fluctuations about a pure Coulomb solution, as was
done by Brandt and Neri [100] and by Coleman [101].? They showed that, even
if one imposes the restriction that the field be held fixed inside some sphere
of radius R, there is always such an instability. Stable solutions must have the
minimum value of tr Q3, consistent with their topological charge. In the present
case, monopoles can only be stable if k = £1/2; monopoles with integer magnetic
weights are all unstable.

The language of roots and weights? is ideally suited for generalizing this discus-
sion to the case of an arbitrary semisimple unbroken gauge group H [97, 98]. The
Cartan subalgebra can be chosen to include any given element of the Lie algebra.*
Hence, there is no loss of generality in taking @5, to be a linear combination of
the generators H, of the Cartan subalgebra and writing

Qu = 4k - H. (6.14)

The components k, are called the magnetic weights of the monopole. In a basis
where the H,, and hence @), are simultaneously diagonalized, the diagonal
elements of QQys are of the form 4mik - w, where w is a weight vector of the
representation in which the generators are being expressed. The quantization
condition of Eq. (6.8) becomes the requirement that for every weight w that
appears in the theory

%k -w=n (6.15)

for some integer n. If the group is SU(2), Egs. (6.14) and (6.15) reduce to our
previous results, Egs. (6.9) and (6.11), respectively.

2 Their analysis does not apply in the BPS limit, in which the Higgs field also has a
long-range tail.

3 Root and weight vectors are reviewed in Appendix A.

4 For the important case of SU(N), where the Cartan subalgebra can be taken to be the
elements that are diagonal in the fundamental representation, this is just the statement
that any Hermitian matrix can be diagonalized.
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6.1 Larger gauge groups—the external view 113

Any weight w and root a must satisfy

=N, (6.16)

with N an integer. Hence one solution of the quantization condition is given by

k = Zna% = Znaa*, (6.17)

with the ng integers; i.e., by taking k to be an element of the root lattice of a
= a/a?. If H is simple and
the a* differ from the « only by an overall rescaling, then H and H" share the
same Lie algebra, although they will not in general be the same group. For a

dual group H" whose roots are the dual roots a*

semisimple H, equality of the two Lie algebras only requires that the rescaling
be the same within each simple factor.

If H is the universal covering group of the Lie algebra, so that all representa-
tions appear, Eq. (6.17) gives the only solution for k. If not, there are additional
solutions. For example, if H is the adjoint group, whose representations all have
weights lying on the root lattice, then any weight w can be written as an inte-
gral sum of the roots a. Applying Eq. (6.15) to the adjoint representation, whose
weights are equal to the roots, yields the requirement that

% - a*
%k oa= X N, (6.18)

a*2 -

be an integer. This is the same as requiring that k be a weight of the Lie algebra
of H".

Thus, just as with the case of SU(2), we have an electric group whose weights
correspond to the representations of the elementary fields and a magnetic group
whose weights correspond to the allowed magnetic charges. The former has roots
«, while their duals a* are the roots of the latter. The larger one group is, the
smaller the other must be. If one is the universal covering group of its algebra,
the other is the adjoint group.®

We saw for the case of SU(2) that solutions with magnetic weights k and —k
are gauge-equivalent. In the general case, magnetic weight vectors k and k’ that
are related by Weyl reflections lead to physically equivalent solutions.

For SU(2) we also found that any two configurations with integer k or any
two with half-integer £ could be continuously deformed into one another. On the
other hand, a configuration with integer k and one with half-integer k£ could not
be continuously connected, a fact that could be verified by noting that the loop
defined by h(7) associated them with different elements of 1 (H).

The generalization of this result can be expressed in terms of sublattices of the
weight lattice. The weight lattice of the simply connected covering group can be

5 The possible intermediate cases are discussed in [98].
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114 Magnetic monopoles in larger gauge groups

decomposed into sublattices such that any two weights in the same sublattice
differ by an integer sum of root vectors, while the difference between weights in
different sublattices is never of this form. Just as in the case of H = SU(2), with
its two sublattices, these sublattices are in one-to-one correspondence with the
elements of 71 (H). Configurations with magnetic weights in the same sublattice
can be continuously deformed into one another, while those with weights in
different sublattices cannot.

Finally, the Brandt—Neri—-Coleman analysis generalizes immediately to larger
groups, and shows that stable solutions must have the minimum value of tr Q%,
consistent with their topological charge. In particular, solutions with nonzero
magnetic weights lying in the root lattice, which includes the origin, are all
unstable.

The discussion thus far has assumed that H is semisimple. If this assumption
is relaxed, then the U(1) electric and magnetic charges also contribute to the
quantization condition. For simplicity, let us assume that H contains a single
U(1) factor with generator Ty(;). The magnetic charge will then have a non-
Abelian component, given by Eq. (6.14), and an Abelian component equal to
dmky1yTu ). If there is an electrically charged particle with non-Abelian electric
weight w and U(1) electric charge qy(1), then Eq. (6.15) is replaced by

2k -w + QkU(l)qU(l) =n, (619)

with an obvious generalization if there are multiple U(1) factors. The theory
always includes the gauge bosons of the semisimple part of H, which carry no
U(1) charge and have weights in the root lattice. Imposing the quantization
condition using these shows that k must lie in the magnetic weight lattice.

Let us consider an explicit example. In the real world, there is an unbroken
SU(3)xU(1) gauge group, with the first factor corresponding to QCD and the
latter to electromagnetism. Experimentally, there is a correlation between the
color and electromagnetic charges, in that particles invariant under SU(3) or
transforming under zero triality representations have integer U(1) charges ne,
while particles corresponding to triality 1 representations (e.g., quarks and
antiquarks, respectively), have fractional electric charges of the form (N + %)e.

If the monopole’s magnetic charge has no SU(3) component, we recover the
original Dirac quantization condition

2kU(1)QU(1) =n. (620)

The same is true if the monopole has a magnetic weight in the dual root lattice,
since then 2k - w is an integer for any w. For either case the existence of down
quarks with U(1) electric charge —e/3 implies that the minimum U(1) magnetic
charge is 4mky (1) = 67/e.

Now suppose that the magnetic weight k of the monopole lies in the triality
1 sublattice. Applying Eq. (6.19) with an electrically charged particle of SU(3)
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6.2 Larger gauge groups—topology 115

triality 0 leads again to Eq. (6.20). Because all triality 0 particles have integer
electric charges, this quantization condition is satisfied if the magnetic charge
is a multiple of 27/e. However, we must also consider the electrically charged
particles with nonzero triality and fractional U(1) charge. For any triality 41
representation with weight w the product 2k - w is of the form n; + %7 and
the U(1) electric charge is (ns & 4)e. Substituting these into Eq. (6.19) leads to
the requirement that 2ky(;ye be an integer, so that the U(1) component of the
magnetic charge is still of the form

2mn

The net effect of all of this is that if a color singlet electron, with charge —e,
goes around the Dirac string of this monopole, it acquires a phase of 27 and the
string is unobservable, as required. If a quark is carried around the same path,
the U(1) charges give a phase that is less than 27, but the deficit is made up by
the phase from the SU(3) magnetic and electric charges.

6.2 Larger gauge groups—topology

The analysis in the previous section focused on the long-range fields, extending
Dirac’s analysis to determine what magnetic charges are allowed by the require-
ment that the Dirac string be unobservable. However, not every allowed magnetic
charge can be realized in a nonsingular soliton. For such a soliton to arise and
be topologically stable, the manifold of vacuum solutions, M = G/H, must have
a nontrivial second homotopy group. In this section I will illustrate some of the
possible behaviors. In these examples Eq. (4.51), which reduces the calculation
of m(G/H) to the calculation of m1 (H), will be of considerable help.

6.2.1 SU(3) broken to SU(2)xU(1)

Consider a G = SU(3) gauge theory with gauge coupling g and an octet Higgs
field that can be viewed as a traceless 3 x 3 Hermitian matrix. Such a matrix
can always be diagonalized, and so can be characterized by its eigenvalues. If the
scalar field potential is such that the Higgs vacuum expectation value has three
unequal eigenvalues, the symmetry is broken to U(1)xU(1). Let us focus instead
on the other possibility, with two equal eigenvalues and a vacuum expectation
value

o = diag (2b, —b, —b). (6.22)

The generators of the unbroken symmetry can then be taken to be

. 1 1 1
Ty = diag <\/§, Wi —2\/3) (6.23)
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Fig. 6.1. The weights of the octet (open circles), triplet (4’s), and antitriplet
(x’s) representations of SU(3). Note that the octet has a pair of weights at
T3 =1Tsg = 0.

together with the three generators

0 0
To=|y 7|, a=123, (6.24)
2

obtained by embedding the Pauli matrices in the lower right 2 x 2 block. These
generate an SU(2) x U(1) algebra, but because e27Te¢2V37iTs — [ the actual
unbroken symmetry group is H = [SU(2) x U(1)]/Z2. The generators of the
Cartan subalgebra can be chosen to be Hy = T3 and Hy = Tg.

After the symmetry breaking the spectrum of states from the octet fields
includes massive scalars and massless vectors in the singlet and triplet represen-
tations of SU(2), all with Tz = 0, and two SU(2) doublets of massive vectors with
Tg = :I:?. The corresponding weight vectors are shown in Fig. 6.1. Also shown
are the weights that would appear if the theory also included fields transforming
under the triplet and antitriplet representations of the original SU(3).

Nonsingular monopoles correspond to nontrivial elements of mo(G/H). Because
SU(3) is simply connected we can make use of Eq. (4.51), which gives

mo(G/H) = mi (H) = m{[SU2) x U(1)]/Z2} = Z, (6.25)

with the Z arising from the U(1). Hence, there are topologically stable nonsin-
gular monopoles carrying U(1) magnetic charge. We will see that they can also
carry SU(2) magnetic charge.

A nonsingular spherically symmetric configuration with unit magnetic charge
can be obtained by embedding the 't Hooft—Polyakov ansatz of Eq. (5.60) in the
SU(2) subgroup lying in the upper left 2 x 2 block of the SU(3) matrices; i.e.,
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6.2 Larger gauge groups—topology 117

the subgroup generated by %)\1, %)\2, and %)\37 where the A\, are the Gell-Mann
matrices defined in Eq. (A.3). This by itself would not give the correct eigenvalues
for ¢ at spatial infinity, so a term proportional to A\g must be added. Thus, we
have [102, 103]

3
1<t 1
¢ = 3 3217" Aah(r) + 5)\8](7')7
3
_ 1 iamam 1- ’LL(’)")
A= 5@2216 oW [ o ] . (6.26)

Requiring that ¢ be nonsingular at the origin and be gauge equivalent to ¢y at
spatial infinity gives the boundary conditions

, J'(0)=0,
b, j(c0) =V3b (6.27)

for the scalar field, while for the gauge field we have u(0) = 1 and u(oo) = 0,
as in the SU(2) monopole. Solving the field equations with this ansatz and these
boundary conditions gives a monopole with a mass

(6.28)

According to the analysis of the previous section, the asymptotic magnetic field
should take the Coulomb form of Eq. (6.7), where Qs can be gauge rotated to

4m 4m
Qu = ?(lel + koHy) = ?(k1T3 + ko Ty). (6.29)

Indeed, the monopole solution that follows from the ansatz of Eq. (6.26) has a
magnetic charge that along the positive z-axis is given by

4 1 1 1 3
QM - _ﬂ-dlag <§7_§70) ) kl = 3 k2 = \/__ (630)
g

Our ansatz was obtained by making use of the SU(2) subgroup lying in the
upper left 2 x 2 block of the SU(3) matrices. We could equally well have used
the SU(2) subgroup defined by the four corner elements of the SU(3) matrices.
In this case the magnetic field along the positive z-axis would have given

47 1 1 1 \/§
— di Z0.—= k== ko = —. 6.31
Qum g 1ag (27 > 2) > 1 9 2 B ( )

The two ansatzes are related by a global gauge rotation in the unbroken SU(2).
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Fig. 6.2. Allowed magnetic weights for SU(3) broken to SU(2)xU(1). Here
m = 2k; and n = 2k2/+/3, with the k; defined as in Eq. (6.29). The large
circles represent magnetic weights that are consistent with any representa-
tion for the electrically charged particles, while the weights denoted by small
circles are only allowed if the electrically charged particles are all in triality
zero representations. Only the former can be obtained from configurations
containing collections of nonsingular monopoles (n = 1) and antimonopoles
(n = —1). Of these, the large solid circles represent weights that are sta-
ble by the Brandt—Neri-Coleman analysis; these can all be obtained from
configurations containing only monopoles. The large open circles can also be
obtained using only monopoles, but are unstable by this analysis. The large
circles with crosses require assemblies of monopoles and antimonopoles, and
are also unstable. The pattern of weights for n < 0 is similar, with the roles of
monopoles and antimonopoles interchanged.

By assembling a number of these monopoles, using various combinations of
the two forms, we can construct configurations with k; = m/2 and ky = nv/3/2,
where m and n are either both even or both odd integers and |m| < n. These
points are indicated in Fig. 6.2. It is n, from the coefficient of the U(1) generator,
that is the conserved topological charge. Configurations with different values of
m can be deformed into one another and, by the results of Brandt, Neri, and
Coleman, will reduce their long-range non-Abelian components until k; = i% or
0. If the only fields in the theory are the SU(3) adjoint Higgs and gauge fields,
then the generalized Dirac quantization condition allows a larger set of charges,
which are also shown in Fig. 6.2. The absence of nonsingular solitons with these
charges can be understood by noting that they would be forbidden if fields with
nonzero triality were added to the theory.
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6.2 Larger gauge groups—topology 119

6.2.2 A Z; monopole

Let us again consider an SU(3) gauge theory with gauge coupling g, but this
time with a Higgs field S that transforms according to the 6 representation of
SU(3) [104]. This can be viewed as a symmetric 3 x 3 matrix that transforms as

S —USU”, (6.32)

where U is an SU(3) matrix and a superscript 7' denotes the transpose. If the
Higgs potential is minimized by

100
So=c |0 1 0], (6.33)
00 1

the unbroken symmetry is the SO(3) subgroup generated by the antisymmetric
matrices A, A5, and A7. Because the triplet of the original SU(3) transforms as a
vector under SO(3), only integer-spin representations of SO(3) appear, confirming
that the unbroken group really is SO(3), and not SU(2).

Making use of Eq. (4.51), we find that the second homotopy group of the
vacuum manifold is

m[SU(3)/S0(3)] = m[SO(3)] = Zs. (6.34)

Thus, we should expect to find monopoles with Z5 topological charges. A combi-
nation of two of these should be topologically trivial, and so the monopole should
be its own antiparticle.

To see more explicitly how this can occur, let us start with a singular string
gauge configuration in which S = Sy is spatially uniform at large distance while
the gauge potential has the Dirac form

Ay =Ag=0, Ay= %(cos@ — 1), (6.35)
with the Dirac string also along the negative z-axis. This has a magnetic charge
Qm = — —Aa. (6.36)

If we take A5 to be the single generator of the Cartan subalgebra, this corresponds
to magnetic weight k = n/2.

This string singularity can be removed by a gauge transformation generated
by the gauge function

Un(e, (P) _ ein)\ch/2ei)\30/2€7in)\24p/2’ (637)

which is singular along the negative z-axis. [See the analogous transformation
given by Eq. (5.74).] In particular, the asymptotic Higgs field at » = co becomes
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120 Magnetic monopoles in larger gauge groups

S, = U,SoUF
cos 0 + i sin 0 cos(nyp) —isin 0 sin(ny) 0
= —isinfsin(nep) cosf —isinfcos(ny) 0 |. (6.38)
0 0 1

The covariant derivatives of S were rapidly vanishing at large distance before the
gauge transformation, and so must also be afterwards. Hence, we have a finite
energy configuration, and the usual arguments show that for n = £1 there are
actual static solutions with this asymptotic behavior. These would be expected
to have a mass ~ 470 /g.

A Z5 monopole should be its own antiparticle. We can see that this is so by
noting that

S_y = em™eg (¢m) (6.39)

so that the n = 1 monopole and n = —1 antimonopole Higgs fields (and in fact
their vector potentials also) are gauge equivalent. Furthermore, let us define a
unitary matrix

Vn(e’ (P) _ ei/\59ein)\gLp/2e—i)\5Ge—iA39/2e—inA2Lp/2. (640)

This is multiple-valued for odd n, because V,,(6, ¢) # V, (6, ¢ + 27). For even n,
on the other hand, it is nonsingular and single-valued, with V,,(0,) = I, and
has the property that

VS, VI = 8. (6.41)

Hence, any configuration with even n is equivalent by a smooth gauge transfor-
mation to one with n = 0. Because m2(SU(3)) = 0, this gauge transformation
at r = oo can be smoothly deformed to the identity, thus giving a homotopy
connecting S, and Sy. Note that Egs. (6.39) and (6.41) both required gauge
transformations involving matrices that went outside the 2 x 2 block that contains
the twisting of S,,.

6.2.3 A light doubly charged monopole

Let us now add an SU(3) triplet Higgs field ¥ to the model of the previous
example [104]. Let us also assume that ¢ has a nonzero vacuum expectation value,
and that in the vacuum the two Higgs fields are (up to a gauge transformation)

Sg* = 6%,
Y3 =06, (6.42)

The unbroken gauge group is now U(1), so the relevant homotopy group is

m[SU(3)/U(L)] = m[U(L)] = Z. (6.43)
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6.3 Monopoles in grand unified theories 121

The topological charge on the monopoles is now an ordinary additive integer
charge. Choosing the asymptotic Higgs fields so that S = S,,(0, ¢) as in Eq. (6.38)
and 1 = 1y gives a configuration with topological charge n.

Ordinarily, we would expect to have a static particle-like solution only for n =
+1, with all larger values of n corresponding to multimonopole configurations.
A new feature appears if v < o, so that the symmetry breaking can be viewed
as a two-step process

SU(3) ?SO(B) TU(l). (6.44)

At the first stage we obtain a Z» monopole with mass M; ~ o /g?. This remains
a solution, with only slight modifications, at the second stage. However, the
transformation of Eq. (6.40), which turned the monopole into an antimonopole,
is no longer possible, because As is not a generator of the unbroken group.

Now consider an n=2 configuration. With just the breaking to SO(3), this
would be topologically trivial and could be unwound by applying the V5 of
Eq. (6.40). With the breaking to U(1), it has topological charge 2 and is topo-
logically nontrivial. We can still use V5 to unwind S, but this would have the
effect of twisting ). However, because the mass scale associated with v is much
less than that associated with S, shifting the winding from S to 1 reduces
the energy considerably, thus allowing us to obtain a charge 2 monopole with
M2 ~ ’U/92 < Ml-

All configurations with n > 3 presumably relax to multimonopole solutions.

6.2.4 FElectroweak monopoles?

The previous examples in this section were illustrative, but not of direct phe-
nomenological significance. Let us now consider the standard electroweak model,
with SU(2)xU(1) broken to U(1) by a complex doublet Higgs field. Because the
full gauge group is not simply connected, we cannot use Eq. (4.51) to determine
(M) = mo(G/H). This is no problem, because we showed in Sec. 4.5 that the
space of vacua for this theory is a three-sphere [see Eq. (4.26)]. Since m2(S3) = 0,
there are no topologically stable monopoles in the Weinberg—Salam model.

6.3 Monopoles in grand unified theories

The idea of a grand unified theory (GUT) whose spontaneous breakdown leads
to the observed gauge symmetries of the Standard Model remains an attractive
possibility. Various implementations of this idea, often with several stages of
symmetry breaking, have been proposed. By definition, all begin with a simple
gauge group G that is ultimately broken down to the SU(3)xU(1) of QCD and
electromagnetism. If we take G to be the covering group of the Lie algebra,
Eq. (4.51) tells us that

ma(G/H) = m(H) = m[SU(3) x U(1)] = Z, (6.45)
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122 Magnetic monopoles in larger gauge groups

with the Z arising from the unbroken electromagnetic U(1). Thus any grand uni-
fied theory must contain topologically stable magnetic monopoles. Their mass
will be of the order of 4wv/e, where v is the vacuum expectation value of the
Higgs field responsible for the symmetry breaking that first gives rise to non-
trivial topology. Since this is typically a GUT scale of roughly 10'6 GeV, these
monopoles will be supermassive.

Let us consider two important examples.

6.3.1 SU(5) monopoles

The prototypical grand unified theory is based on an SU(5) gauge group, with a
gauge coupling g, that is broken in two stages,

SU(5) - SU(3) x SU(2) x U(1) ~ SU(3) x U(1). (6.46)

The first breaking is due to an adjoint representation Higgs field ® that acquires
a GUT-scale vacuum expectation value, while the second is due to a fundamental
representation Higgs field x that includes the Weinberg-Salam doublet with an
electroweak scale vacuum expectation value.

Because the fermions fall into the 5 and 10 representations, the initial group is
indeed the covering group, SU(5), and not a factor group. By arguments similar
to those for the SU(3) example of Sec. 6.2.1, the final unbroken subgroup is
actually [SU(3) x U(1)]/Zs, with the factoring by Z3 explaining the observed
correlation between SU(3) triality and fractional electric charge.

To start, let us focus on the first breaking and set y = 0. The scalar field
potential can then be chosen so that ® has a vacuum expectation value of the
form

By = (6.47)

co oo
oo o
oc oo

Culw © © ©

N © © © O

0 0

The generators of the unbroken symmetry then take on a block diagonal form,
with SU(3) generators \,/2 lying in the upper left 3 x 3 block, SU(2) generators
Ta/2 in the lower right 2 x 2 block, and the U(1) generator being

v

Ty = \/%diag <1,1,1,—g,—§> . (6.48)
Twelve of the SU(5) gauge bosons acquire a mass Mx = /25/8 gv at this stage
of symmetry breaking.

Because 71[SU(3) x SU(2) x U(1)] = Z, monopoles already appear at this first
stage of symmetry breaking. Classical solutions can be obtained by following a
strategy similar to that used for the SU(3) example of Sec. 6.2.1 [105]. We choose
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6.3 Monopoles in grand unified theories 123

an ansatz such that the twisting of the Higgs field lies entirely within a 2 x 2
SU(2) subgroup corresponding to the intersections of columns and rows 1, 2, or 3
with columns and rows 4 or 5, and then add diagonal components to ® to ensure
the correct eigenvalues at spatial infinity. Choosing, for example, the subgroup
defined by rows and columns 3 and 4 gives a Higgs field ansatz of the form

a(r) 0 0 0
B 0 a(r) 0 0
=1 0  h(r)t-7+b(r)l 0 (6.49)
0 0 0 —2[a(r) + b(r)]

The nonzero components of A; all lie within the chosen SU(2), and lead to an
asymptotic magnetic field with magnetic charge along the positive z-axis

4 1 1
= — di R
QM g 1ag (070, 27 230
4 111 1 1 1 11
— 4 L4l di oL Ll
g |: lag (67 6767 47 4> + la’g< 67 6737070)
11
di 0,0,0, ——, — 6.50
+ lag< s Yy Uy 474):| ) ( )

where the second equality shows the decomposition into U(1), SU(3), and SU(2)
components, respectively. The classical energy of this monopole is approximately
47 Mx /g?, and its core radius is of the order of M)}l.

The electroweak symmetry breaking is driven by the vacuum expectation value
of x, which is at a mass scale 14 or so orders of magnitude lower than the
GUT scale. The effects of this symmetry breaking only become significant at
length scales of order Mv}l, so the corrections to the monopole core structure and
mass are negligible. However, at distances much larger than Mv}l the Coulomb
magnetic field must lie within the unbroken gauge group. Thus, whatever the
orientation of the SU(2) magnetic field near the core, at large distances Qps
must be rotated so that it is a linear combination of an SU(3) charge and the
electromagnetic charge generator

111
Qem = diag ( - ,—1,0> . (6.51)

The normalization of Qer, is such that e = 1/3/8 g (evaluated at the GUT scale).
Taking this into account, we find that the minimally charged monopole, with a
core profile given by Eq. (6.49), has an electromagnetic magnetic charge 27 /e.

In Eq. (6.49) the choice of the SU(2) subgroup that contained the twisting of
® was somewhat arbitrary. We could, for example, have used the first and fifth
rows and columns, leading to a solution with asymptotic magnetic charge

4 1 1
= —di -,0,0,0,—= | . 6.52
QM g lag (27 sy Yy 2> ( )
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124 Magnetic monopoles in larger gauge groups

Now consider a configuration composed of two monopoles, one with charge Qs
and one with Q. At distances that are small compared to the electroweak scale,
the Coulomb interaction between the two is proportional to tr (QQ%,) = 0.
What has happened is that their long-range U(1) repulsion has been exactly
canceled by the attractive SU(2) and SU(3) forces. The interaction between the
two is then determined by the Yukawa forces mediated by the massive Higgs and
gauge bosons. By proper choice of the masses of the bosons, one can arrange for
the net effect of these to be attractive, giving a stable monopole with two units of
U(1) magnetic charge. In fact, by this mechanism one can also obtain solutions
with three, four, and six units of U(1) magnetic charge [106].

6.3.2 SO(10) monopoles

A second widely studied model is based on SO(10). One possible symmetry
breaking pattern is commonly written as

S0(10) - SU(4) xSU(2) xSU(2) — SU(3) xSU(2) x U(1) - SU(3) x U(1). (6.53)

This is correct as far as the Lie algebras go, but to get the homotopy right we
need to be careful about specifying the groups.

To start, we note that the Standard Model quarks and leptons of one gener-
ation, together with a right-handed neutrino, fill out a 16-component SO(10)
spinor. With a spinor representation present, the original gauge group G is
unambiguously the covering group, Spin(10). In the first stage of symmetry
breaking, a Higgs field ¢, transforming under the 54-dimensional traceless sym-
metric tensor representation obtains a vacuum expectation value of order v that
breaks this symmetry down to a subgroup H; that is locally SO(6) x SO(4) =
SU(4) x SU(2) x SU(2). Under this breaking the fundamental spinor of SO(10)
decomposes into (4, 1, 2) + (4, 2, 1). Here the 4 and 4 are conjugate SO(6)
spinors [or, equivalently, the fundamental and antifundamental representations
of SU(4)], while the 2’s are SU(2) spinors. A rotation by 27 multiplies a spinor
by —1, so simultaneous rotations by 27 in the SO(6) and SO(4) subgroups give
two factors of —1 and thus act as the identity on the fermions. Hence,

H, =[SU(4) x SU(2) x SU(2)]/Z>, (6.54)
which is not simply connected. Thus, we have
7T'2(C:/]{1):7'1'1(]{1):Z27 (655)

which means that there is a monopole carrying a Z charge with a mass of order
v1/g. Like the Z5 monopole of Sec. 6.2.2; this monopole is its own antiparticle.

At the next stage of symmetry breaking an SO(10) spinor Higgs field ¢o gets
a vacuum expectation value vy that breaks the symmetry down to

Hy = [SU(3) x SU(2) x U(1)]/Ze. (6.56)
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6.4 Chromodyons 125

The crucial point here is the appearance of the U(1) factor, so that
WQ(G/HQ) :7T1(H2) =7 (657)

and we now have monopoles with ordinary additive charges. If vo < vy, the
situation is essentially the same as in the example of Sec. 6.2.3. The Z5 monopole
that appeared at the first stage remains, but now with a unit Z charge. In
addition, there is a new monopole, with two units of magnetic charge, associated
with a nontrivial winding of ¢ but a topologically trivial ¢;. This monopole has
a core size of order (guvs)~! and a mass My ~ vy /g that can be several orders of
magnitude smaller than that of the unit monopole [107].

Both monopoles survive the final stage of symmetry breaking with negligible
corrections to their masses.

6.4 Chromodyons

We have seen that when a soliton is not invariant under a symmetry of the the-
ory, the spectrum of fluctuations about the soliton includes a zero mode that
requires the introduction of a collective coordinate z. Exciting this mode in a
time-dependent fashion gives a nonzero conjugate momentum p = Iz, where [
can be thought of as a generalized moment of inertia, and leads to a tower of
excited states with energies p?/2I above the ground state. Thus, any soliton
breaks translation invariance, and solitons with time-dependent position collec-
tive coordinates have nonzero linear momentum; here I is simply the soliton
mass. If there is an unbroken U(1) internal symmetry that acts nontrivially on
a soliton, then a time-dependent phase rotation gives the soliton a U(1) charge
Q); for the case of the 't Hooft—Polyakov monopole, this yields the dyons studied
in Sec. 5.5.

The GUT monopole solutions described in the previous section have Coulomb
magnetic fields with nonzero components in the unbroken color SU(3). These
are acted upon by the SU(3) generators, and so one might expect to obtain
monopoles with SU(3) electric-type charges—chromodyons—from solutions that
rotate in the internal SU(3) space.

Matters are not so simple. The first indication that there might be a problem is
the slow falloff of the zero modes. A magnetic field falling as 1/ corresponds to
a vector potential falling as 1/r. Acting on such a field, an SU(3) transformation
that was nontrivial at spatial infinity and did not commute with the magnetic
charge would produce an infinitesimal transformation 6A; that also fell as 1/7,
making the resulting zero mode non-normalizable. One might naively view this
as corresponding to an infinite moment of inertia, and conclude that the tower
of chromodyon states collapses to a set of degenerate states. However, in a gauge
theory one must proceed more carefully, making sure that the Gauss’s law con-
straints are satisfied, as was done for the U(1) dyon in Sec. 5.5. This entails
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126 Magnetic monopoles in larger gauge groups

finding an A, that satisfies Gauss’s law and that has a 1/r behavior consistent
with the chromodyonic charge. It turns out that this cannot be done® [108].

The underlying explanation for these difficulties is that the long-range non-
Abelian fields of the monopole create a topological obstruction that makes it
impossible to define a set of generators for the unbroken gauge group that is
nonsingular everywhere on the sphere at spatial infinity. Without these gener-
ators, one cannot define the global gauge rotations that would give rise to the
chromodyons [109-114].

To see this more explicitly [109], consider the example of Sec. 6.2.1, where
the unbroken gauge group is SU(2)xU(1). At spatial infinity the adjoint Higgs

field is
2 0 0
14 35,
¢@@=b<ﬂ%r7 i)zurlo -1 0 |0, (6.58)
0 0 -1
where U is a 3 x 3 matrix with the block diagonal form
u o
IN&@)—-<O 1>, (6.59)

with U being the 2 x 2 SU(2) matrix given in Eq. (5.74).

At the north pole, 8 = 0, the unbroken SU(2) corresponds to the lower right
2 x 2 block, and a standard choice for the U(1) generator Ty and the SU(2)
generators T}, is

2 0 0 L [0 00
Ty={0 -1 o). Ti=g(00 1],
0 0 -1 01 0
L0000 L (00 0
=500 <), Ty=g(0 1 0| (6.60)
0 0 00 —1

By acting on these with U, we can obtain a set that commutes with ¢(6, ¢) and
has the correct commutation relations. Two of these,

% + % cos 6 % sinfe=% 0
To(0,0) = | 2sinfe’ 1 —3cosf 0 (6.61)
0 0 -1
and )
1 3 —3cos —Zsinfe ¥ 0
T3(0, ) = B —gsinfe” L4 Lcosh 0 |, (6.62)
0 0 -1

6 One can also work in Ag = 0 gauge, in which case Gauss’s law must be imposed as an
additional constraint. In this approach, the construction of the chromodyon only goes
through if there is a zero mode corresponding to a gauge transformation with a gauge
function A that is nonzero at spatial infinity and satisfies Dy DA + g%[¢, [#, A]] = 0. This
equation has no solutions if A does not commute with the magnetic charge [108].
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6.4 Chromodyons 127

are well defined everywhere, but the other two,

1 0 0 —sin(0/2)e~%
T (6,p) = = 0 0 cos(6/2) (6.63)
—sin(0/2)e"?  cos(0/2) 0
and
. 0 0 isin(0/2)e=i
T5(0,p) = 3 0 4 0 —icos(6/2) |, (6.64)
—isin(0/2)e"?  icos(6/2) 0

are singular at # = , the south pole.”

In this example, the generators that commuted with the magnetic charge (7Tj
and T3) could be defined globally. It was only the two that did not commute with
Qs that failed to be well defined. This can be understood as follows. One way to
define a global gauge rotation is to choose a Lie algebra element {2 at one point
P on a sphere at large 7 and then use parallel transport to obtain 2 at any other
point P’ on the sphere. This only works if the result of the parallel transport
is independent of the path from P to P’. This in turn requires that the surface
integral of [B, Q2] over the area between any two such paths vanishes. In the limit
of infinite radius only the 1/r? part of B, i.e., the magnetic charge, contributes
to this integral. Hence, only the generators of the subgroup that commutes with
the magnetic charge are well defined.

This suggests a loophole that might allow chromodyons to exist. Consider a
monopole with a purely Abelian magnetic charge in a theory with an unbroken
non-Abelian subgroup. The Abelian magnetic charge would not be an obstacle to
defining global color transformations. Although these would have no effect on the
asymptotic magnetic field, there might well be fields nearer the core that were
not invariant under color transformation. The corresponding zero modes would
be normalizable, and would provide the basis for constructing a chromodyonic
solution.

A monopole of just this sort can be constructed in a gauge theory with SO(5)
broken to SU(2)xU(1). However, numerical study of the classical evolution of
the chromodyon solution reveals that the rate of rotation in color space decreases
with time, corresponding to a loss of color charge [115]. This is apparently due
to radiation of energy and color charge via the massless gauge boson field, with
all indications being that the radiation continues until the charge has been com-
pletely lost. Thus, even when there are no topological obstacles to their existence,
chromodyons appear to be dynamically unstable.

7 An alternative approach is to use two patches, with sets of generators that are nonsingular
in the upper and lower hemispheres, respectively. Consistency then requires that the two
sets be related by a nonsingular gauge transformation in the overlap region. Again, this
turns out to be impossible.
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128 Magnetic monopoles in larger gauge groups

6.5 The Callan—Rubakov effect

We saw in Sec. 5.7 that the scattering of massless fermions off an 't Hooft—
Polyakov monopole has some unusual aspects. In the J = 0 sector one finds only
half of the expected incoming states and half of the expected outgoing states;
this is ultimately a consequence of the extra charge-monopole contribution to
the angular momentum. The matching of incoming to outgoing states requires
that either the fermion chirality or the fermion electric charge must change.
The analyses of Rubakov [91] and of Callan [92, 93] showed that the former
is the case, and that no electric charge is deposited either on the monopole or on
the surrounding fermion condensate.

An analogous effect occurs with monopoles in larger gauge groups, in particular
those that arise in grand unified theories [91, 93, 116-118]. The new feature here
is that the incoming and outgoing states that are paired have different baryon
and lepton numbers. To be specific, let us consider a monopole in the SU(5)
theory that has a magnetic charge given by Eq. (6.50). This is essentially an
embedding of the SU(2) monopole in the subgroup corresponding to the third
and fourth rows and columns.

Each family of fermion fields in the SU(5) model can be assembled into two
multiplets of Weyl fields. The first family, which can be treated as approximately
massless, contains an antifundamental 5 representation,

1/):( f? S’ 576_71/)27 (6'65)

and a symmetric tensor 10 representation,

0 u§  —u§ —u;  —d;
1 —us 0 ui  —uz —da
= — us  —u$ 0 —u3 —d . 6.66
X \/5 2 1 3 i ( )
uUq Uo us 0 —e

dl dg d3 €+ 0 L

(Here subscripts are SU(3) color indices and a superscript ¢ denotes charge con-
jugation and the d’s should be understood as the CKM-rotated mixtures.) When
these SU(5) multiplets are decomposed into representations of the SU(2) defined
by the monopole embedding, we find four doublets,

() (5) () (=) e

In the J = 0 sector, the upper components of the doublets only appear as
incoming waves, and the lower ones as outgoing waves.

As with the SU(2) theory considered in Sec. 5.7, the analysis of the system
is most easily done by bosonizing the theory. In the previous case there were
two Dirac, or four Weyl, fermion fields, leading to two scalar fields. Now, with
eight Weyl fermion fields, we have four scalar fields, but the analysis is otherwise
similar.
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The monopole is surrounded by a fermion condensate formed from the doublets
listed above. The energy of the monopole-fermion system is minimized by requir-
ing vanishing charge under all components of the unbroken gauge group. A set
of particles from the relevant doublets that meets this criterion is the electrically
neutral, color singlet combination e~ ujuads (or the corresponding set of antipar-
ticles). The analysis of the bosonized theory shows that the ground state of the
system is a superposition of states with arbitrary numbers of this set of fermions.
This allows scattering processes that effectively add or subtract particles in this
combination. An example is u; +Monopole — 1y +dsz +eT +Monopole, a process
that violates the conservation of both baryon number B and lepton number L
(but not of B — L). With the initial u being a valence quark in a proton, this
process could lead to the monopole-catalyzed decay of a proton to a positron
plus a 77~ pair or to a positron plus a photon.

The possibility of a baryon number violating process is not surprising, since
it is well known that the SU(5) theory allows proton decay. The striking feature
is that there is no suppression by factors of the masses of the superheavy gauge
bosons, or of the monopole core size. Instead, the cross-section is essentially
geometric, and so is expected to be of typical strong interaction size.

This analysis in the SU(5) theory depended in a detailed manner on the way
in which the light fermions transformed under the SU(2) defined by the magnetic
charge. With a different embedding of the magnetic charge in the GUT gauge
group, this catalysis of baryon number violation might not occur. This is con-
firmed by a detailed examination of a number of theories. The monopoles in the
SO(10) theory considered in Sec. 6.3.2 are important examples [119]. The heav-
ier, singly charged monopoles that arise at the first stage of symmetry breaking
catalyze baryon number violation, but the lighter, doubly charged ones do not.
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