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Magnetic monopoles in larger gauge groups

Having studied in some detail the monopole that arises when SU(2) is broken to
U(1), let us now consider the possibilities that occur with larger, and possibly
more realistic, gauge groups. Perhaps the most important of these are the groups
that occur in grand unified theories. As we will see, magnetic monopoles are a
generic prediction of all such theories.

6.1 Larger gauge groups—the external view
Although our primary interest is in monopoles with nonsingular cores, which
arise when a gauge group G is spontaneously broken to a subgroup H with
π2(G/H) nontrivial, I will begin by focusing on the long-range field, the part
outside the monopole core, and determine the possible magnetic charges. This is
essentially an extension of Dirac’s analysis to the case where the unbroken gauge
group H is larger than U(1) and, in general, non-Abelian. Like Dirac’s analysis,
this analysis applies equally well to singular point monopoles and to nonsingular
solitons. Also as with the Dirac analysis, we will find that in some cases there
are allowed magnetic charges for which there are no nonsingular monopoles.

Let us therefore start by assuming that we have an unbroken gauge group H,
and that the magnetic components Fij of the field strength have long-range tails
that fall as 1/r2. Let us further assume that the vector potential can be expanded
in inverse powers of r, with its Cartesian components falling as 1/r or faster, and
that1

Ai =
fi(θ, φ)

r
+O(1/r2), (6.1)

where Ai and fi should be understood to be matrices representing elements of
the Lie algebra of H. The 1/r2 terms do not contribute to the 1/r2 part of the

1 In order to simplify the notation, the gauge fields in this section have been rescaled so as to
absorb the gauge coupling constant.
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6.1 Larger gauge groups—the external view 109

magnetic field, and so will henceforth be omitted. If we now go over to spherical
components, these assumptions imply that Aθ and Aφ are independent of r at
large distance. Finally, we will restrict ourselves to static fields with no electric
charge, and with A0 = 0.

The first step is to choose a gauge where Ar = 0 outside a sphere of radius
R. (Excluding the region r < R avoids any issues of singularities at the origin,
and has no effect on the fields at large distance.) This can be done by means of
a gauge transformation with

U−1(r, θ, φ) = P exp
[
i

g

∫ r

R

dr′Ar(r′, θ, φ)
]
, (6.2)

with the P denoting path ordering. With this gauge choice and our dropping of
the 1/r2 terms in Ai, the only nonzero component of the field strength is Fθφ,
which is independent of r.

Next, we set Aθ = 0 in this asymptotic region by means of an r-independent
gauge transformation obtained in a similar fashion by integrating along arcs of
fixed φ starting at the north pole and moving downward. The field equation

0 = Da(
√
g F aφ) (6.3)

then implies that Aφ, the only nonzero component of the gauge potential, is of
the form

Aφ = C(φ) +
QM (φ)

4π
cos θ. (6.4)

To avoid a singularity at the north pole, θ = 0, we must set C(φ) = −QM (φ)/4π.
The field equation

0 = Da(
√
g F aθ) (6.5)

then tells us that QM is independent of φ, so that

Aφ =
1
4π
QM (cos θ − 1) (6.6)

and (returning to Cartesian components)

Bi = −1
2
εijkFjk =

QM
4π

r̂i
r2
. (6.7)

This looks very much like the U(1) case, with a Coulomb magnetic field and
a Dirac vector potential with its string along the negative z-axis. There are two
crucial differences. First, the U(1) charge was simply a number, whereas now QM
is a matrix in the appropriate representation of the Lie algebra. Second, QM , like
Bi itself, is not gauge invariant, but only gauge covariant. Had we made other
gauge choices, it could even have varied with angle.

Despite these differences, the derivation of the quantization condition goes
through pretty much as before. Requiring that the potential of Eq. (6.6) be
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110 Magnetic monopoles in larger gauge groups

related by a single-valued gauge transformation to an equivalent potential with
the Dirac string along the positive z-axis gives the condition [96–98]

eiQM = I. (6.8)

The corresponding condition in the U(1) case, Eq. (5.12), was required to hold
for all electric charges q that are present in the theory. Similarly, Eq. (6.8) must
hold with QM a matrix in any representation of the Lie algebra that actually
occurs in the theory.

Let us start by considering the case where the unbroken gauge symmetry has
the algebra of SU(2), with the generators taken to be the Ta (a = 1, 2, 3) with
the standard normalization. Since any element in the Lie algebra can be rotated
by a global gauge transformation to be proportional to T3, there is no loss of
generality in writing

QM = 4πkT3. (6.9)

The quantization condition then becomes

e4πkT3 = I, (6.10)

so that for every eigenvalue t3 we must have

2kt3 = n, (6.11)

with n an integer.
If all of the fields in the theory transform under integer “spin” representa-

tions of SU(2), then the t3 will all be integers and k can be either an integer
or an integer plus 1/2. If there are also fields transforming under half-integer
representations, then k must be an integer.

These conditions can be rephrased by being more careful about specifying the
gauge group, keeping in mind that SO(3) and SU(2) share the same Lie algebra.
The allowed eigenvalues of T3 are known as weights. These are all integers for
SO(3), and either integers or half-integers for SU(2). If the theory only has fields
in integer representations, and thus only integer weights, then the gauge group
can be taken to be either SO(3) or SU(2); let us choose the former. If there
are also fields transforming under half-integer representations, then the gauge
group is unambiguously SU(2). What we have found is that if the “electric”
gauge group is SU(2), then the “magnetic weight” k must be a weight of the
“magnetic group” SO(3). Conversely, if the electric group is SO(3), then the
allowed magnetic weights are those of SU(2).

Configurations with different values of k are not all physically distinct. Because
a global gauge transformation can reverse the sign of T3, monopoles with mag-
netic weights k and −k are gauge equivalent and can be continuously transformed
one into the other. (It is possible to continuously connect these two discrete val-
ues because for the interpolating configurations QM is not simply a multiple
of T3.)
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6.1 Larger gauge groups—the external view 111

This leads to a curious phenomenon. Consider a configuration with two mono-
poles, each with magnetic charge QM = 2πT3, held fixed at some separation
much larger than their core size. Outside the monopole cores there is an obvi-
ous solution of the field equations in which the magnetic field is equal to 2πT3

times the ordinary electrostatic field corresponding to two like-sign unit charges.
However, changing the sign of one of the charges by a gauge rotation leads us
to another quasi-Abelian solution, of lower energy, formed from the electrostatic
field of two charges with opposite sign. If the field and charges are initially in the
former solution, even the slightest perturbation should be enough to cause them
to transform into the latter, radiating off the excess energy in the process.

In this process, the total charge (i.e., that seen at spatial infinity) will have
changed from 4πT3 to 0. By considering configurations with more monopoles, we
can see that configurations with total charges differing by any integer multiple of
4πT3 can be continuously connected (although the intermediate configurations
may not be solutions of the static field equations). Hence, two configurations can
be continuously deformed into one another if they both have integer, or both
have half-integer magnetic weights. What if one has an integer and the other a
half-integer magnetic weight?

One can define a topological quantity that shows that these cannot be con-
nected [99]. Consider a sphere at very large radius, where the gauge fields can
be assumed to take on their asymptotic form. This sphere can be covered by
a family of loops, each of which begins and ends at the north pole. One such
family consists of loops C(τ) that go from the north pole (θ = 0) to the south
pole (θ = π) along the arc φ = 0 and then back along the arc φ = 2πτ . As τ
ranges from 0 to 1, these cover the sphere.

Each such loop defines a group element

h(τ) = P exp

[
−i
∫
C(τ)

d� ·A
]
, (6.12)

where Ai is understood to be a matrix and the P indicates path ordering. This
Wilson loop is gauge invariant, so we can evaluate it in a gauge where Aθ = 0 on
the sphere. For nonzero QM there is a gauge singularity at the south pole, with
Aφ �= 0. Including an infinitesimal section around this singularity, we can view
the Wilson loop as being composed of three parts: (1) 0 ≤ θ ≤ π, with φ = 0;
(2) 0 ≤ φ ≤ 2πτ , with θ = π; and (3) 0 ≤ θ ≤ π, with φ = 2πτ . Since Aθ = 0,
the first and last segments do not contribute to the line integral. With Aφ given
by Eq. (6.6), the integral is straightforward to evaluate, and we have

h(τ) = exp [iτQM ] . (6.13)

Clearly h(0) = I. By the quantization condition of Eq. (6.8), we also have
h(1) = I. Thus, h(τ) for 0 ≤ τ ≤ 1 defines a loop in the (electric) gauge group
H and so can be assigned to an element of π1(H). If H is the simply connected
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112 Magnetic monopoles in larger gauge groups

SU(2), then π1 has only a single element, and the topological invariant is trivial.
If instead H = SO(3), then π1 has two elements, one arising when k is an inte-
ger and the other when it is a half-integer. Hence, a configuration with integer
magnetic weight cannot be continuously deformed into one with a half-integer
magnetic weight.

Now note that the energy in the long-range Coulomb field of a monopole is
proportional to trQ2

M . Since configurations with the same topological charge
can have different values for this quantity, one might wonder if solutions with
higher values were unstable and could decay to solutions with lower values of
trQ2

M . This instability is not completely obvious, both because there might be
an energy barrier along the path joining the two solutions, and because we have
not considered the fields in the core region. These concerns are dispelled by
detailed analysis of small fluctuations about a pure Coulomb solution, as was
done by Brandt and Neri [100] and by Coleman [101].2 They showed that, even
if one imposes the restriction that the field be held fixed inside some sphere
of radius R, there is always such an instability. Stable solutions must have the
minimum value of trQ2

M consistent with their topological charge. In the present
case, monopoles can only be stable if k = ±1/2; monopoles with integer magnetic
weights are all unstable.

The language of roots and weights3 is ideally suited for generalizing this discus-
sion to the case of an arbitrary semisimple unbroken gauge group H [97, 98]. The
Cartan subalgebra can be chosen to include any given element of the Lie algebra.4

Hence, there is no loss of generality in taking QM to be a linear combination of
the generators Ha of the Cartan subalgebra and writing

QM = 4πk ·H. (6.14)

The components ka are called the magnetic weights of the monopole. In a basis
where the Ha, and hence QM , are simultaneously diagonalized, the diagonal
elements of QM are of the form 4πik · w, where w is a weight vector of the
representation in which the generators are being expressed. The quantization
condition of Eq. (6.8) becomes the requirement that for every weight w that
appears in the theory

2k ·w = n (6.15)

for some integer n. If the group is SU(2), Eqs. (6.14) and (6.15) reduce to our
previous results, Eqs. (6.9) and (6.11), respectively.

2 Their analysis does not apply in the BPS limit, in which the Higgs field also has a
long-range tail.

3 Root and weight vectors are reviewed in Appendix A.
4 For the important case of SU(N), where the Cartan subalgebra can be taken to be the

elements that are diagonal in the fundamental representation, this is just the statement
that any Hermitian matrix can be diagonalized.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139017787.007
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.167, on 21 Nov 2025 at 22:04:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139017787.007
https://www.cambridge.org/core


6.1 Larger gauge groups—the external view 113

Any weight w and root α must satisfy

2w ·α
α2

= N, (6.16)

with N an integer. Hence one solution of the quantization condition is given by

k =
∑

nα
α

α2
=
∑

nαα∗, (6.17)

with the nα integers; i.e., by taking k to be an element of the root lattice of a
dual group Hv whose roots are the dual roots α∗ = α/α2. If H is simple and
the α∗ differ from the α only by an overall rescaling, then H and Hv share the
same Lie algebra, although they will not in general be the same group. For a
semisimple H, equality of the two Lie algebras only requires that the rescaling
be the same within each simple factor.

If H is the universal covering group of the Lie algebra, so that all representa-
tions appear, Eq. (6.17) gives the only solution for k. If not, there are additional
solutions. For example, if H is the adjoint group, whose representations all have
weights lying on the root lattice, then any weight w can be written as an inte-
gral sum of the roots α. Applying Eq. (6.15) to the adjoint representation, whose
weights are equal to the roots, yields the requirement that

2k ·α =
2k ·α∗

α∗2 = N ′, (6.18)

be an integer. This is the same as requiring that k be a weight of the Lie algebra
of Hv.

Thus, just as with the case of SU(2), we have an electric group whose weights
correspond to the representations of the elementary fields and a magnetic group
whose weights correspond to the allowed magnetic charges. The former has roots
α, while their duals α∗ are the roots of the latter. The larger one group is, the
smaller the other must be. If one is the universal covering group of its algebra,
the other is the adjoint group.5

We saw for the case of SU(2) that solutions with magnetic weights k and −k
are gauge-equivalent. In the general case, magnetic weight vectors k and k′ that
are related by Weyl reflections lead to physically equivalent solutions.

For SU(2) we also found that any two configurations with integer k or any
two with half-integer k could be continuously deformed into one another. On the
other hand, a configuration with integer k and one with half-integer k could not
be continuously connected, a fact that could be verified by noting that the loop
defined by h(τ) associated them with different elements of π1(H).

The generalization of this result can be expressed in terms of sublattices of the
weight lattice. The weight lattice of the simply connected covering group can be

5 The possible intermediate cases are discussed in [98].
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114 Magnetic monopoles in larger gauge groups

decomposed into sublattices such that any two weights in the same sublattice
differ by an integer sum of root vectors, while the difference between weights in
different sublattices is never of this form. Just as in the case of H = SU(2), with
its two sublattices, these sublattices are in one-to-one correspondence with the
elements of π1(H). Configurations with magnetic weights in the same sublattice
can be continuously deformed into one another, while those with weights in
different sublattices cannot.

Finally, the Brandt–Neri–Coleman analysis generalizes immediately to larger
groups, and shows that stable solutions must have the minimum value of trQ2

M

consistent with their topological charge. In particular, solutions with nonzero
magnetic weights lying in the root lattice, which includes the origin, are all
unstable.

The discussion thus far has assumed that H is semisimple. If this assumption
is relaxed, then the U(1) electric and magnetic charges also contribute to the
quantization condition. For simplicity, let us assume that H contains a single
U(1) factor with generator TU(1). The magnetic charge will then have a non-
Abelian component, given by Eq. (6.14), and an Abelian component equal to
4πkU(1)TU(1). If there is an electrically charged particle with non-Abelian electric
weight w and U(1) electric charge qU(1), then Eq. (6.15) is replaced by

2k ·w + 2kU(1)qU(1) = n, (6.19)

with an obvious generalization if there are multiple U(1) factors. The theory
always includes the gauge bosons of the semisimple part of H, which carry no
U(1) charge and have weights in the root lattice. Imposing the quantization
condition using these shows that k must lie in the magnetic weight lattice.

Let us consider an explicit example. In the real world, there is an unbroken
SU(3)×U(1) gauge group, with the first factor corresponding to QCD and the
latter to electromagnetism. Experimentally, there is a correlation between the
color and electromagnetic charges, in that particles invariant under SU(3) or
transforming under zero triality representations have integer U(1) charges ne,
while particles corresponding to triality ±1 representations (e.g., quarks and
antiquarks, respectively), have fractional electric charges of the form (N ± 1

3 )e.
If the monopole’s magnetic charge has no SU(3) component, we recover the

original Dirac quantization condition

2kU(1)qU(1) = n . (6.20)

The same is true if the monopole has a magnetic weight in the dual root lattice,
since then 2k ·w is an integer for any w. For either case the existence of down
quarks with U(1) electric charge −e/3 implies that the minimum U(1) magnetic
charge is 4πkU(1) = 6π/e.

Now suppose that the magnetic weight k of the monopole lies in the triality
1 sublattice. Applying Eq. (6.19) with an electrically charged particle of SU(3)
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6.2 Larger gauge groups—topology 115

triality 0 leads again to Eq. (6.20). Because all triality 0 particles have integer
electric charges, this quantization condition is satisfied if the magnetic charge
is a multiple of 2π/e. However, we must also consider the electrically charged
particles with nonzero triality and fractional U(1) charge. For any triality ±1
representation with weight w the product 2k · w is of the form n1 ± 2

3 , and
the U(1) electric charge is (n2 ± 1

3 )e. Substituting these into Eq. (6.19) leads to
the requirement that 2kU(1)e be an integer, so that the U(1) component of the
magnetic charge is still of the form

4πkU(1) =
2πn
e
. (6.21)

The net effect of all of this is that if a color singlet electron, with charge −e,
goes around the Dirac string of this monopole, it acquires a phase of 2π and the
string is unobservable, as required. If a quark is carried around the same path,
the U(1) charges give a phase that is less than 2π, but the deficit is made up by
the phase from the SU(3) magnetic and electric charges.

6.2 Larger gauge groups—topology
The analysis in the previous section focused on the long-range fields, extending
Dirac’s analysis to determine what magnetic charges are allowed by the require-
ment that the Dirac string be unobservable. However, not every allowed magnetic
charge can be realized in a nonsingular soliton. For such a soliton to arise and
be topologically stable, the manifold of vacuum solutions,M = G/H, must have
a nontrivial second homotopy group. In this section I will illustrate some of the
possible behaviors. In these examples Eq. (4.51), which reduces the calculation
of π2(G/H) to the calculation of π1(H), will be of considerable help.

6.2.1 SU(3) broken to SU(2)×U(1)

Consider a G = SU(3) gauge theory with gauge coupling g and an octet Higgs
field that can be viewed as a traceless 3 × 3 Hermitian matrix. Such a matrix
can always be diagonalized, and so can be characterized by its eigenvalues. If the
scalar field potential is such that the Higgs vacuum expectation value has three
unequal eigenvalues, the symmetry is broken to U(1)×U(1). Let us focus instead
on the other possibility, with two equal eigenvalues and a vacuum expectation
value

φ0 = diag (2b,−b,−b). (6.22)

The generators of the unbroken symmetry can then be taken to be

T8 = diag
(

1√
3
,− 1

2
√

3
,− 1

2
√

3

)
(6.23)
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116 Magnetic monopoles in larger gauge groups

3

x x

++

x

+

T

T8

Fig. 6.1. The weights of the octet (open circles), triplet (+’s), and antitriplet
(×’s) representations of SU(3). Note that the octet has a pair of weights at
T3 = T8 = 0.

together with the three generators

Ta =

⎛
⎝ 0 0

0
τa
2

⎞
⎠ , a = 1, 2, 3, (6.24)

obtained by embedding the Pauli matrices in the lower right 2× 2 block. These
generate an SU(2) × U(1) algebra, but because e2πiTae2

√
3πiT8 = I, the actual

unbroken symmetry group is H = [SU(2) × U(1)]/Z2. The generators of the
Cartan subalgebra can be chosen to be H1 = T3 and H2 = T8.

After the symmetry breaking the spectrum of states from the octet fields
includes massive scalars and massless vectors in the singlet and triplet represen-
tations of SU(2), all with T8 = 0, and two SU(2) doublets of massive vectors with
T8 = ±

√
3

2 . The corresponding weight vectors are shown in Fig. 6.1. Also shown
are the weights that would appear if the theory also included fields transforming
under the triplet and antitriplet representations of the original SU(3).

Nonsingular monopoles correspond to nontrivial elements of π2(G/H). Because
SU(3) is simply connected we can make use of Eq. (4.51), which gives

π2(G/H) = π1(H) = π1{[SU(2)×U(1)]/Z2} = Z, (6.25)

with the Z arising from the U(1). Hence, there are topologically stable nonsin-
gular monopoles carrying U(1) magnetic charge. We will see that they can also
carry SU(2) magnetic charge.

A nonsingular spherically symmetric configuration with unit magnetic charge
can be obtained by embedding the ’t Hooft–Polyakov ansatz of Eq. (5.60) in the
SU(2) subgroup lying in the upper left 2 × 2 block of the SU(3) matrices; i.e.,
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6.2 Larger gauge groups—topology 117

the subgroup generated by 1
2λ1, 1

2λ2, and 1
2λ3, where the λa are the Gell-Mann

matrices defined in Eq. (A.3). This by itself would not give the correct eigenvalues
for φ at spatial infinity, so a term proportional to λ8 must be added. Thus, we
have [102, 103]

φ =
1
2

3∑
a=1

r̂aλah(r) +
1
2
λ8j(r),

Ai =
1
2

3∑
a=1

εiamr̂mλa

[
1− u(r)
gr

]
. (6.26)

Requiring that φ be nonsingular at the origin and be gauge equivalent to φ0 at
spatial infinity gives the boundary conditions

h(0) = 0, j′(0) = 0,
h(∞) = 3b, j(∞) =

√
3 b (6.27)

for the scalar field, while for the gauge field we have u(0) = 1 and u(∞) = 0,
as in the SU(2) monopole. Solving the field equations with this ansatz and these
boundary conditions gives a monopole with a mass

Mmon ≈
4π(3b)
g

. (6.28)

According to the analysis of the previous section, the asymptotic magnetic field
should take the Coulomb form of Eq. (6.7), where QM can be gauge rotated to

QM =
4π
g

(k1H1 + k2H2) =
4π
g

(k1T3 + k2T8). (6.29)

Indeed, the monopole solution that follows from the ansatz of Eq. (6.26) has a
magnetic charge that along the positive z-axis is given by

QM =
4π
g

diag
(

1
2
,−1

2
, 0
)
, k1 = −1

2
, k2 =

√
3

2
. (6.30)

Our ansatz was obtained by making use of the SU(2) subgroup lying in the
upper left 2 × 2 block of the SU(3) matrices. We could equally well have used
the SU(2) subgroup defined by the four corner elements of the SU(3) matrices.
In this case the magnetic field along the positive z-axis would have given

QM =
4π
g

diag
(

1
2
, 0,−1

2

)
, k1 =

1
2
, k2 =

√
3

2
. (6.31)

The two ansatzes are related by a global gauge rotation in the unbroken SU(2).
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118 Magnetic monopoles in larger gauge groups

2

m

n

2 4−2 04−

4

Fig. 6.2. Allowed magnetic weights for SU(3) broken to SU(2)×U(1). Here

m = 2k1 and n = 2k2/
√

3, with the kj defined as in Eq. (6.29). The large
circles represent magnetic weights that are consistent with any representa-
tion for the electrically charged particles, while the weights denoted by small
circles are only allowed if the electrically charged particles are all in triality
zero representations. Only the former can be obtained from configurations
containing collections of nonsingular monopoles (n = 1) and antimonopoles
(n = −1). Of these, the large solid circles represent weights that are sta-
ble by the Brandt–Neri–Coleman analysis; these can all be obtained from
configurations containing only monopoles. The large open circles can also be
obtained using only monopoles, but are unstable by this analysis. The large
circles with crosses require assemblies of monopoles and antimonopoles, and
are also unstable. The pattern of weights for n < 0 is similar, with the roles of
monopoles and antimonopoles interchanged.

By assembling a number of these monopoles, using various combinations of
the two forms, we can construct configurations with k1 = m/2 and k2 = n

√
3/2,

where m and n are either both even or both odd integers and |m| ≤ n. These
points are indicated in Fig. 6.2. It is n, from the coefficient of the U(1) generator,
that is the conserved topological charge. Configurations with different values of
m can be deformed into one another and, by the results of Brandt, Neri, and
Coleman, will reduce their long-range non-Abelian components until k1 = ± 1

2 or
0. If the only fields in the theory are the SU(3) adjoint Higgs and gauge fields,
then the generalized Dirac quantization condition allows a larger set of charges,
which are also shown in Fig. 6.2. The absence of nonsingular solitons with these
charges can be understood by noting that they would be forbidden if fields with
nonzero triality were added to the theory.
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6.2 Larger gauge groups—topology 119

6.2.2 A Z2 monopole

Let us again consider an SU(3) gauge theory with gauge coupling g, but this
time with a Higgs field S that transforms according to the 6 representation of
SU(3) [104]. This can be viewed as a symmetric 3× 3 matrix that transforms as

S → USUT , (6.32)

where U is an SU(3) matrix and a superscript T denotes the transpose. If the
Higgs potential is minimized by

S0 = σ

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , (6.33)

the unbroken symmetry is the SO(3) subgroup generated by the antisymmetric
matrices λ2, λ5, and λ7. Because the triplet of the original SU(3) transforms as a
vector under SO(3), only integer-spin representations of SO(3) appear, confirming
that the unbroken group really is SO(3), and not SU(2).

Making use of Eq. (4.51), we find that the second homotopy group of the
vacuum manifold is

π2[SU(3)/SO(3)] = π1[SO(3)] = Z2. (6.34)

Thus, we should expect to find monopoles with Z2 topological charges. A combi-
nation of two of these should be topologically trivial, and so the monopole should
be its own antiparticle.

To see more explicitly how this can occur, let us start with a singular string
gauge configuration in which S = S0 is spatially uniform at large distance while
the gauge potential has the Dirac form

Ar = Aθ = 0, Aφ =
n

2g
(cos θ − 1)λ2, (6.35)

with the Dirac string also along the negative z-axis. This has a magnetic charge

QM =
4π
g

n

2
λ2. (6.36)

If we take λ2 to be the single generator of the Cartan subalgebra, this corresponds
to magnetic weight k = n/2.

This string singularity can be removed by a gauge transformation generated
by the gauge function

Un(θ, ϕ) = einλ2ϕ/2eiλ3θ/2e−inλ2ϕ/2, (6.37)

which is singular along the negative z-axis. [See the analogous transformation
given by Eq. (5.74).] In particular, the asymptotic Higgs field at r =∞ becomes
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120 Magnetic monopoles in larger gauge groups

Sn = UnS0U
T
n

=

⎛
⎝ cos θ + i sin θ cos(nϕ) −i sin θ sin(nϕ) 0

−i sin θ sin(nϕ) cos θ − i sin θ cos(nϕ) 0
0 0 1

⎞
⎠ . (6.38)

The covariant derivatives of S were rapidly vanishing at large distance before the
gauge transformation, and so must also be afterwards. Hence, we have a finite
energy configuration, and the usual arguments show that for n = ±1 there are
actual static solutions with this asymptotic behavior. These would be expected
to have a mass ∼ 4πσ/g.

A Z2 monopole should be its own antiparticle. We can see that this is so by
noting that

S−1 = eiπλ5S1

(
eiπλ5

)T
, (6.39)

so that the n = 1 monopole and n = −1 antimonopole Higgs fields (and in fact
their vector potentials also) are gauge equivalent. Furthermore, let us define a
unitary matrix

Vn(θ, ϕ) = eiλ5θeinλ2ϕ/2e−iλ5θe−iλ3θ/2e−inλ2ϕ/2. (6.40)

This is multiple-valued for odd n, because Vn(θ, ϕ) �= Vn(θ, ϕ+ 2π). For even n,
on the other hand, it is nonsingular and single-valued, with Vn(0, ϕ) = I, and
has the property that

VnSnV
T
n = S0. (6.41)

Hence, any configuration with even n is equivalent by a smooth gauge transfor-
mation to one with n = 0. Because π2(SU(3)) = 0, this gauge transformation
at r = ∞ can be smoothly deformed to the identity, thus giving a homotopy
connecting Sn and S0. Note that Eqs. (6.39) and (6.41) both required gauge
transformations involving matrices that went outside the 2×2 block that contains
the twisting of Sn.

6.2.3 A light doubly charged monopole

Let us now add an SU(3) triplet Higgs field ψ to the model of the previous
example [104]. Let us also assume that ψ has a nonzero vacuum expectation value,
and that in the vacuum the two Higgs fields are (up to a gauge transformation)

Sab0 = σδab,

ψa0 = vδa3. (6.42)

The unbroken gauge group is now U(1), so the relevant homotopy group is

π2[SU(3)/U(1)] = π1[U(1)] = Z. (6.43)
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6.3 Monopoles in grand unified theories 121

The topological charge on the monopoles is now an ordinary additive integer
charge. Choosing the asymptotic Higgs fields so that S = Sn(θ, ϕ) as in Eq. (6.38)
and ψ = ψ0 gives a configuration with topological charge n.

Ordinarily, we would expect to have a static particle-like solution only for n =
±1, with all larger values of n corresponding to multimonopole configurations.
A new feature appears if v 
 σ, so that the symmetry breaking can be viewed
as a two-step process

SU(3)−→
S

SO(3)−→
ψ

U(1). (6.44)

At the first stage we obtain a Z2 monopole with mass M1 ∼ σ/g2. This remains
a solution, with only slight modifications, at the second stage. However, the
transformation of Eq. (6.40), which turned the monopole into an antimonopole,
is no longer possible, because λ5 is not a generator of the unbroken group.

Now consider an n= 2 configuration. With just the breaking to SO(3), this
would be topologically trivial and could be unwound by applying the V2 of
Eq. (6.40). With the breaking to U(1), it has topological charge 2 and is topo-
logically nontrivial. We can still use V2 to unwind S, but this would have the
effect of twisting ψ. However, because the mass scale associated with ψ is much
less than that associated with S, shifting the winding from S to ψ reduces
the energy considerably, thus allowing us to obtain a charge 2 monopole with
M2 ∼ v/g2 
M1.

All configurations with n ≥ 3 presumably relax to multimonopole solutions.

6.2.4 Electroweak monopoles?

The previous examples in this section were illustrative, but not of direct phe-
nomenological significance. Let us now consider the standard electroweak model,
with SU(2)×U(1) broken to U(1) by a complex doublet Higgs field. Because the
full gauge group is not simply connected, we cannot use Eq. (4.51) to determine
π2(M) = π2(G/H). This is no problem, because we showed in Sec. 4.5 that the
space of vacua for this theory is a three-sphere [see Eq. (4.26)]. Since π2(S3) = 0,
there are no topologically stable monopoles in the Weinberg–Salam model.

6.3 Monopoles in grand unified theories
The idea of a grand unified theory (GUT) whose spontaneous breakdown leads
to the observed gauge symmetries of the Standard Model remains an attractive
possibility. Various implementations of this idea, often with several stages of
symmetry breaking, have been proposed. By definition, all begin with a simple
gauge group G that is ultimately broken down to the SU(3)×U(1) of QCD and
electromagnetism. If we take G to be the covering group of the Lie algebra,
Eq. (4.51) tells us that

π2(G/H) = π1(H) = π1[SU(3)×U(1)] = Z, (6.45)
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122 Magnetic monopoles in larger gauge groups

with the Z arising from the unbroken electromagnetic U(1). Thus any grand uni-
fied theory must contain topologically stable magnetic monopoles. Their mass
will be of the order of 4πv/e, where v is the vacuum expectation value of the
Higgs field responsible for the symmetry breaking that first gives rise to non-
trivial topology. Since this is typically a GUT scale of roughly 1016 GeV, these
monopoles will be supermassive.

Let us consider two important examples.

6.3.1 SU(5) monopoles

The prototypical grand unified theory is based on an SU(5) gauge group, with a
gauge coupling g, that is broken in two stages,

SU(5)−→
Φ

SU(3)× SU(2)×U(1)−→
χ

SU(3)×U(1). (6.46)

The first breaking is due to an adjoint representation Higgs field Φ that acquires
a GUT-scale vacuum expectation value, while the second is due to a fundamental
representation Higgs field χ that includes the Weinberg–Salam doublet with an
electroweak scale vacuum expectation value.

Because the fermions fall into the 5̄ and 10 representations, the initial group is
indeed the covering group, SU(5), and not a factor group. By arguments similar
to those for the SU(3) example of Sec. 6.2.1, the final unbroken subgroup is
actually [SU(3) × U(1)]/Z3, with the factoring by Z3 explaining the observed
correlation between SU(3) triality and fractional electric charge.

To start, let us focus on the first breaking and set χ = 0. The scalar field
potential can then be chosen so that Φ has a vacuum expectation value of the
form

Φ0 =

⎛
⎜⎜⎜⎜⎝
v 0 0 0 0
0 v 0 0 0
0 0 v 0 0
0 0 0 − 3

2v 0
0 0 0 0 −3

2v

⎞
⎟⎟⎟⎟⎠ . (6.47)

The generators of the unbroken symmetry then take on a block diagonal form,
with SU(3) generators λa/2 lying in the upper left 3× 3 block, SU(2) generators
τa/2 in the lower right 2× 2 block, and the U(1) generator being

TU(1) =
1√
15

diag
(

1, 1, 1,−3
2
,−3

2

)
. (6.48)

Twelve of the SU(5) gauge bosons acquire a mass MX =
√

25/8 gv at this stage
of symmetry breaking.

Because π1[SU(3)×SU(2)×U(1)] = Z, monopoles already appear at this first
stage of symmetry breaking. Classical solutions can be obtained by following a
strategy similar to that used for the SU(3) example of Sec. 6.2.1 [105]. We choose
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6.3 Monopoles in grand unified theories 123

an ansatz such that the twisting of the Higgs field lies entirely within a 2 × 2
SU(2) subgroup corresponding to the intersections of columns and rows 1, 2, or 3
with columns and rows 4 or 5, and then add diagonal components to Φ to ensure
the correct eigenvalues at spatial infinity. Choosing, for example, the subgroup
defined by rows and columns 3 and 4 gives a Higgs field ansatz of the form

Φ =

⎛
⎜⎜⎝
a(r) 0 0 0
0 a(r) 0 0
0 0 h(r)r̂ · τ + b(r)I2 0
0 0 0 −2[a(r) + b(r)]

⎞
⎟⎟⎠ . (6.49)

The nonzero components of Ai all lie within the chosen SU(2), and lead to an
asymptotic magnetic field with magnetic charge along the positive z-axis

QM =
4π
g

diag
(

0, 0,
1
2
,−1

2
, 0
)

=
4π
g

[
diag

(
1
6
,
1
6
,
1
6
,−1

4
,−1

4

)
+ diag

(
−1

6
,−1

6
,
1
3
, 0, 0

)

+diag
(

0, 0, 0,−1
4
,
1
4

)]
, (6.50)

where the second equality shows the decomposition into U(1), SU(3), and SU(2)
components, respectively. The classical energy of this monopole is approximately
4πMX/g

2, and its core radius is of the order of M−1
X .

The electroweak symmetry breaking is driven by the vacuum expectation value
of χ, which is at a mass scale 14 or so orders of magnitude lower than the
GUT scale. The effects of this symmetry breaking only become significant at
length scales of order M−1

W , so the corrections to the monopole core structure and
mass are negligible. However, at distances much larger than M−1

W the Coulomb
magnetic field must lie within the unbroken gauge group. Thus, whatever the
orientation of the SU(2) magnetic field near the core, at large distances QM
must be rotated so that it is a linear combination of an SU(3) charge and the
electromagnetic charge generator

Qem = diag
(

1
3
,
1
3
,
1
3
,−1, 0

)
. (6.51)

The normalization of Qem is such that e =
√

3/8 g (evaluated at the GUT scale).
Taking this into account, we find that the minimally charged monopole, with a
core profile given by Eq. (6.49), has an electromagnetic magnetic charge 2π/e.

In Eq. (6.49) the choice of the SU(2) subgroup that contained the twisting of
Φ was somewhat arbitrary. We could, for example, have used the first and fifth
rows and columns, leading to a solution with asymptotic magnetic charge

Q′
M =

4π
g

diag
(

1
2
, 0, 0, 0,−1

2

)
. (6.52)
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124 Magnetic monopoles in larger gauge groups

Now consider a configuration composed of two monopoles, one with charge QM
and one with Q′

M . At distances that are small compared to the electroweak scale,
the Coulomb interaction between the two is proportional to tr (QMQ′

M ) = 0.
What has happened is that their long-range U(1) repulsion has been exactly
canceled by the attractive SU(2) and SU(3) forces. The interaction between the
two is then determined by the Yukawa forces mediated by the massive Higgs and
gauge bosons. By proper choice of the masses of the bosons, one can arrange for
the net effect of these to be attractive, giving a stable monopole with two units of
U(1) magnetic charge. In fact, by this mechanism one can also obtain solutions
with three, four, and six units of U(1) magnetic charge [106].

6.3.2 SO(10) monopoles

A second widely studied model is based on SO(10). One possible symmetry
breaking pattern is commonly written as

SO(10)→
φ1

SU(4)×SU(2)×SU(2)→
φ2

SU(3)×SU(2)×U(1)→
φ3

SU(3)×U(1). (6.53)

This is correct as far as the Lie algebras go, but to get the homotopy right we
need to be careful about specifying the groups.

To start, we note that the Standard Model quarks and leptons of one gener-
ation, together with a right-handed neutrino, fill out a 16-component SO(10)
spinor. With a spinor representation present, the original gauge group G is
unambiguously the covering group, Spin(10). In the first stage of symmetry
breaking, a Higgs field φ1 transforming under the 54-dimensional traceless sym-
metric tensor representation obtains a vacuum expectation value of order v1 that
breaks this symmetry down to a subgroup H1 that is locally SO(6) × SO(4) =
SU(4) × SU(2) × SU(2). Under this breaking the fundamental spinor of SO(10)
decomposes into (4, 1, 2) + (4̄, 2, 1). Here the 4 and 4̄ are conjugate SO(6)
spinors [or, equivalently, the fundamental and antifundamental representations
of SU(4)], while the 2’s are SU(2) spinors. A rotation by 2π multiplies a spinor
by −1, so simultaneous rotations by 2π in the SO(6) and SO(4) subgroups give
two factors of −1 and thus act as the identity on the fermions. Hence,

H1 = [SU(4)× SU(2)× SU(2)]/Z2, (6.54)

which is not simply connected. Thus, we have

π2(G/H1) = π1(H1) = Z2, (6.55)

which means that there is a monopole carrying a Z2 charge with a mass of order
v1/g. Like the Z2 monopole of Sec. 6.2.2, this monopole is its own antiparticle.

At the next stage of symmetry breaking an SO(10) spinor Higgs field φ2 gets
a vacuum expectation value v2 that breaks the symmetry down to

H2 = [SU(3)× SU(2)×U(1)]/Z6. (6.56)
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6.4 Chromodyons 125

The crucial point here is the appearance of the U(1) factor, so that

π2(G/H2) = π1(H2) = Z (6.57)

and we now have monopoles with ordinary additive charges. If v2 
 v1, the
situation is essentially the same as in the example of Sec. 6.2.3. The Z2 monopole
that appeared at the first stage remains, but now with a unit Z charge. In
addition, there is a new monopole, with two units of magnetic charge, associated
with a nontrivial winding of φ2 but a topologically trivial φ1. This monopole has
a core size of order (gv2)−1 and a mass M2 ∼ v2/g that can be several orders of
magnitude smaller than that of the unit monopole [107].

Both monopoles survive the final stage of symmetry breaking with negligible
corrections to their masses.

6.4 Chromodyons
We have seen that when a soliton is not invariant under a symmetry of the the-
ory, the spectrum of fluctuations about the soliton includes a zero mode that
requires the introduction of a collective coordinate z. Exciting this mode in a
time-dependent fashion gives a nonzero conjugate momentum p = Iż, where I
can be thought of as a generalized moment of inertia, and leads to a tower of
excited states with energies p2/2I above the ground state. Thus, any soliton
breaks translation invariance, and solitons with time-dependent position collec-
tive coordinates have nonzero linear momentum; here I is simply the soliton
mass. If there is an unbroken U(1) internal symmetry that acts nontrivially on
a soliton, then a time-dependent phase rotation gives the soliton a U(1) charge
Q; for the case of the ’t Hooft–Polyakov monopole, this yields the dyons studied
in Sec. 5.5.

The GUT monopole solutions described in the previous section have Coulomb
magnetic fields with nonzero components in the unbroken color SU(3). These
are acted upon by the SU(3) generators, and so one might expect to obtain
monopoles with SU(3) electric-type charges—chromodyons—from solutions that
rotate in the internal SU(3) space.

Matters are not so simple. The first indication that there might be a problem is
the slow falloff of the zero modes. A magnetic field falling as 1/r2 corresponds to
a vector potential falling as 1/r. Acting on such a field, an SU(3) transformation
that was nontrivial at spatial infinity and did not commute with the magnetic
charge would produce an infinitesimal transformation δAj that also fell as 1/r,
making the resulting zero mode non-normalizable. One might näıvely view this
as corresponding to an infinite moment of inertia, and conclude that the tower
of chromodyon states collapses to a set of degenerate states. However, in a gauge
theory one must proceed more carefully, making sure that the Gauss’s law con-
straints are satisfied, as was done for the U(1) dyon in Sec. 5.5. This entails
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126 Magnetic monopoles in larger gauge groups

finding an A0 that satisfies Gauss’s law and that has a 1/r behavior consistent
with the chromodyonic charge. It turns out that this cannot be done6 [108].

The underlying explanation for these difficulties is that the long-range non-
Abelian fields of the monopole create a topological obstruction that makes it
impossible to define a set of generators for the unbroken gauge group that is
nonsingular everywhere on the sphere at spatial infinity. Without these gener-
ators, one cannot define the global gauge rotations that would give rise to the
chromodyons [109–114].

To see this more explicitly [109], consider the example of Sec. 6.2.1, where
the unbroken gauge group is SU(2)×U(1). At spatial infinity the adjoint Higgs
field is

φ(θ, ϕ) = b

(
1
2 + 3

2 r̂ · τ 0
0 −1

)
= bU−1

⎛
⎝ 2 0 0

0 −1 0
0 0 −1

⎞
⎠U, (6.58)

where U is a 3× 3 matrix with the block diagonal form

U(θ, ϕ) =
(
U 0
0 1

)
, (6.59)

with U being the 2× 2 SU(2) matrix given in Eq. (5.74).
At the north pole, θ = 0, the unbroken SU(2) corresponds to the lower right

2 × 2 block, and a standard choice for the U(1) generator T0 and the SU(2)
generators Tk is

T0 =

⎛
⎝ 2 0 0

0 −1 0
0 0 −1

⎞
⎠ , T1 =

1
2

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ ,

T2 =
1
2

⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ , T3 =

1
2

⎛
⎝ 0 0 0

0 1 0
0 0 −1

⎞
⎠ . (6.60)

By acting on these with U , we can obtain a set that commutes with φ(θ, ϕ) and
has the correct commutation relations. Two of these,

T0(θ, ϕ) =

⎛
⎝ 1

2 + 3
2 cos θ 3

2 sin θe−iϕ 0
3
2 sin θeiϕ 1

2 −
3
2 cos θ 0

0 0 −1

⎞
⎠ (6.61)

and

T3(θ, ϕ) =
1
2

⎛
⎝ 1

2 −
1
2 cos θ − 1

2 sin θe−iϕ 0
− 1

2 sin θeiϕ 1
2 + 1

2 cos θ 0
0 0 −1

⎞
⎠ , (6.62)

6 One can also work in A0 = 0 gauge, in which case Gauss’s law must be imposed as an
additional constraint. In this approach, the construction of the chromodyon only goes
through if there is a zero mode corresponding to a gauge transformation with a gauge
function Λ that is nonzero at spatial infinity and satisfies DkDkΛ + g2[φ, [φ,Λ]] = 0. This
equation has no solutions if Λ does not commute with the magnetic charge [108].
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6.4 Chromodyons 127

are well defined everywhere, but the other two,

T1(θ, ϕ) =
1
2

⎛
⎝ 0 0 − sin(θ/2)e−iϕ

0 0 cos(θ/2)
− sin(θ/2)eiϕ cos(θ/2) 0

⎞
⎠ (6.63)

and

T2(θ, ϕ) =
1
2

⎛
⎝ 0 0 i sin(θ/2)e−iϕ

0 0 −i cos(θ/2)
−i sin(θ/2)eiϕ i cos(θ/2) 0

⎞
⎠ , (6.64)

are singular at θ = π, the south pole.7

In this example, the generators that commuted with the magnetic charge (T0

and T3) could be defined globally. It was only the two that did not commute with
QM that failed to be well defined. This can be understood as follows. One way to
define a global gauge rotation is to choose a Lie algebra element Ω at one point
P on a sphere at large r and then use parallel transport to obtain Ω at any other
point P ′ on the sphere. This only works if the result of the parallel transport
is independent of the path from P to P ′. This in turn requires that the surface
integral of [B,Ω] over the area between any two such paths vanishes. In the limit
of infinite radius only the 1/r2 part of B, i.e., the magnetic charge, contributes
to this integral. Hence, only the generators of the subgroup that commutes with
the magnetic charge are well defined.

This suggests a loophole that might allow chromodyons to exist. Consider a
monopole with a purely Abelian magnetic charge in a theory with an unbroken
non-Abelian subgroup. The Abelian magnetic charge would not be an obstacle to
defining global color transformations. Although these would have no effect on the
asymptotic magnetic field, there might well be fields nearer the core that were
not invariant under color transformation. The corresponding zero modes would
be normalizable, and would provide the basis for constructing a chromodyonic
solution.

A monopole of just this sort can be constructed in a gauge theory with SO(5)
broken to SU(2)×U(1). However, numerical study of the classical evolution of
the chromodyon solution reveals that the rate of rotation in color space decreases
with time, corresponding to a loss of color charge [115]. This is apparently due
to radiation of energy and color charge via the massless gauge boson field, with
all indications being that the radiation continues until the charge has been com-
pletely lost. Thus, even when there are no topological obstacles to their existence,
chromodyons appear to be dynamically unstable.

7 An alternative approach is to use two patches, with sets of generators that are nonsingular
in the upper and lower hemispheres, respectively. Consistency then requires that the two
sets be related by a nonsingular gauge transformation in the overlap region. Again, this
turns out to be impossible.
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128 Magnetic monopoles in larger gauge groups

6.5 The Callan–Rubakov effect
We saw in Sec. 5.7 that the scattering of massless fermions off an ’t Hooft–
Polyakov monopole has some unusual aspects. In the J = 0 sector one finds only
half of the expected incoming states and half of the expected outgoing states;
this is ultimately a consequence of the extra charge-monopole contribution to
the angular momentum. The matching of incoming to outgoing states requires
that either the fermion chirality or the fermion electric charge must change.
The analyses of Rubakov [91] and of Callan [92, 93] showed that the former
is the case, and that no electric charge is deposited either on the monopole or on
the surrounding fermion condensate.

An analogous effect occurs with monopoles in larger gauge groups, in particular
those that arise in grand unified theories [91, 93, 116–118]. The new feature here
is that the incoming and outgoing states that are paired have different baryon
and lepton numbers. To be specific, let us consider a monopole in the SU(5)
theory that has a magnetic charge given by Eq. (6.50). This is essentially an
embedding of the SU(2) monopole in the subgroup corresponding to the third
and fourth rows and columns.

Each family of fermion fields in the SU(5) model can be assembled into two
multiplets of Weyl fields. The first family, which can be treated as approximately
massless, contains an antifundamental 5̄ representation,

ψ = (dc1, d
c
2, d

c
3, e

−, ν)tL, (6.65)

and a symmetric tensor 10 representation,

χ =
1√
2

⎛
⎜⎜⎜⎜⎝

0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −e+
d1 d2 d3 e+ 0

⎞
⎟⎟⎟⎟⎠
L

. (6.66)

(Here subscripts are SU(3) color indices and a superscript c denotes charge con-
jugation and the d’s should be understood as the CKM-rotated mixtures.) When
these SU(5) multiplets are decomposed into representations of the SU(2) defined
by the monopole embedding, we find four doublets,(

e+

d3

)
L

,

(
dc3
e−

)
L

,

(
u1

uc2

)
L

,

(
u2

−uc1

)
L

. (6.67)

In the J = 0 sector, the upper components of the doublets only appear as
incoming waves, and the lower ones as outgoing waves.

As with the SU(2) theory considered in Sec. 5.7, the analysis of the system
is most easily done by bosonizing the theory. In the previous case there were
two Dirac, or four Weyl, fermion fields, leading to two scalar fields. Now, with
eight Weyl fermion fields, we have four scalar fields, but the analysis is otherwise
similar.
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6.5 The Callan–Rubakov effect 129

The monopole is surrounded by a fermion condensate formed from the doublets
listed above. The energy of the monopole-fermion system is minimized by requir-
ing vanishing charge under all components of the unbroken gauge group. A set
of particles from the relevant doublets that meets this criterion is the electrically
neutral, color singlet combination e−u1u2d3 (or the corresponding set of antipar-
ticles). The analysis of the bosonized theory shows that the ground state of the
system is a superposition of states with arbitrary numbers of this set of fermions.
This allows scattering processes that effectively add or subtract particles in this
combination. An example is u1+Monopole→ ū2+ d̄3+e++Monopole, a process
that violates the conservation of both baryon number B and lepton number L
(but not of B − L). With the initial u being a valence quark in a proton, this
process could lead to the monopole-catalyzed decay of a proton to a positron
plus a π+π− pair or to a positron plus a photon.

The possibility of a baryon number violating process is not surprising, since
it is well known that the SU(5) theory allows proton decay. The striking feature
is that there is no suppression by factors of the masses of the superheavy gauge
bosons, or of the monopole core size. Instead, the cross-section is essentially
geometric, and so is expected to be of typical strong interaction size.

This analysis in the SU(5) theory depended in a detailed manner on the way
in which the light fermions transformed under the SU(2) defined by the magnetic
charge. With a different embedding of the magnetic charge in the GUT gauge
group, this catalysis of baryon number violation might not occur. This is con-
firmed by a detailed examination of a number of theories. The monopoles in the
SO(10) theory considered in Sec. 6.3.2 are important examples [119]. The heav-
ier, singly charged monopoles that arise at the first stage of symmetry breaking
catalyze baryon number violation, but the lighter, doubly charged ones do not.
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