δ-CONTINUOUS SELECTIONS OF SMALL MULTIFUNCTIONS

HELGA SCHIRMER

1. Introduction. A multifunction $\varphi : X \to Y$ from a topological space X into a topological space Y is a correspondence such that $\varphi(x)$ is a non-empty subset of Y for every $x \in X$. A single-valued function $f: X \to Y$ is called a selection of φ if $f(x) \in \varphi(x)$ for all $x \in X$; it is called a continuous selection if f is continuous. It is well-known that not every semi-continuous or even continuous multifunction has a continuous selection (see e.g. [4] for a survey on selection theory).

We investigate here some connections between multifunctions which are "almost single-valued" and selections which are "almost continuous". More precisely, let Y be a metric space with metric d, and define that the multifunction φ is δ -small for some $\delta > 0$ if the diameter diam $(\varphi(x)) \leq \delta$ for all $x \in X$. We further use the terminology of Muenzenberger [5] and Smithson [6] and say that $f: X \to Y$ is δ -continuous if for every $x \in X$ there exists an open neighbourhood U(x) such that $f(U(x)) \subset S_{\delta}(f(x))$, where

$$S_{\delta}(f(x)) = \{y \in Y | d(y, f(x)) < \delta\}.$$

(This definition is related to, but not identical with, the definition of δ -continuity originally introduced by Klee [3].) The function f is continuous if it is δ -continuous for every $\delta > 0$ [6], and clearly φ is single-valued if it is δ -small for all $\delta > 0$. Hence we can think of f as almost continuous and of φ as almost single-valued if δ is small.

We prove in Theorem 2.1 that every selection of an upper or lower semicontinuous δ -small multifunction is 2δ -continuous, and in Theorem 2.2 that for every δ -continuous function f on a compact Hausdorff space X, there exist 2δ -small and either upper or lower semi-continuous multifunctions for which fis a selection. We further show that the multifunctions φ constructed in Theorem 2.2 have "nice" properties for certain spaces. They are convexvalued if Y is a normed linear space, and continuum-valued if Y is a dendrite. Klee's [3] and Smithson's [6] results that compact convex subsets of finitedimensional normed linear spaces and dendrites have the proximate fixed point property are obtained as corollaries.

2. δ -continuous selections of small multifunctions. Let X and Y be topological spaces. A multifunction $\varphi: X \to Y$ is called usc (upper semi-

Received July 13, 1971. This research was partially supported by the National Research Council of Canada Grant No. A 7579.

continuous) if for every open set $V \subset Y$ with $\varphi(x) \subset V$ there exists an open neighbourhood U of x such that $\varphi(U) \subset V$. It is called lsc (lower semi-continuous) if for every $x \in X$ and for every open set $V \subset Y$ with $\varphi(x) \cap V \neq \emptyset$ there exists an open neighbourhood U of x such that $\varphi(x') \cap V \neq \emptyset$ for all $x' \in U$. If φ is both usc and lsc it is called continuous. A point-closed (pointopen) multifunction is a multifunction for which $\varphi(x)$ is closed (open) for each $x \in X$.

We assume from now on that Y is a metric space with a metric d. Let

$$S_{\delta}(A) = \{ y \in Y | d(y, A) < \delta \}$$

and

$$\bar{S}_{\delta}(A) = \{ y \in Y | d(y, A) \leq \delta \}$$

The first theorem is an easy consequence of the definitions.

THEOREM 2.1. If the multifunction $\varphi : X \to Y$ is δ -small and either usc or lsc, then every selection of φ is 2δ -continuous.

Proof. Let $f: X \to Y$ be a selection of φ .

- (i) φ is usc: Take V(x) = S_{2δ}(f(x)). As φ is δ-small we have φ(x) ⊂ V(x), and as φ is usc, there exists an open neighbourhood U(x) such that φ(U(x)) ⊂ V(x). Hence f(U(x)) ⊂ S_{2δ}(f(x)), so that f is 2δ-continuous.
- (ii) φ is lsc: This time take $V(x) = S_{\delta}(f(x))$. As φ is lsc and $\varphi(x) \cap V(x) \neq \emptyset$, there exists an open neighbourhood U(x) such that $\varphi(x') \cap V(x) \neq \emptyset$ for all $x' \in U(x)$. As φ is δ -small we have $d(f(x), f(x')) < 2\delta$ for all $x' \in U(x)$, hence $f(U(x)) \subset S_{2\delta}(f(x))$ and f is 2δ -continuous.

Note that the constant 2δ in the conclusion of the theorem cannot be replaced by δ . As an example we can take the multifunction $\varphi : [0, 1] \rightarrow [0, 1]$ defined by

$$\begin{aligned} \varphi(x) &= \frac{1}{4} \quad \text{for} \quad 0 \le x < \frac{1}{2}, \\ \varphi(\frac{1}{2}) &= \{\frac{1}{4}, \frac{3}{4}\}, \\ \varphi(x) &= \frac{3}{4} \quad \text{for} \quad \frac{1}{2} < x \le 1 \end{aligned}$$

which has no $\frac{1}{2}$ -continuous selection although it is a $\frac{1}{2}$ -small usc multifunction. But the constant 2δ can be replaced by $\delta + \epsilon$, for any $\epsilon > 0$.

We now show that on the other hand every δ -continuous function can be a selection of a suitable small use or lsc multifunction, at least if X is compact Hausdorff. The proof is more complicated, but constructive.

THEOREM 2.2. Let X be compact Hausdorff and $f: X \to Y$ be δ -continuous. Then there exist both a point-closed usc and a point-open lsc 2δ -small multifunction for which f is a selection.

632

Proof. (i) Construction of a point-closed usc multifunction. Choose for every $x \in X$ an open neighbourhood U(x) such that $f(U(x)) \subset S_{\delta}(f(x))$. As X is compact, the cover $\{U(x)|x \in X\}$ has a finite subcover

$$\{U(x_i)|i \in I \text{ and } I \text{ finite}\}.$$

For every $x \in X$, denote by J(x) the subset of I given by $i \in J(x)$ if and only if $x \in U(x_i)$. Define a correspondence $\varphi : X \to Y$ by

(1)
$$\varphi(x) = \bigcap [\bar{S}_{\delta}(f(x_i)) | i \in J(x)].$$

We show that φ has the desired properties.

For all $x \in X$ we have $x \in \bigcap [U(x_i)|i \in J(x)]$, and hence

$$f(x) \in f[\cap (U(x_i)|i \in J(x))] \subset \cap [f(U(x_i))|i \in J(x)]$$
$$\subset \cap [\bar{S}_{\delta}(f(x_i))|i \in J(x)] = \varphi(x).$$

So $\varphi(x) \neq \emptyset$, and f is a selection of the multifunction φ .

To show that φ is usc, choose any $x \in X$, and let V be an open set with $\varphi(x) \subset V$. As J(x) is finite, the set $N(x) = \bigcap [U(x_i)|i \in J(x)]$ is an open neighbourhood of x. If $x' \in N(x)$, then the definition (1) of φ implies that $\varphi(x') \subseteq \varphi(x)$. Therefore we have $\varphi(N(x)) \subseteq \varphi(x) \subset V$. As $\varphi(x)$ is closed and diam $\varphi(x) \leq 2\delta$ by construction, φ is the desired point-closed usc and 2δ -small multifunction.

(ii) Construction of a point-open lsc multifunction. For every $x \in X$ there exists an open neighbourhood U'(x) with $f(U'(x)) \subset S_{\delta}(f(x))$, and as X is regular, we can select an open neighbourhood U(x) with

$$U(x) \subset \operatorname{Cl}(U(x)) \subset U'(x),$$

where Cl denotes the closure. Let $\{U(x_i)|i \in I\}$ again be a finite subcover of the cover $\{U(x)|x \in X\}$ of the compact space X. For any $x \in X$ let this time J(x) be the subset of I given by $i \in J(x)$ if and only if $x \in Cl(U(x_i))$ and define $\psi : X \to Y$ by

(2)
$$\psi(x) = \bigcap [S_{\delta}(f(x_i))|i \in J(x)].$$

In a similar way as in (i) we see that $f(x) \in \psi(x)$ for every $x \in X$, so that f is a selection of the multifunction ψ .

To show that ψ is lsc, choose for any $x \in X$ an open set V with $V \cap \psi(x) \neq \emptyset$. As $I \setminus J(x)$ is finite, the set $\bigcup [Cl(U(x_i)|i \in I \setminus J(x))]$ is closed, and we can find an open neighbourhood N(x) such that

$$N(x) \cap (\bigcup [Cl(U(x_i)|i \in I \setminus J(x)]] = \emptyset.$$

Therefore $\psi(x') \supseteq \psi(x)$ for all $x' \in N(x)$, and hence $\psi(x') \cap V \neq \emptyset$. So ψ is lsc, and it is point-open and 2δ -small by construction.

This completes the proof of Theorem 2.2.

We notice that in general $\varphi(x) \neq \psi(x)$ and that φ is usually not lsc and ψ not usc. It would be interesting to know whether one can also construct a continuous 2δ -small multifunction for which f is a selection.

3. Application to the proximate fixed point property. The space X with metric d has the p.f.p.p. (proximate fixed point property) if for every $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ -continuous function $f: X \to X$ there is a point $x \in X$ with $d(x, f(x)) < \epsilon$. (The concept of the p.f.p.p. was introduced by Klee [3], but we use the slightly different definitions of Smithson [6] and Muenzenberger [5].) Theorem 2.2 can be used to obtain results on the p.f.p.p. The method consists in showing that for suitable spaces the function φ defined in (1) has additional properties which ensure a fixed point of φ .

PROPOSITION 3.1. If Y is a convex subset of a normed linear space, then the multifunction φ defined in (1) is convex-valued.

Proof. The set $\bar{S}_{\delta}(f(x_i))$ is convex, and the intersection of convex sets is convex also.

COROLLARY 3.2. A compact convex subset C of a finite-dimensional normed linear space has the p.f.p.p. (See Klee [3, Theorem 3].)

Proof. For any $\epsilon > 0$, take $\delta = \epsilon/3$, and let $f: C \to C$ be δ -continuous. The function $\varphi: C \to C$ defined in (1) is use and convex-valued, and hence has a fixed point x_0 ; i.e. a point with $x_0 \in \varphi(x_0)$ [1, p. 251]. As φ is 2 δ -small and $f(x_0) \in \varphi(x_0)$, we have $d(x_0, f(x_0)) \leq 2\delta < \epsilon$, so that C has the p.f.p.p.

A *dendrite* is a metrizable continuum in which every pair of points can be separated by a third one. It has a convex metric [2].

PROPOSITION 3.3. If Y is a dendrite with a convex metric, then the multifunction φ defined in (1) is continuum-valued.

Proof. Each set $\bar{S}_{\delta}(f(x_i))$ used in the definition of φ is arc-connected, as it contains with every point $z \neq f(x_i)$ also the unique arc from z to $f(x_i)$. Hence it is a continuum, and the intersection of finitely many continua in a dendrite is a continuum [8, p. 88].

COROLLARY 3.4. A dendrite has the p.f.p.p. (See Smithson [6].)

Proof. The proof is analogous to that of Corollary 3.2, as dendrites have the fixed point property for usc and continuum-valued multifunctions [7].

References

- 1. C. Berge, Topological spaces (Oliver & Boyd, Edinburgh and London, 1963).
- 2. R. H. Bing, Partitioning continuous curves, Bull. Amer. Math. Soc. 58 (1952), 536-556.
- 3. V. Klee, Stability of the fixed point property, Colloq. Math. 8 (1961), 43-46.

- E. Michael, A survey of continuous selections, in Set Valued Mappings, Selections and Topological Properties of 2^x, pp. 54–58, Lecture Notes in Mathematics no. 171 (Springer-Verlag, Berlin-Heidelberg-New York, 1970).
- 5. T. B. Muenzenberger, On the proximate fixed-point property for multifunctions, Colloq. Math. 19 (1968), 245-250.
- 6. R. E. Smithson, A note on δ-continuity and proximate fixed points for multi-valued functions, Proc. Amer. Math. Soc. 23 (1969), 256-260.
- 7. A. D. Wallace, A fixed point theorem for trees, Bull. Amer. Math. Soc. 47 (1941), 757-760.
- 8. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. v. 28 (Amer. Math. Soc., Providence, R.I., 1942).

Carleton University, Ottawa, Canada