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ABSTRACT

We consider a classical surplus process where the insurer can choose a different
level of reinsurance at the start of each year. We assume the insurer’s objective
is to minimise the probability of ruin up to some given time horizon, either in
discrete or continuous time. We develop formulae for ruin probabilities under the
optimal reinsurance strategy, i.e. the optimal retention each year as the surplus
changes and the period until the time horizon shortens. For our compound Pois-
son process, it is not feasible to evaluate these formulae, and hence determine the
optimal strategies, in any but the simplest cases. We show how we can determine
the optimal strategies by approximating the (compound Poisson) aggregate claims
distributions by translated gamma distributions, and, alternatively, by approxi-
mating the compound Poisson process by a translated gamma process.
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1. INTRODUCTION

Reinsurance is an important mechanism by which an insurer can manage the
financial risk of its operation. See, for example, the many references to rein-
surance in Daykin et al. (1993). Many authors have considered the problem of
determining the optimal level and/or type of reinsurance, where optimal is
defined in terms of some stability criterion such as the variance of aggregate
claims or the probability of ruin.

Centeno (1986) considered mixtures of excess loss and proportional rein-
surance. She used the insurer’s adjustment coefficient as a proxy for the (inverse
of the) probability of ultimate ruin, so that a given combination of excess loss
and proportional reinsurance is optimal if it maximises the insurer’s adjustment
coefficient, net of reinsurance. In 1986, algorithms for evaluating the probabil-
ity of ruin were in their infancy, hence the attraction of using the adjustment
coefficient. Since 1986, the situation has changed.
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The present authors, Dickson and Waters (1996), used numerical methods
to determine the level of reinsurance which minimises the insurer’s probability
of ultimate ruin. We also investigated the effect of reinsurance on the proba-
bility of ruin in finite time.

A common feature of the studies mentioned above, and of almost all other
studies in this area, is that the level and type of reinsurance is assumed to
remain constant throughout the period being considered, which in many cases
is infinite. In other words, the reinsurance strategy is static. Two relatively
recent papers, Schmidli (2001) and Hipp and Vogt (2003), investigated dynamic
reinsurance strategies for a fixed type of reinsurance, the former in relation to
proportional and the latter in relation to excess loss reinsurance. In both these
papers the level of reinsurance was allowed to change continuously so that, in
mathematical terms, both papers deal with an optimal stochastic control prob-
lem in continuous time. Variations on this problem are considered in Schmidli
(2002) and Promislow and Young (2005), where, in each case, the insurer can
invest in risky and riskless assets.

In this paper we consider a classical (compound Poisson) model for the insurer’s
surplus. We assume that the insurer can change the type and/or level of reinsur-
ance at the start of each year. We further assume that the insurer fixes a future time
point and chooses the reinsurance arrangement each year which minimises the
probability of ruin in the period up to that time point. Hence, at the start of each
year, the optimal reinsurance arrangement will depend on the current level of
the insurer’s surplus and on the remaining time period, which decreases by one
year each year. We study two cases for this problem, viz the probability of ruin
in discrete time (at the end of each year only) and in continuous time.

Our problem is similar to the problems studied by Schmidli (2001) and
Hipp and Vogt (2003) in that the reinsurance strategy is dynamic, but there
are important differences. In their papers, the level of reinsurance can change
continuously whereas in our model it can change only at the start of each year,
which we consider more realistic. Mathematically, this means that we are study-
ing a discrete time stochastic control problem, even in the case where, when we
consider continuous time ruin, the underlying surplus process is a continuous
time process. Another difference is that our optimality criterion is to minimise
the probability of ruin up to some fixed time point, rather than in infinite time.
A further difference, at least in principle, is that we can allow the insurer to
change the type, as well as the level, of reinsurance each year. However, in our
numerical examples in Section 7 the type of reinsurance is fixed and there would
have been numerical difficulties if it had been allowed to change. Finally, the
emphasis in this paper is on deriving formulae from which numerical results
can be obtained.

We start in Section 2 by setting out our underlying model for the insurer’s
surplus process. Then, in Section 3, we use the Bellman Optimality Principle
to derive recursive formulae which can, in principle, be used to determine optimal
dynamic reinsurance strategies in discrete and in continuous time. We discuss
the computational difficulties involved in obtaining numerical results from
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these formulae. In Section 4 we show how we can obtain numerical results, at
least approximately, by replacing the distribution function (cdf) and density
function (pdf) of a compound Poisson random variable by the cdf and pdf,
respectively, of a translated gamma random variable, matched by moments.
This is an idea which goes back at least to Seal (1978). In Section 5 we use a
different approximation method to obtain numerical results: we replace the
insurer’s (net of reinsurance) compound Poisson aggregate claims process by
a translated gamma process matched by moments. This is an idea which goes
back to Dickson and Waters (1993). One of the secondary aims of this paper is
to investigate the extent to which these two approximation procedures produce
similar results. In Section 6 we discuss the computational procedures we have
used to implement the formulae in Sections 4 and 5 and in Section 7 we present
a selection of numerical results. In Section 8 we discuss some conclusions.

2. THE MODEL

Our study is based on the classical surplus process. Measuring time in years,
we denote this process by {U(t)}t ≥ 0 where

U(t) = u + ct – ,i
i

N t

1=

X!
] g

where u is the insurer’s surplus at time 0, c is the rate of premium income per
annum, {N(t)}t ≥ 0 is a Poisson process with parameter l, and {Xi}

∞
i =1 is a sequence

of independent and identically distributed random variables with Xi represen-
ting the amount of the ith individual claim. We assume that Pr(X1 > 0) = 1.

We now modify this process by introducing reinsurance. In this paper we
consider reinsurance that applies to individual claims, rather than to aggre-
gate claims. Thus, if h denotes a reinsurance arrangement, we assume that for
an individual claim of amount x, the insurer pays h(x) such that 0 ≤ h(x) ≤ x.
We further assume that reinsurance premiums are payable continuously, and
that the reinsurer pays its share of a claim as soon as that claim occurs.

We next assume that at the start of each year the insurer can determine the
retention level for the coming year. Let qi denote the retention level in year i,
i.e. from time i – 1 to i. We will drop the subscript i if we are discussing a
generic reinsurance arrangement or if it is clear which year we are discussing.
Let Uq (n) denote the insurer’s net (of reinsurance) surplus at time n, n = 0,1,...,
given q1, q2, ..., qn, where Uq (0) = u. Then for t in [0,1) we have

Uqn + 1
(n + t ) = Uq (n) + cqn + 1

t – Sqn + 1
(t) 

where cqn +1
denotes the insurer’s net (of reinsurance) premium income per annum

in year n + 1 and Sqn + 1
(t) denotes the net aggregate claims in [n, n + t ], given

reinsurance of amount qn + 1, so that Sqn + 1
(t) has a compound Poisson distribu-

tion. For a given value of q and for 0 ≤ t < 1, let 
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Gq (x, t ) = Pr(Sq (t) ≤ x ) 

be the cdf of Sq(t), and for x > 0 let gq(x, t) = x2
2 Gq(x, t) denote the pdf.

We are interested in calculating finite time ruin probabilities for the net of
reinsurance surplus process. Let cq (u,1) denote the probability of ruin given
initial surplus u, either at the end of the year or continuously through the year.
We will use the same notation for ruin probabilities whether we are considering
discrete or continuous time ruin. Next, let ĉ(u,1) denote the minimum value
of cq (u,1) over all admissible values of q. By admissible we mean that the net
profit condition is satisfied, namely that cq > E [Sq (1)]. Finally, let ĉ(u,T) denote
the minimum value of the probability of ruin over T years, starting from initial
surplus u, over all admissible values of q, where the value of q can change from
year to year.

3. RECURSIVE FORMULAE

In this section we present formulae for ruin probabilities over a T year period,
first in discrete time, then in continuous time. We then discuss the issues
involved in applying these formulae. In discrete time, ruin is the event that the
insurer’s surplus, net of reinsurance, is below 0 for some t, t = 1,2, ...,T, while
in continuous time, ruin is the event that the insurer’s surplus, net of reinsurance,
is below 0 for some t, 0 < t ≤ T.

3.1. Discrete time

Let us consider the problem of minimising the probability of ruin in discrete
time. As ruin occurs in the first year only if Sq(1) > u + cq , we have 

ĉ(u,1) = inf
q

(1 – Gq(u + cq,1)) (3.1) 

and the Bellman Principle tells us that for any initial surplus u,ĉ(u,n) can be
calculated recursively for n = 2, 3, …, T from 

ĉ(u,n) = inf
q

cq(u,n) 

where, for a given value of q, cq(u,n) is defined as 

, , , ,

, .

c

c

u n u x u c x n dx

e u c n

1 1 1

1

u c

q q q q

l
q

0

q
= + + - -

+ + -

+

-

gc c #] ] ] _

_

g g g i

i

(3.2)

Formula (3.2) is obtained by considering possible aggregate claim amounts in
the first year, when the level of reinsurance is q, and the final term allows for
the case of no claims in the year.
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3.2. Continuous time

We now consider the problem of minimising the probability of ruin in continu-
ous time. We will need the following two quantities, defined for a given reinsur-
ance arrangement, q. First we define Dq(u, t,y) to be the probability that ruin
does not occur in [0, t] and that the surplus at time t is greater than y. Second,

dq (u, t,y) dy
d

= -
def

Dq(u, t,y).

Intuitively, dq(u, t,y)dy is the probability that, starting from initial surplus u,
ruin does not occur before time t and the surplus at time t is between y and
y + dy. At the end of this section, we will derive a formula for dq (u,t,y) in terms
of known quantities.

The first step towards minimising the probability of ruin in continuous
time is to calculate cq(u,1), which we can do using Prabhu’s (1961) formulae.
Writing dq(u,t) = 1 – cq(u, t), the required formulae are 

dq(u,1) = Gq(u + cq,1) – cq dq
0

1
# (0,1 – s ) gq(u + cq s, s)ds (3.3) 

and for 0 < t ≤ 1,

dq(0, t) = c t G1 c t

q
q

0

q# (y, t)dy. (3.4) 

Then for n > 1 we have

ĉ(u,n) = inf
q

cq(u,n),

where, for a given value of q,

cq(u,n) = cq(u,1) + E (q ) (3.5)

where, intuitively, E(q) is the sum over all values of y ∈ [0, u + cq] of the product
of (a) the probability that the surplus at time 1 is between y and y + dy, and
ruin did not occur between times 0 and 1, and (b) ĉ(y,n – 1), the optimal prob-
ability of ruin between times 1 and n starting at time 1 from initial surplus y.
There are three cases to consider, depending on the value of y.

(1) y = u + cq : In this case the probability that the surplus is at y at time 1 and
ruin did not occur is e –l. Hence, the contribution to E (q) is:

e –lĉ(u + cq, n – 1) (3.6) 

(2) y ∈ [0,cq): In this case the contribution to E (q) is:

d
c

q
0

q# (u,1,y ) ĉ(y, n – 1) dy (3.7) 

OPTIMAL DYNAMIC REINSURANCE 419

9130-06_Astin_36/2_05  06-12-2006  13:19  Pagina 419

https://doi.org/10.2143/AST.36.2.2017928 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.2.2017928


since the density associated with non-ruin in the first year with a surplus
of y at time 1 is dq(u,1,y).

(3) y ∈ [cq, u + cq): The density associated with a surplus of y at time 1 is
gq(u + cq – y,1) since ruin could not have occurred in the first year if the
surplus at time 1 is in this range. Hence the contribution to E (q ) is:

g
c

u c

q
q

q+

# (u + cq – y,1) ĉ(y, n – 1)dy (3.8) 

Summing (3.6), (3.7) and (3.8) and substituting into (3.5), we have the following
formula for cq(u,n):

, , ,

, , ,

, , .

c

c

c

u n u e u n

u y y n dy

g u c y y n dy

1 1

1 1

1 1

c

c

u c

q q
l

q

q

q q

0

q

= + + -

+ -

+ + - -

-

+

q

q

c

d

c c

#

#

] ] _

^ ^

_ ^

g g i

h h

i h

(3.9)

We can derive a formula for dq(u,1,y) by noting that by definition 

Dq (0,y /cq, y) = 0,

and for t > y /cq :

Dq(u, t,y) ≥ Pr(no claims in [0, t ] ) = exp(–lt),

lim
/t y cq.

Dq(u, t,y) = exp(–ly /cq), (3.10) 

dq(0, t,y) = c t
y
q

gq(cqt – y, t), (3.11) 

Dq(u,1,y) = Gq(u + cq – y,1) – cq

y c

q
0

1 q- /
g# (u + cq s,s)Dq(0,1 – s,y)ds. (3.12) 

Formulae (3.11) and (3.12) correspond to formulae (2.1) and (2.13) on pages 112
and 114 of Gerber (1979).

Differentiating Dq(u,1,y) with respect to y gives:

, ,

, / , , ,

, , ,

, , , ,

, , ,

lim

lim

dy
d u y

u y u s s s y

u s s s y ds

u y u s s s y

u s s s y ds

D

D

D

1

1 1 0 1

0 1

1 0 1

0 1

/

/

s y c

y c

s y

y c

q

q q q q q q q

q q q q

q q q q q

q q q

1

0

1

1

0

1

q

q

q

q

=

- + - - - + -

+ + -

= - + - + + -

+ + -

-

.

-

-

-

-

g c c c g c

c c

g c g c

c c

/

/

c

g

g

d

d

#

#

^

_ _ _ ^

_ ^

_ _ ^

_ ^

h

i i i h

i h

i i h

i h
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Hence, using (3.10):

, , , , / /

, , , .

expu y u y u y y y

u s s s y ds

l1 1 1

0 1
/y

q q q q q q q

q q q q
0

1 q

= + - - + - - -

- + -
-

g c g c c c

c g c
c

d

d#

^ _ _ _

_ ^

h i i i

i h
(3.13)

For related discussions, see De Vylder and Goovaerts (1999) and Wu et al.
(2003).

3.3. Computational issues

For small expected numbers of claims per annum, it would be possible to cal-
culate Gq (x,1) and gq (x,1) (by Panjer’s recursion formula), dq (u,1,y) (using
(3.13)), cq(u,1) in continuous time (using (3.3) and (3.4)) and hence ĉ(u,T )
(using (3.9)). For large expected numbers of claims, this is impractical and
some approximate method must be used.

4. DISTRIBUTION APPROXIMATION

In this section we show how the formulae of the previous section can be approx-
imated by approximating the distribution of Sq(t) by a translated gamma dis-
tribution. We start by introducing some notation.

Let a, b and k be the parameters of a translated gamma distribution with
the same first three moments as Gq(·,1) and let GGq(·, t) and gGq(·, t) be the cdf
and pdf, respectively, of a gamma distribution with parameters at and b. Then
GGq(y – kt, t) and gGq(y – kt, t) approximate Gq(y, t) and gq(y, t), respectively.

Note that since a, b > 0 and since a /b + k = E [Sq(1)], we have 

k < E [Sq(1)].

Hence, k < cq if E [Sq(1)] < cq, which is the net profit condition for reinsurance
arrangement q, and we have restricted admissible arrangements q to those sat-
isfying this condition. In the following sections, we therefore know that k < cq.

4.1. Discrete time

In this section and in Section 5, we consider a fixed value of q and we will drop
the subscript q in connection with the approximating distributions. Formulae (3.1)
and (3.2) are replaced/approximated by 

ĉ(u,1) = inf
q

(1 – GGq(u + cq – k,1)) (4.1) 

and 
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G

G

G

, ,

, ,

, , .

c

c

u n u

g u x x n dx

u n

k

k

k

1 1

1 1

1 1

u

q q q

q q

q q

0

q

= - + -

+ + - - -

+ - + -

+

G c

c

G c

c

c

#

] _

_ ]

] _

g i

i g

g i

(4.2)

4.2. Continuous time

Formulae (3.3) and (3.4) are replaced/approximated by 

dq(u,1) = GGq(u + cq – k,1) – cq dq
0

1
# (0,1 – s ) gGq(u + (cq – k)s, s)ds (4.3) 

and 

dq(0, t) = Gc t
1 c t

q
q

0

q G# (y – kt, t)dy, (4.4) 

which can be written in a more helpful way for computational purposes as 

G

G

G

G

, , ,

, , ,a

t t t t t

t t t t

d k k k k

b k k

0 1q
q

q q
q

q

q
q q q

= - - + -

- - - -

c G c c G

c cG G

] b ^_ ]

^_ ]_

g l h i g

h i gi

(4.5)

where GGq(·,t) is the cdf of a Gamma distribution with parameters at +1 and b.
(See Dickson and Waters (1993, p. 263).) We note that for k ≥ 0, both GGq(– kt)
and GGq(– kt) are zero, so that in this case formula (4.3) reduces to

G

G G

G G

, ,

, ,

, , .a

u u

s s g u s s ds

s s g u s s ds

d k

k k k

b k k

1 1

1 1

1 1

q q q

q q q q q

q q q q

0

1

0

1

= + -

- - - - - + -

+ - - - + -

G c

c G c c

c cG

#

#

] ^

^ ^ ]^ ^^

^ ]^ ^^

g h

h h g h h h

h g h h h

(4.6)

Similarly, formula (3.13) for dq(u,1,y) is replaced/approximated by

G

G G

G

, , ,

/ , / / , /

, , ,

u y g u y

g u y y y y y

g u s s s y ds

k

k k

k

1 1

1 1

0 1
/y

q q q

q q q q q q q

q q q q
0

1 q

= + - -

- + - - - - -

- + - -
-

c

c c c G c c

c c
c

d

d#

^ ^

^_ ^

^_ ^

h h

h i h

h i h

(4.7)

for 0 ≤ y ≤ cq, and formula (3.11) for dq(0, t,y) is replaced/approximated by 

dq(0, t,y) = t
y
qc gGq (cqt – kt – y, t), (4.8) 
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so that the integral in formula (4.7) becomes 

G G, , .g u s s s
y

g s y s dsk k1 1 1
/y

q q q q
0

1 q
+ -

-
- - - -

-

c c
c

# ^_ ^ ]_h i h g i (4.9)

When k ≥ 0, (cq – k) (1 – s ) – y > 0 for s < 1 – y / (cq – k), and so the upper limit
of integration in (4.9) can be reduced to 1 – y /(cq – k). Thus, the integral in (4.9)
is zero if y > cq – k.

This gives us all the components required to apply formula (3.9).

5. PROCESS APPROXIMATION

The idea now is that each year the aggregate claims process is approximated
by a translated gamma process. Thus, for 0 < t ≤ 1, Sq(t) is approximated by
Y(t) + kt, where Y(t) has distribution function GGq (as in the previous section)
and the parameters a, b and k are the same as before. The surplus process is then
approximated by u + (cq – k)t –Y(t), so we are effectively considering ruin when
the premium rate is cq – k and the aggregate claims process is a gamma process.

5.1. Discrete time

Under this approach the formula replacing/approximating formula (3.1) is just
the same as formula (4.1), while formula (3.2) is replaced/approximated by 

G

G

, ,

, ,c

u n u

g u x x n dx

k

k

1 1

1 1
u

q q q

q

k

q
0

q

= - + -

+ + - - -
+ -

G c

c
c

c

#

] ^

^ ]

g h

h g
(5.1)

since for a (translated) Gamma process, the probability of no claims in any non-
zero time interval is zero. A simple change of variable transforms (5.1) to

G

G

c

, ,

, , .c

u n u

g u x x n dx

k

k

1 1

1 1
u

q q q

q
k

q

q

= - + -

+ + - - -
+

G c

c

c

#

] ^

^ ]

g h

h g
(5.2)

We remark that formula (5.2) is equivalent to formula (4.2) when k ≥ 0, since
then gGq(x – k,1) / 0 for x < k, but they are not equivalent when k < 0. Thus,
for k ≥ 0 we will obtain the same optimal strategy under both the distribution
and the process approximations.

5.2. Continuous time

In this case, formulae (3.3) and (3.4) are respectively replaced/approximated by 
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G

G

, ,

, ,

u u

s g u s s ds

d k

k d k

1 1

0 1

q q q

q q q q
0

1

= + -

- - - + -

G c

c c#

] ^

^ ] ^_

g h

h g h i
(5.3)

and

G

c
, , ,t

t
y t dy

k
0 1 t

q
q

q

k

0

q
=

-

-

c
Gd #]

^
^

]
g

h
h

g
(5.4)

which can be evaluated as 

G G, , , ,at t t t tk
b k

k0q q q
q

q q= - -
-

-G c
c

cGd ] ^_
^

^_g h i
h

h i

where GGq is as defined in Section 4.2. (See Dickson and Waters (1993).) With
this expression, formula (5.3) becomes 

G

G G

G G

, ,

, ,

, , ,a

u u

s s g u s s ds

s s g u s s ds

d k

k k k

b k k

1 1

1 1

1 1

q q q

q q q q q

q q q q
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which is exactly the same as formula (4.6).
Next, formula (3.13) for dq(u,1,y) is replaced/approximated by 
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(5.5)

for 0 ≤ y ≤ cq – k, and formula (3.11) for dq(0,1,y) is replaced/approximated by 
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q
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Thus, the integral in formula (5.5) becomes 

G G, , .g u s s s
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1 q
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-
- - - -

- -
c c
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]
^_ ^ ]_
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h i h g i

We remark that formula (4.9) reduces to this when k ≥ 0.
Thus, we have all the components required to apply formula (3.9), and we

note that for k ≥ 0, we will obtain the same results under this approach as under
the approach of Section 4.2, provided that u > 0.
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6. COMPUTATIONAL PROCEDURES

For any realistic model for aggregate claims, the only feasible approach to
applying the formulae in the previous three sections is a numerical one. In this
section we describe our approach to calculations.

6.1. Numerical integration

Before describing how we performed numerical integration, it is useful to present
the context of our calculations. In each of the examples in the next section,
we are working with an aggregate claims process for which the expected aggre-
gate claim amount per annum before reinsurance is 100. Thus, if we consider
the integrals in formulae (4.2) and (5.1), we see that the range of integration
is sufficiently large that we should choose a method of numerical integration
that is a compromise between accuracy and computer run time (which can be
considerable in the case of continuous time ruin). For formula (4.2), we per-
formed numerical integration over the interval [0,u + cq] by applying the trape-
zoidal rule using intervals of length 0.1, with a simple adjustment when u + cq

was not an integer multiple of 0.1. To implement this, for n = 2, 3,...,10, we cal-
culated values of ĉ(x,n – 1) for values of x that were integer multiples of 0.1,
and used linear interpolation to give values of ĉ(x,n – 1) if x was not an inte-
ger multiple of 0.1. A similar approach was applied to formula (5.1). However,
for each of these formulae, it was often possible to reduce the range of inte-
gration, as described in Section 6.2. For continuous time ruin, the integrals in
formulae (4.3) and (5.3) were also calculated using the trapezoidal rule, this time
using intervals of length 0.001.

A more complicated issue arose in the calculation of (4.9), and similarly in
the integral in (5.5). In formula (4.9), a singularity will arise if in the second gGq

function, the first argument goes to 0 and the second argument is less than 1.
In such circumstances, numerical integration was performed by first trans-
forming the integral to remove the singularity and using the extended mid-
point rule with 1,000 intervals as described in Section 4.4 of Press et al. (1992).
Otherwise, we applied the trapezoidal rule with 1,000 intervals.

6.2. Truncation

It is possible to reduce the amount of calculation required but still control the
accuracy of our calculations by applying a truncation procedure. This idea
was introduced by De Vylder and Goovaerts (1988) who calculated finite time
ruin probabilities for a discrete time risk model. In what follows we state with-
out proof results for continuous time ruin probabilities for the original model,
but these results equally apply in discrete time. The results can be proved by
applying ideas in De Vylder and Goovaerts (1988).
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For given values of u and q, we can calculate cq(u,1). Let us now choose
a small positive quantity, e, and define 

⎧ cq(u,1) if this value is at least e
c*

q (u,1) = ⎨
⎩ 0 otherwise

and define

ĉ*(u,1) = inf
q

c*
q (u,1).

Then for all u ≥ 0,

0 ≤ cq(u,1) – c*
q (u,1) ≤ e,

0 ≤ ĉ(u,1) – ĉ*(u,1) ≤ e.

Next, for n = 2, 3, 4, ... we adapt equation (3.9) and define 
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Now define 

⎧ Aq(u,n) if this value is at least e
c*

q (u,n) = ⎨
⎩ 0 otherwise

and define 

ĉ*(u,n) = inf
q

c*
q (u,n).

Then for all u ≥ 0,

0 ≤ cq(u,n) – c*
q (u,n) ≤ (2n – 1)e,

0 ≤ ĉ(u,n) – ĉ*(u,n) ≤ (2n – 1)e.

6.3. Finding optimal retention levels

Our method of finding optimal retention levels was to use a grid search. For
example, in the case of proportional reinsurance where we denote the retained
proportion a, for each required value of u, we first calculated values of cq(u,1)
for each admissible retention level that was an integer multiple of 0.01. We then
selected ĉ(u,1) as the minimum of this set of ruin probabilities. Values of cq(u,n)
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were calculated over the same set of retention levels for n = 2, 3, ...,T, and, for
each value of n, ĉ(u,n) was calculated as the minimum of this set of ruin prob-
abilities. In the case of excess loss reinsurance, where we denote the retention
level as M, we followed the same approach, this time limiting the calculations
to the set of admissible retention levels that were integer multiples of 0.1, with
a maximum retention of 10 (which is 10 times the mean individual claim amount
in each of the examples in the following section). This method of finding opti-
mal retention levels can be refined as required, but such refinement comes at
a computational cost, and as our aim is to illustrate the effect of a dynamic
reinsurance policy, we did not consider it necessary to consider larger sets of
retention levels.

7. NUMERICAL EXAMPLES

Example 7.1. In this example, individual claim amounts have an exponential dis-
tribution with mean 1 and the Poisson parameter, l, is 100. The premium loading
factors are 10% for the insurer and 20% for the reinsurer. We consider first excess
loss reinsurance and ruin in discrete time. We use the translated gamma distribu-
tion approximation, as described in Section 4, and our algorithms incorporate a
truncation parameter, e = 0.5 ≈ 10–7, as described in Section 6. The insurer’s initial
surplus is 23, which has been chosen so that, without any reinsurance, the probabil-
ity of ruin within 10 years is about 5% (in fact, 0.0520)

Using the formulae and procedures in Sections 4 and 6, we can show that the
optimal strategy for this insurer is to set M = 1.5 in the first year. If the insurer
continues to follow the optimal strategy each year, the probability of ruin within
10 years, ĉ(23,10), will be 0.0260, a reduction of around 50%. With an excess
loss retention level of 1.5, the insurer’s net income is 83.2 and the net profit has
expected value 5.5 and standard deviation 9.4.

Table 7.1 shows for each remaining year and for selected values of the insurer’s
surplus, the optimal excess loss retention for the coming year, M, and the corre-
sponding optimal probability of ruin, ĉ(u,t), assuming the optimal strategy is
adopted every year. For example, suppose that at the end of the first year, the
insurer’s surplus has increased from 23 to 25. The remaining term is t = 9 years
and the entries in Table 7.1 show that the optimal strategy now is to set the excess
loss retention level for the coming year to M = 1.4, with the (optimal) probability
of ruin within 9 years now being 0.0193. If the insurer’s surplus had dropped to 15,
the optimal strategy would have been to set M = 1.6, so that we would have
ĉ (15,9) = 0.0705. If, at the end of 6 years, the insurer’s surplus has reached 40,
the optimal strategy would be to set M = 0.7 (ĉ(40,4) = 0.0000). Note that a rein-
surance arrangement is admissible only if the insurer’s net income exceeds its net
expected claims. For the choice of claim distribution and premium loadings in this
example, the smallest possible excess loss retention level is M = 0.7.

It can be seen from Table 7.1 that, for a fixed current surplus u, ĉ(u,t) is an
increasing function of the remaining term t, as it must be. Similarly, for fixed
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FIGURE 7.1: Discrete time ruin probabilities under static and dynamic strategies, exponential claims.
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TABLE 7.1.

OPTIMAL STRATEGY: EXPONENTIAL CLAIMS, LOADINGS 10% / 20%, EXCESS LOSS,
DISCRETE TIME RUIN, DISTRIBUTIONAL APPROXIMATION.

Surplus, Remaining term, t

u 9 8 7 6 5 4 3 2 1

5 M 3.4 3.4 3.3 3.3 3.2 3.1 2.9 2.6 1.9
ĉ(u, t) 0.2094 0.2078 0.2057 0.2028 0.1986 0.1923 0.1826 0.1661 0.1307

10 M 2.1 2.1 2.1 2.0 2.0 1.8 1.7 1.3 0.7
ĉ(u, t) 0.1278 0.1262 0.1240 0.1208 0.1164 0.1097 0.0993 0.0814 0.0390

15 M 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.8 0.7
ĉ(u, t) 0.0705 0.0689 0.0667 0.0636 0.0592 0.0528 0.0429 0.0264 0.0048

20 M 1.4 1.4 1.4 1.3 1.3 1.1 1.0 0.7 0.7
ĉ(u, t) 0.0371 0.0357 0.0339 0.0313 0.0277 0.0227 0.0155 0.0060 0.0004

25 M 1.4 1.4 1.4 1.3 1.2 1.0 0.8 0.7 0.7
ĉ(u, t) 0.0193 0.0182 0.0168 0.0148 0.0123 0.0089 0.0047 0.0010 0.0000

30 M 1.4 1.4 1.3 1.2 1.1 0.9 0.7 0.7 0.7
ĉ(u, t) 0.0098 0.0090 0.0080 0.0067 0.0051 0.0031 0.0011 0.0001 0.0000

35 M 1.4 1.3 1.2 1.1 1.0 0.8 0.7 0.7 0.7
ĉ(u, t) 0.0049 0.0044 0.0037 0.0029 0.0019 0.0009 0.0002 0.0000 0.0000

40 M 1.3 1.2 1.2 1.0 0.8 0.7 0.7 0.7 0.7
ĉ(u, t) 0.0024 0.0020 0.0016 0.0011 0.0006 0.0002 0.0000 0.0000 0.0000
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remaining term t, ĉ(u,t) is a decreasing function of the current surplus u, as it
must be. Another feature of Table 7.1 is that the optimal retention, M, is an
increasing function of the remaining time t, for a fixed current surplus u, and a
decreasing function of the current surplus u for a fixed remaining time t.

Figure 7.1 illustrates discrete time ruin probabilities under both static and
dynamic reinsurance strategies for both proportional and excess loss reinsurance
for time horizons t = 1, 2, …, 10 and u = 23. Under a static strategy, we choose the
retention level (a or M) which, when applied each year, minimises the probability
of ruin over a fixed period. For example, in the case of excess loss reinsurance
the optimal static strategy is to choose M = 1.3 each year if we wish to minimise
the ruin probability over a five year time period, but if we wish to minimise the
ruin probability over a ten year period, the optimal static strategy is to choose
M = 1.6 for each of the ten years. We can find the optimal level of reinsurance
under a static strategy by applying the same grid search as described in Section 6.3,
and we can calculate ruin probabilities by applying a formula similar to (4.2),
the difference being that ĉ in formula (4.2) is replaced by cq . We observe from
Figure 7.1 that, as we would expect, excess loss reinsurance reduces the ruin
probability over a ten year period by a greater amount than proportional rein-
surance, and that a dynamic reinsurance policy is better than a static one, reducing
the ten year probability of ruin by around 4% in the case of proportional rein-
surance (0.0520 goes down to 0.0498) and by nearly 13% in the case of excess loss
reinsurance (0.0294 goes down to 0.0257). We also calculated that for t = 4, 5, …,
10, the optimal static strategy under proportional reinsurance is to set a = 1, so
that the minimum ruin probabilities for these values of t are the same as the ruin
probabilities with no reinsurance.

Finally, we remark that although the results presented in Table 7.1 and Fig-
ure 7.1 have been calculated using the methodology presented in Section 4, we could
equally have used the methodology presented in Section 5. Although the results
obtained are not identical (as the translated gamma parameter k is negative for each
excess loss retention considered), the numerical results for minimum ruin proba-
bilities are the same to four decimal places, and the optimal strategies are the same.

Example 7.2. In this example we consider continuous time ruin. We let the indi-
vidual claim amount distribution be Pareto(4,3) (so that the mean is 1) and, as
in Example 7.1, we set the Poisson parameter, l, to be 100. The insurer’s initial
surplus is 49, so that without reinsurance the probability of ruin within 10 years
is 0.0504. For proportional reinsurance, the premium loading factors are 10%
and 20% for the insurer and the reinsurer, respectively, while for excess loss rein-
surance we have considered both this scenario and the case when the reinsurer’s
loading factor is 30%. As in the previous example, the truncation parameter is
e = 0.5 ≈ 10–7.

We again consider both proportional and excess loss reinsurance, and con-
sider both static and dynamic reinsurance strategies.

Figure 7.2 shows ruin probabilities under both static and dynamic reinsurance
strategies, for both proportional and excess loss reinsurance, and without reinsurance.
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In the case of proportional reinsurance, it is easy to calculate that, as a function
of a, we have k = 100a/3 > 0, so that the approaches of Sections 4.2 and 5.2 yield
the same results (and so too in the case of no reinsurance, where a = 1). In the
case of excess loss reinsurance, the approaches of Sections 4.2 and 5.2 yield the
same optimal static and dynamic strategies, but give very slightly different values
for optimal ruin probabilities (differences of no more than 1 in the fourth decimal
place).

Looking at Figure 7.2, two points are immediately obvious. First, the dynamic
strategy is better than the static strategy for each type of reinsurance, although
it is not much better in the case of excess loss reinsurance. Second, as we might
expect, even with a dynamic strategy, proportional reinsurance does not reduce the
insurer’s ruin probability nearly as much as excess loss reinsurance does. We remark
that we also observed both these features when the individual claim amount dis-
tribution is exponential, but we have not graphed these results.

8. CONCLUSIONS

In Example 7.1 we observed from Table 7.1 that the optimal excess loss reten-
tion was a decreasing function of the insurer’s surplus for a given remaining
time. This may seem counter-intuitive — we might expect an increase in the
insurer’s financial strength to result in a higher retention level. This feature
arises because we have chosen to minimise the insurer’s probability of ruin up

430 D.C.M. DICKSON AND H.R. WATERS

FIGURE 7.2: Continuous time ruin probabilities under static and dynamic strategies, Pareto claims.
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to a fixed time point. Given this criterion, it can be optimal for an insurer with
a large current surplus to reinsure as much as possible of its portfolio; the
expected surplus at the end of the time limit will be reduced, but, by reducing
the variability of its net claims, its probability of ruin will also be reduced.
Conversely, it may be optimal for an insurer with a small current surplus to
reinsure relatively little of its portfolio since, with a larger expected net surplus,
it will stand the best chance of increasing its surplus and hence reducing its
probability of ruin over the remaining term. We could adopt a different opti-
mality criterion. For example, for a given current surplus and a given remaining
time, we could choose the retention level which gives the highest expected net
surplus, subject to the probability of ruin being no higher than a specified value.
Alternatively, we could have a rolling time horizon rather than a fixed time
horizon. For example, referring back to Example 7.1 and assuming that the
insurer has current surplus u = 20 and has a five year time horizon, we can see
from Table 7.1 that the optimal excess loss retention is M = 1.3. Now suppose
that after one year the insurer’s surplus is 25. Using a fixed time horizon, as
in Example 7.1 so that the remaining time is 4 years, the optimal retention is
now M = 1.0. However, if the insurer uses a rolling five year horizon, so that
the time horizon is reset to five years at the end of every year, the optimal
retention is M = 1.2. A rolling horizon criterion has some intuitive appeal but
cannot lead to a lower probability of ruin over a fixed time period than the orig-
inal criterion (since the original criterion was precisely to minimise this prob-
ability). Alternative optimality criteria will be investigated in a further paper.

It is computationally much more efficient to evaluate the optimal static
reinsurance policy, and, as illustrated in Example 7.2, the difference in ruin
probabilities under static and dynamic strategies may not be great. Ruin prob-
abilities under a static strategy provide upper bounds to ruin probabilities under
a dynamic strategy, and if ruin probabilities are sufficiently low under a static
strategy, there seems to be little advantage in evaluating the optimal dynamic
strategy.

One of our objectives was to investigate the differences between what we
have termed the translated gamma distribution and process approximations.
In the context of our particular study, we have shown that:

(a) these two approximations are equivalent when k is greater than zero, and
(b) when k is negative, the numerical results from the two approximations are

almost identical in both our examples in Section 7.
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