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Abstract
Garbarino et  al. (J Econ Sci Assoc. https ://doi.org/10.1007/s4088 1-018-0055-4, 
2018) describe a new method to calculate the probability distribution of the propor-
tion of lies told in “coin flip” style experiments. I show that their estimates and con-
fidence intervals are flawed. I demonstrate two better ways to estimate the probabil-
ity distribution of what we really care about—the proportion of liars—and I provide 
R software to do this.
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Some people are honest, while others are likely to lie whenever it benefits them. We 
would like to understand the prevalence of lying, because dishonesty may be eco-
nomically and socially harmful. Since we cannot simply ask people if they are liars, 
one way to estimate the proportion of liars in a group is to ask them to report the 
result of a coin flip or other random device, offering them a payment if they report 
heads. Liars do not always lie: they only lie when it benefits them. So, they always 
report heads irrespective of the true coin flip.1 If there are many more heads than we 
would expect by chance, we can assume many people are lying. But how many?

A naïve estimate would be that if, e.g., 80 people of 100 report heads, then on 
average 50 really saw heads and 60% (30/50) of the remainder are lying. More 
generally, from R reports of a good outcome in a sample of size N, where the bad 
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outcome happens with probability P, we can estimate that the following proportion 
are lying (Abeler et al. 2016):

The problem with this approach is that the number of heads is not fixed. If we see 1 
out of 3 people reporting heads, this method estimates there are less than zero liars. 
But it is still possible that everyone saw heads and 1 person lied.

Garbarino et al. (2018)—GSV from here on—point out this problem and intro-
duce an alternative method. They claim that their method corrects for this problem 
and can estimate the full distribution of lying outcomes, and they recommend using 
it for confidence intervals, hypothesis testing and power calculations.

I ran simulations to check the overall performance of the GSV confidence inter-
vals. Simulations parameters are shown in Table 1. � is the probability that an indi-
vidual in the sample lies and report heads when they observe tails:

For each parameter combination, I ran 1000 simulations, drawing random coin flips 
and reports given P , � and N.

For each simulation and confidence level, I computed whether the GSV confidence 
interval contained the true value of � . The first row of Table 2 shows the results.

By definition, 95% of 95% confidence intervals ought to contain the true value, 
on average. This is called “achieving nominal coverage”. GSV confidence intervals 
are too narrow.2

To deal with this problem, I test two alternative methods for calculating con-
fidence intervals on my simulated data. The first (“Frequentist”) is the stand-
ard method of deriving confidence intervals from a binomial test. The second is a 
Bayesian method.

(1)
R∕N − (1 − P)

P
.

(2)� =
1

N

N∑

i=1

Prob(i reports heads|i saw tails).

Table 1  Parameter values Parameter Values

Sample size (N) 10, 50, 100, 500
Probability of lying ( �) 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Probability of bad ran-

dom outcome (P)
0.2, 0.5, 0.8

Table 2  Coverage levels for 
GSV and alternative methods

Method CI 90% CI 95% CI 99%

 GSV  65.2%  71.0%  78.9%
 Frequentist  91.4%  94.4%  96.5%
 Bayesian  91.3%  95.5%  99.1%

2 This problem holds across all simulated probabilities of the low outcome, confidence levels, and sam-
ple sizes. See the “Appendix”.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 00:56:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


257

1 3

True lies  

To understand the statistics, start with the probability of getting R reports of 
heads in total, given � . Since individuals report heads either if they see heads with 
probability 1 − P , or if they see tails but lie, with probability �P , this is just:

That immediately suggests the “Frequentist” method, which is to estimate the 
parameter of this distribution, (1 − P) + �P , from the proportion of heads reported 
in the sample, then back out � . This is the conventional method of, e.g., Abeler et al. 
(2016). It is justified if the sample is large, because this will lessen sampling vari-
ation in the proportion of actual heads observed. Similarly, if the sample is large 
enough, we can generate hypothesis tests for a value of �—e.g., zero—using the 
tails of the binomial distribution. And we can back out confidence bounds for � from 
confidence bounds for the population proportion of heads reported in the same way. 
As GSV point out, in small samples, this method runs the risk that the sample pro-
portion of high outcomes will be different from its expected value.3 We will see 
whether this matters.

There are numerous ways to calculate confidence intervals in a test of propor-
tions. See, e.g., Agresti and Coull (1998). Here, I use the binomial exact test of 
Clopper and Pearson (1934), which is known to be conservative.

The second method uses Bayes’ rule. Start with a prior probability density func-
tion over � , �(�) . The posterior probability is then:

From this, one can derive confidence intervals and expected values in the usual way. 
Technically, they are Bayesian “credible” intervals. I used highest posterior density 
intervals (Hyndman 1996), rather than the central confidence interval. This allows 
the intervals to include endpoints of the distribution, which is important when, 
e.g., testing for � = 0.

The Bayesian method requires a prior. Here, I used a uniform prior, �(�) = 1 on 
[0, 1].

Results in Table  2 show that both frequentist and Bayesian methods mostly 
achieve the nominal confidence level, with more than 90/95/99% of intervals con-
taining the true value of � . The exception is the frequentist 99% confidence interval, 
which is too narrow.

Frequentist confidence intervals could be less accurate when N is low, since that 
leads to more sampling variation in the number of true heads. Table 3 checks this 
by looking separately at simulations with N = 10 and N = 50 . Frequentist 99% con-
fidence intervals indeed appear slightly too narrow for this range. Bayesian confi-
dence intervals are fine.

(3)Pr(R|�;N,P) = binom(R,N, (1 − P) + �P).

(4)�(�|R;N,P) = Pr(R|�;N,P)�(�)
∫ 1

0
Pr(R|��;N,P)�(��) d��

.

3 In particular, this method can estimate confidence bounds for � lower than 0. If so, we can set them to 
0.
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1  Understanding the GSV approach

Why does the GSV method produce narrow confidence intervals? We can get a clue 
by running the GSV method when there are 10 reports of “heads” out of 10 for a fair 
coin flip ( R = N = 10,P = 0.5 ). The resulting point estimate is that 100% of sub-
jects lied. The upper and lower 99% confidence intervals are also 100%.

This is calculated as follows. First, given R reports of heads, the probability that a 
total of T  “true” heads were observed is calculated as:

This is the binomial distribution, truncated at R because by assumption, nobody 
“lies downward” and reports tails when they really saw heads.

Next, from T the number of lies told is calculated as R − T  ; and the proportion of 
lies told is:

because N − T  people saw the low outcome and had the chance to lie. Combining 
this with the truncated binomial gives a cumulative distribution function of Lies. 
This is then used to estimate means and confidence intervals.

Putting these together, for R = N = 10 , the estimated distribution of Lies is cal-
culated as follows:

• With probability 1

1024
 , there were really 10 heads. Nobody lied in the sample.4

• Otherwise, 1 or more people saw tails, and they all lied. The proportion of liars is 
100%.

Hence, the lower and upper confidence intervals are all 100%.
There are two problems with this approach: one statistical, and one conceptual.

(5)Prob(T heads�R;N,P) = binom(T ,N, 1 − P)
∑R

k=0
binom(k,N, 1 − P)

.

(6)Lies =
R − T

N − T
,

Table 3  Confidence interval 
coverage by sample size

Method N CI 90% CI 95% CI 99%

GSV  10  61.4%  65.7%  69.8%
 50  67.9%  73.3%  81.1%

 Frequentist  10  94.1%  95.7%  96.8%
 50  91.6%  94.5%  96.6%

Bayesian  10  91.3%  95.3%  99.1%
50 90.9% 95.5% 99.1%

4 But the proportion of people who lied out of those who saw tails is undefined, because no one saw 
tails. The GSV software seems to resolve this by fixing the proportion of lies to 100%.
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First, if many heads are reported, you should learn two things. On the one hand, 
there are probably many liars in your sample. On the other hand, probably a lot 
of coins really landed heads. The probability distribution in Eq. (5) does not take 
account of this.

For example, suppose we are certain that everyone in the sample is a liar who 
always reports heads. In this case, observing R = N = 10 gives us no information 
about the true number of heads. The posterior probability that T = 10 is then indeed 
1/1024, the same as the prior. Now, suppose we know that nobody in the sample is 
a liar. Then on observing R = 10 , we are sure that there were truly 10 heads: the 
posterior that T = 10 is 1. If exactly 5 out of 10 subjects are liars, then observing 
R = 10 means that all 5 truth-tellers really saw heads. The posterior probability that 
T = 10 is then 1∕32 , the chance that all 5 liars saw heads, and so on.

When we are uncertain about the number of liars, our posterior that T = 10 will 
be some weighted combination of these beliefs. Unless we are certain everyone in 
the sample is a liar, the probability that T = 10 will be greater than 1 in 1024. Equa-
tion (5) is, therefore, not correct. In this case, it is equivalent to assume that every-
body in the sample is a liar, whose report is uninformative about the true number 
of heads. One then uses the prior distribution of heads to estimate the proportion of 
those who actually saw tails and lied.

Indeed, in the simulations with P = 0.5 and across all values of � , the overall 
probability that there were 10 true heads, conditional on R = N = 10 , was about 1 in 
161, not 1 in 1024. Fixing � = 0.2 , it was about 1 in 4.

This problem means that the GSV estimator of Lies is biased. In the “Appendix”, 
I show that the GSV estimator can have substantial bias, and performs worse than 
the naïve estimator from Eq. (1), R∕N−(1−P)

P
 . Also, the GSV confidence intervals do 

not always achieve nominal coverage of Lies. When the number of heads reported 
is either high or low, the percentage of confidence intervals containing Lies may fall 
below the nominal value.

There is a second, more important problem. The GSV approach attempts to esti-
mate Lies in Eq. (6). This is the proportion of lies actually told, among the subsam-
ple of people who saw tails. But we are not usually interested in the proportion of 
lies actually told. We care about the probability that a subject in the sample would 
lie if they saw tails—� in Eq. (2). This � can be interpreted in different ways. Maybe 
on seeing a tail, each person in the sample lies with probability � . Or maybe the 
sample is drawn from a population of whom � are (always) liars, and 1 − � are truth-
tellers. Lies has no interpretation in the population, because the rest of the popula-
tion has no chance to tell a lie in the experiment.

Lies can be treated as an estimate of � . It is unbiased: it estimates � from the 
random, and randomly sized, sample of N − T  people who saw tails. But it can be 
a very noisy estimate. Again, suppose 10 heads out of 10 are reported, and 9 heads 
were really observed. Lies is 100%. But it is 100% of just one person.

This means that even the correct confidence intervals for Lies would not be cor-
rect for � . For example, if 3 out of 3 subjects report heads, the GSV software reports 
a lower bound of 100% for any confidence interval. Indeed, since anyone who had 
the opportunity to lie clearly did so, this is the correct lower bound (if we arbitrarily 
define Lies = 1 when T = N ). But it makes no sense as a confidence interval for � : 
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we clearly cannot rule out that one or two subjects truly saw heads, and would have 
reported tails if they had seen tails.

Because of this problem, the GSV confidence interval coverage of � is much 
worse than its coverage of Lies.The issue is especially serious when there are many 
reports of heads. In this case there were probably many true heads, so T is high and 
the true sample size N − T  is low, making Lies a noisy estimate of � . Table 4 shows 
this. It splits the simulations by the proportion of reported heads, R/N. GSV cover-
age levels fall off sharply as R/N increases. Note that for fair coin flips, R/N is usu-
ally greater than 0.5, both in the simulations and in reality.

2  Point estimation

We can also compare the accuracy of point estimates of � between GSV, Frequentist 
and Bayesian methods. Table 5 shows bias (the estimated value minus the true value 
of � ) for different methods by different N. The Bayesian method is always the least 
biased until N = 500 , and the GSV method is the most biased.

Table 6 shows the mean squared error for methods by different N. For low N, the 
best method is Bayesian and the worst is Frequentist, with GSV in between. When N 
gets large, all methods give about the same estimates and are equally accurate.

The Bayesian method might have an advantage here, since it assumes a uniform 
prior and the simulations indeed used a uniform distribution of the proportion of 

Table 4  GSV confidence 
interval coverage by proportion 
of heads reported (R/N)

R/N Percentage of 
simulations

CI 90% CI 95% CI 99%

 [0.00,0.25)  3.8  84.3%  87.9%  91.5%
 [0.25,0.50)  10.6  76.3%  82.4%  89.2%
 [0.50,0.75)  25.0  68.2%  75.7%  84.1%
 [0.75,1.00]  60.6  60.8%  66.1%  74.1%

Table 5  Mean bias by method 
and N 

Method N: 10 N: 50 N: 100 N: 500

 Bayesian  0.0025  0.00417  0.00438  0.00275
 Frequentist  0.0354  0.01  0.0071  0.0025
 GSV  0.048  0.016  0.0109  0.00419

Table 6  Mean squared errors by 
method and N 

Method N: 10 N: 50 N: 100 N: 500

 Bayesian  0.0409  0.0136  0.00789  0.00184
 Frequentist  0.0661  0.0159  0.00852  0.00184
 GSV  0.0571  0.0142  0.00799  0.00184
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liars L/N. In fact, further analysis reveals that the Bayesian method is best across 
all specific values of L/N up to 80%.5 So, the Bayesian method is likely to be best, 
unless one is sure that the true L/N is rather high.

3  Comparing different groups

Bayesian estimates are accurate, but rely on a choice of prior. A non-informative 
prior is a reasonable choice. Alternatively one might use information from previous 
meta-analyses such as Abeler et al. (2016). If the sample size is large enough, the 
choice of prior should not matter much.

When comparing the dishonesty rates of different groups, an interesting approach 
is to use the “empirical Bayes” method (Casella 1985). This piece of statistical jiu-
jitsu involves estimating a common prior from the pooled data, before updating the 
prior for each individual group.

We can also test hypotheses using the Bayesian approach. If two samples are 
independent, then the probability that, e.g., the true proportion of liars in sample 1 is 
smaller than in sample 2 can be calculated from the posterior distributions for each 
sample:

4  Applications

Benndorf et al. (2017) use the GSV method to calculate confidence intervals for the 
proportion of liars in a lying task with a die roll ( P = 5∕6 ). From 57 reports of the 
best outcome, out of 98 subjects, they calculate a lying rate of 49.68%, with a 95% 
CI of (45.3%, 53.95%). Using the Bayesian method with a uniform prior, the confi-
dence interval becomes (38.0%, 61.1%), about twice as big.

Banerjee et al. (2018) use the GSV method to estimate confidence intervals for 
proportion of liars in a die roll task. They estimate the proportion of liars who report 
a die roll above 3 ( P = 0.5 ), for several treatments. Table 8 in the “Appendix” shows 
GSV confidence intervals, along with recalculated Bayesian confidence intervals 
(from a uniform prior), and confidence intervals for the difference between lying to 
the “Same” and “Other” caste. The Bayesian confidence intervals are much larger 
than GSV confidence intervals. Only a couple of significant results survive. (Note 
that significance tests in the original paper were done with standard frequentist tech-
niques, not the GSV method.) More importantly, the N is rather low to make useful 
inferences about the differences between groups. For example, for the T2-winners-
GC group in the “aligned payoffs” treatment, differences in lying could be as much 
as 40% in either direction.

(7)∫
1

0 ∫
�1

0

�(�1)�(�2) d�2d�1.

5 When L/N = 1, all subjects deterministically report heads, and both Frequentist and GSV point esti-
mates are exactly correct.
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Hugh-Jones (2016) estimates the dishonesty rates of 15 nations using a coin flip 
experiment. I use empirical Bayes to check these results. For my prior over � , I fit 
a beta distribution using the 15 observations of 2R∕N − 1 . I then updated this prior 
separately for each country to find new confidence intervals and point estimates of 
the means.6 There is some “shrinkage” towards the pooled mean from the naïve per-
country estimates found by calculating 2R∕N − 1 separately for each country. One of 
the strengths of empirical Bayes, as Casella (1985) points out, is that it “anticipates 
regression to the mean”. Using Eq. (7), I calculated the probability of different � 
values for each pair of countries in the data. Reassuringly, there were still significant 
differences between countries.

5  Software

The Bayesian methods described here are implemented in R code, available at https 
://githu b.com/hughj onesd /GSV-comme nt. In this section, I give some simple exam-
ples of how to use it. More details are available at the website.

To load the code, download the file “bayesian-heads-cts.R” from github, and 
source it in the R command line:

Suppose 33 people report heads out of an N of 50, where the probability of the 
bad outcome is 0.5. To create a posterior distribution over � , we use the update_
prior() function:

Here, we have started with a uniform prior, using R’s built in dunif() function.
To calculate the point estimate of lambda, call the dist_mean() function on 

the updated posterior:

To calculate the 95% confidence interval (the highest density region), use 
dist_hdr():

6 Results available on request.
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Lastly, we can run power tests by simulating multiple experiments. GSV argue 
that existing sample sizes may be too small to reject “no lying” ( � = 0 ). With a uni-
form prior and an N of 100, the Bayesian method has 80.6% power to detect � of 
25% and 21.4% power to detect � of 10%. So, this paper confirms that important 
point. To run power calculations, use power_calc(). Here, we calculate the 
power to detect � = 0.1 in a sample of 300, where the probability of the bad outcome 
is 0.5, with an alpha level of 0.05 and a uniform prior:

6  Conclusion

These results suggest some recommendations when designing and analysing a coin 
flip style experiment.

1. Use power tests to ensure that your N is big enough.
2. If your N is reasonably large, say at least 100, you can safely use standard fre-

quentist confidence intervals and tests.
3. If your N is small, consider Bayesian estimates and confidence intervals. To 

estimate differences between subgroups, consider empirical Bayes with a prior 
derived from the pooled sample.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

R code to reproduce this comment is available at https ://githu b.com/hughj onesd /
GSV-comme nt, along with code to find Bayesian posterior distributions of �.

The errors in GSV confidence intervals could be due to a programming error 
rather than to the algorithm. I could reproduce GSV’s expected value to 4 or 5 
significant figures by following their method, but I could not reproduce their con-
fidence intervals. For example, when R = 3,N = 6,P = 0.5 , GSV’s Java program 
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gives the upper bound of the 95% confidence interval for the proportion of liars as 
49.91%. But the possible proportions of lies when there are T = 0, 1, 2, 3 true heads, 
are (R − T)∕(N − T) = 50%, 40%, 25%, 0%. It may be that some linear interpolation 
is being done.

Nevertheless, if I use GSV’s method as stated, rather than their program, confi-
dence intervals remain too small, as shown in Table 7.

Figure  1 shows the proportions of true values within the confidence interval 
for the GSV method, split by N, P, confidence level and � . Dashed lines show the 
nominal confidence level. This makes the pattern clear: coverage gets worse as � 
increases. (At 100%, coverage jumps back up since results become deterministic). 
Also, coverage does not get better as N increases.

Figure  2 shows the average bias of expected values by different methods. At 
N = 500 , all methods perform reasonably well. For lower values, there is a clear 
pattern: Bayesian methods are least biased, GSV method is most biased, and the fre-
quentist method is in between.

Figure 3 shows mean squared error by estimation method and � , for N of 10 and 
50. The Bayesian method is best for all values of � up to 80%.

Table 7  Proportion of true 
results within confidence 
interval, recalculated GSV 
method

CI 90% CI 95% CI 99%

62.3%  69.3%  77.4%

CI: 90% CI: 95% CI: 99%

N
: 10

N
: 50

N
: 100

N
: 500

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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1.00
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1.00

λ
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Fig. 1  GSV confidence interval coverage by confidence level, N, P and �

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 00:56:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


265

1 3

True lies  

GSV as an estimate of Lies

GSV argue that their method provides a good estimate of Lies, as opposed to � . 
Here, I check whether that is true.

I ran 2000 simulations for each of the parameter combinations. I calculated Lies 
as (R − T)∕(N − T) , and ignored simulations where N = T  . I estimated confidence 
intervals and expected value using the GSV method. For a comparison, I also esti-
mated the expected value of Lies using the “naïve” estimator max(0,

R−(1−P))

P
).

Figure  4 shows average bias by sample size, P and true Lies. For low sam-
ple sizes, both methods perform about the same. For higher sample sizes and 

P: 0.2 P: 0.5 P: 0.8

N
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N
: 100

N
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Fig. 2  Bias by method and �
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Fig. 3  Errors by method and � , N = 10 and 50
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low values of Lies, however, the GSV method is clearly dominated by the naïve 
method, and shows a lot of upward bias—more than 5 percentage points even 
when N = 100 . This is especially problematic for testing whether anyone lied in 
the sample.

Figure  5 shows the proportion of confidence intervals that contain the true 
value of Lies. Coverage is shown by confidence level, N, P and the decile (within 
these groups) of proportion of heads reported (R/N). Overall results are quite 
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N
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Fig. 4  Bias of GSV method for ‘Lies’
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solid, but when the proportion of heads reported is low or high, coverage drops 
below the nominal intervals. This is probably because, at these extremes, the dif-
ference between the true posterior and Eq.  5 becomes large. Interestingly, this 
problem gets worse as N increases.

Table 8  Confidence intervals from Banerjee et al. 2018, original and recalculated

*Significant at 95%, i.e. the confidence interval does not contain 0

Treatment  Payoffs  Target  Pct > 3 N  GSV 95% CI  Bayes 95% CI Diff. 95% CI

 T0-GC  Aligned  Same  77.4  84  42–62  35–71
 T0-SC  Aligned  Same  77.4  84  42–62  35–71
 T1-GC  Aligned  Same  83.7  43  53–74  42–85  −69 to 0

 Other  65.1  6–44  4–54
 T1-SC  Aligned  Same  80.5  41  43–69  34–81  −50 to 22

 Other  73.2  21–58  18–69
 T2-GC  Aligned  Same  75.6  41  29–62  23–74  −65 to −1*

 Other  53.7  0–27  0–34
 T2-SC  Aligned  Same  88.4  43  67–81  54–91  −44 to 17

 Other  81.4  47–70  36–82
 T2-winners-GC  Aligned  Same  58.3  12  0–38  0–60 −50 to 37

 Other  50    0–33  0–50
 T2-winners-SC  Aligned  Same  70.6  17  0–58  2–72  −63 to 26

 Other  52.9  0–33  0–47
 T2-losers-GC  Aligned  Same  87.9  33  64–81  49–92  −87 to −32*

 Other  45.5  0–18  0–27
 T2-losers-SC  Aligned  Same  68.2  22  0–53  2–65  −39 to 53

 Other  72.7  14–60  8–74
 T0-GC  Unaligned  Same  68.9  90  22–47  19–55
 T0-SC  Unaligned  Same  66.7  78  13–45  11–53
 T1-GC  Unaligned  Same  57.1  42  0–33  0–39  −7 to 60

 Other  73.8  27–58  20–70
 T1-SC  Unaligned  Same  57.1  42  0–33  0–38  −20 to 47

 Other  66.7  7–46  6–57
 T2-GC  Unaligned  Same  60    40  0–36  0–45  −5 to 64

 Other  77.5  36–64  26–77
 T2-SC  Unaligned  Same  56.8  44  0–32  0–38  −29 to 35

 Other  59.1  0–36  0–41
 T2-winners-GC  Unaligned  Same  33.3  12  0–11  0–36  −30 to 38

 Other  41.7  0–22  0–41
 T2-winners-SC  Unaligned  Same  40    15  0–18  0–36  −13 to 71

 Other  73.3  0–60  5–78
 T2-losers-GC  Unaligned  Same  53.1  32  0–29  0–36  37 to 93*

 Other  93.8  80–90  64–98
 T2-losers-SC  Unaligned  Same  60.7  28  0–39  0–49  −18 to 62

 Other  75    22–61  16–76
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Table 8 recalculates confidence intervals from Banerjee et al. (2018) using data in 
their Tables 6A and 6B.
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