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Abstract In this paper we prove the existence of at least three classical solutions for the problem{
− (|u′|p−2u′)′ = λf(t, u)h(u′),

u(a) = u(b) = 0,

when λ lies in an explicitly determined open interval.
Our main tool is a very recent three-critical-points theorem stated in a paper by D. Averna and

G. Bonanno (Topolog. Meth. Nonlin. Analysis 22 (2003), 93–103).
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1. Introduction

The aim of this paper is to prove the existence of at least three classical solutions for the
following quasilinear two-point boundary-value problem:{

− (|u′|p−2u′)′ = λf(t, u)h(u′),

u(a) = u(b) = 0,
(P)

where f : [a, b]×R → R is a continuous function, h : R → R is a continuous and bounded
function such that 0 < inf h, p > 1, and λ is a positive parameter.

Several results are known about the existence of multiple solutions for problems involv-
ing the one-dimensional p-Laplacian (see, for example, [1,4,5] and the references cited
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therein), in which the right-hand side is independent of u′; principally they use methods
of quadrature, lower and upper solutions, or fixed-points theorems.

Here, under suitable hypotheses, we prove that the problem (P) has at least three
classical solutions when λ lies in an explicitly determined open interval.

Our approach is of variational type, and is based on the following recent three-critical-
points theorem of [2].

Theorem 1.1 (Theorem B of [2]). Let X be a reflexive real Banach space, let
Φ : X → R be a continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X∗,
and let Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Assume that

(i) lim‖x‖→+∞(Φ(x) + λΨ(x)) = +∞ for all λ ∈ [0, +∞[;

(ii) there is r ∈ R such that
inf
X

Φ < r

and
ϕ1(r) < ϕ2(r),

where

ϕ1(r) := inf
x∈Φ−1(]−∞,r[)

Ψ(x) − infΦ−1(]−∞,r[)
w Ψ

r − Φ(x)
,

ϕ2(r) := inf
x∈Φ−1(]−∞,r[)

sup
y∈Φ−1([r,+∞[)

Ψ(x) − Ψ(y)
Φ(y) − Φ(x)

,

and Φ−1(] − ∞, r[)
w

is the closure of Φ−1(] − ∞, r[) in the weak topology.

Then, for each

λ ∈
]

1
ϕ2(r)

,
1

ϕ1(r)

[
,

the functional Φ + λΨ has at least three critical points in X.

However, ϕ1(r) in Theorem 1.1 could be 0. In this and similar cases, here and below,
we agree to read 1

0 as +∞.
In § 2, the variational approach is justified and the regularity of an appropriate func-

tional involved is proved. In § 3, we prove our main result (Theorem 3.1) and give some
examples of applications. Here, by way of an example, we present a very particular case
of Theorem 3.1.

Theorem 1.2. Let p > 1 and assume that β : R → R is a non-negative continuous
function such that

β(d) > 0
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for some d > 0,

lim
x→0+

β(x)
xp−1 = 0,

and

lim
x→+∞

β(x)
xq

∈ R

for some q ∈ ]0, p − 1[.
Then, for every

b > b̄ :=
(

22p

p

dp∫ d

0 β(x) dx

)1/p

,

the problem {
− (|u′|p−2u′)′ = β(u),

u(0) = u(b) = 0
(Pb)

admits at least two non-trivial classical solutions.

For basic notation and definitions we refer to [7].

2. Preliminaries

Let f : [a, b] × R → R be a continuous function and let h : R → R be a bounded
continuous function such that 0 < m := inf h. Let us put M := suph.

Let us consider the following two-point problem:{
− (|u′|p−2u′)′ = λf(t, u)h(u′),

u(a) = u(b) = 0,
(P)

where λ is a positive parameter and p > 1.
We say that u is a classical solution to (P) if u ∈ C1([a, b]), |u′|p−2u′ ∈ C1([a, b]),

u(a) = u(b) = 0, and

−(|u′(t)|p−2u′(t))′ = λf(t, u(t))h(u′(t))

for every t ∈ [a, b].
For p > 1, define ϕ : R → R by putting, for every x ∈ R,

ϕ(x) :=
∫ x

0

(p − 1)|s|p−2

h(s)
ds.

Clearly, ϕ is an increasing homeomorphism on R and one has

|ϕ(x)| � |x|p−1

m

for all x ∈ R.
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We say that u is a weak solution to (P) if u ∈ W 1,p
0 ([a, b]) and∫ b

a

ϕ(u′(t))v′(t) dt = λ

∫ b

a

f(t, u(t))v(t) dt

for every v ∈ W 1,p
0 ([a, b]).

The following straightforward lemma is the key tool for proving that classical and weak
solutions to (P) coincide.

Lemma 2.1. Let x : [a, b] → R be continuous at t0 ∈ [a, b]. If one among t �→ ϕ(x(t))
and t �→ |x(t)|p−2x(t), t ∈ [a, b], is differentiable at t0, then the other is also differentiable
at t0 and we have (

d
dt

ϕ(x(t))
)
t=t0

=
(d/dt)|x(t)|p−2x(t))t=t0

h(x(t0))
.

Proof. For every t �= t0, by the first mean-value theorem and by the continuity of x

at t0, we can write∫ x(t)

x(t0)

(p − 1)|s|p−2

h(s)
ds =

1
h(ξt)

∫ x(t)

x(t0)
(p − 1)|s|p−2 ds,

where limt→t0 ξt = x(t0), from which the conclusion follows in an obvious way. �

Proposition 2.2. Classical and weak solutions to (P) coincide.

Proof. If u is a classical solution to (P), then u ∈ W 1,p
0 ([a, b]) and

− (|u′(t)|p−2u′(t))′

h(u′(t))
= λf(t, u(t))

for every t ∈ [a, b].
Multiplying by v ∈ W 1,p

0 ([a, b]), by integration by parts between a and b, and taking
into account that, by the previous lemma, ϕ(u′(t)) is a primitive of

(|u′(t)|p−2u′(t))′

h(u′(t))
,

we obtain that u is a weak solution to (P).
If u is a weak solution to (P), then by using usual methods, and taking into account

that ϕ is a homeomorphism, we have that u and ϕ◦u′ lie in C1([a, b]), and −(ϕ(u′(t)))′ =
λf(t, u(t)) for every t ∈ [a, b], where (ϕ(u′(t)))′ is the usual derivative. Thus we obtain
that u is a classical solution to (P) by virtue of Lemma 2.1. �

Remark 2.3. We explicitly observe that the continuity of f can be weakened if we
ask for generalized solutions to problem (P). To this end, we recall that a function
f : [a, b] × R → R is said to be L1-Carathéodory if

(a) t �→ f(t, x) is measurable for every x ∈ R;

(b) x �→ f(t, x) is continuous for almost every t ∈ [a, b];
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(c) for every ρ > 0 there exists a function lρ ∈ L1([a, b]) such that

sup
|x|�ρ

|f(t, x)| � lρ(t)

for almost every t ∈ [a, b].

A function u : [a, b] → R is said to be a generalized solution to (P) if u ∈ C1([a, b]),
|u′|p−2u′ ∈ AC([a, b]), u(a) = u(b) = 0, and −(|u′(t)|p−2u′(t))′ = λf(t, u(t))h(u′(t)) for
almost every t ∈ [a, b].

Therefore, arguing as in Proposition 2.2 and taking into account that |u′|p−2u′ ∈
AC([a, b]) if and only if ϕ◦u′ ∈ AC([a, b]), generalized and weak solutions to (P) coincide
when f is an L1-Carathéodory function.

Now, let X be the Sobolev space W 1,p
0 ([a, b]) endowed with the norm

‖u‖ :=
(∫ b

a

|u′(t)|p dt

)1/p

,

and define the functional Φ : X → R by putting, for every u ∈ X,

Φ(u) :=
∫ b

a

(∫ u′(t)

0
ϕ(x) dx

)
dt.

Simple calculations show that, for every u ∈ X,

1
M

‖u‖p

p
� Φ(u) � 1

m

‖u‖p

p
. (2.1)

Clearly, Φ is a Gâteaux differentiable functional whose Gâteaux derivative at the point
u ∈ X is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫ b

a

ϕ(u′(t))v′(t) dt (2.2)

for every v ∈ X, and Φ′ : X → X∗ is continuous. Moreover, taking into account that Φ is
convex, from Proposition 25.20 (i) of [7] we obtain that Φ is a sequentially weakly lower
semicontinuous functional.

The remainder of this section is devoted to proving that Φ′ admits a continuous inverse
on X∗.

Proposition 2.4. Φ′ is coercive for every p > 1.
If p � 2, then Φ′ is uniformly monotone.
If 1 < p < 2, then there exists c > 0 such that

〈Φ′(u) − Φ′(v), u − v〉 � c
‖u − v‖2

(‖u‖ + ‖v‖)2−p
(2.3)

for every u, v ∈ X; hence, in particular, Φ′ is strictly monotone.
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Proof. For every u ∈ X \ {0} we have

〈Φ′(u), u〉
‖u‖ =

∫ b

a
ϕ(u′(t))u′(t) dt

‖u‖

=

∫ b

a
(
∫ u′(t)
0 [(p − 1)|s|p−2/h(s)] ds)u′(t) dt

‖u‖

� 1
M

∫ b

a
(
∫ u′(t)
0 (p − 1)|s|p−2 ds)u′(t) dt

‖u‖

=
1
M

∫ b

a
|u′(t)|p−2(u′(t))2 dt

‖u‖

=
1
M

‖u‖p−1,

hence Φ′ is coercive.
Moreover, given u, v ∈ X we have

〈Φ′(u) − Φ′(v), u − v〉 =
∫ b

a

(ϕ(u′(t)) − ϕ(v′(t)))(u′(t) − v′(t)) dt

=
∫ b

a

(∫ u′(t)

v′(t)

(p − 1)|s|p−2

h(s)
ds

)
(u′(t) − v′(t)) dt

� 1
M

∫ b

a

(∫ u′(t)

v′(t)
(p − 1)|s|p−2 ds

)
(u′(t) − v′(t)) dt

=
1
M

∫ b

a

(|u′(t)|p−2u′(t) − |v′(t)|p−2v′(t))(u′(t) − v′(t)) dt,

thus, by (2.2) of [6], there exists cp > 0 such that

〈Φ′(u) − Φ′(v), u − v〉 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cp

M

∫ b

a

|u′(t) − v′(t)|p dt, if p � 2,

cp

M

∫ b

a

|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt, if 1 < p < 2.

If p � 2, then it follows at once that

〈Φ′(u) − Φ′(v), u − v〉 � (cp/M)‖u − v‖p,

thus Φ′ is uniformly monotone.
If 1 < p < 2, by the Hölder inequality, we obtain∫ b

a

|u′(t) − v′(t)|p dt �
(∫ b

a

|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt

)p/2(∫ b

a

(|u′(t)| + |v′(t)|)p dt

)(2−p)/2

,

and, since∫ b

a

(|u′(t)| + |v′(t)|)p dt � 2p−1
∫ b

a

(|u′(t)|p + |v′(t)|p) dt � 2p(‖u‖ + ‖v‖)p,
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we get

∫ b

a

|u′(t) − v′(t)|p dt � 2p(2−p)/2
(∫ b

a

|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt

)p/2

(‖u‖ + ‖v‖)p(2−p)/2,

thus ∫ b

a

|u′(t) − v′(t)|2
(|u′(t)| + |v′(t)|)2−p

dt � ‖u − v‖2

22−p(‖u‖ + ‖v‖)2−p
,

and, in conclusion,

〈Φ′(u) − Φ′(v), u − v〉 � cp

M22−p

‖u − v‖2

(‖u‖ + ‖v‖)2−p
.

�

Corollary 2.5. Φ′ : X → X∗ admits a continuous inverse.

Proof. Clearly, Φ′ is hemicontinuous, since it is continuous. Moreover, it is coercive
by the first part of Proposition 2.4.

If p � 2, then Φ′ is uniformly monotone by Proposition 2.4, thus the conclusion follows
directly by Theorem 26.A (d) of [7].

If 1 < p < 2, then Φ′ is strictly monotone by Proposition 2.4, thus by Theorem 26.A (d)
of [7] we obtain that the inverse [Φ′]−1 exists and is bounded. Furthermore, given g1, g2 ∈
X∗, by inequality 2.3 of Proposition 2.4, where u := [Φ′]−1(g1), v := [Φ′]−1(g2), we get

‖[Φ′]−1(g1) − [Φ′]−1(g2)‖ � (1/c)(‖[Φ′]−1(g1)‖ + ‖[Φ′]−1(g2)‖)2−p‖g1 − g2‖X∗ ,

from which the Lipschitz continuity of [Φ′]−1 follows. �

3. Results

In this section we apply Theorem 1.1 to prove that under suitable assumptions the prob-
lem (P) admits at least three classical solutions. We present the main result, Theorem 3.1,
and some of its consequences.

Here, f , h, λ, p, ϕ, X and Φ are as in previous section. Moreover, for each (t, ξ) ∈
[a, b] × R, put

g(t, ξ) :=
∫ ξ

0
f(t, x) dx.

Theorem 3.1. Assume that there exist four positive constants c, d, µ and s, with
c < d and s < p, such that

(j) g(t, ξ) � 0 for each (t, ξ) ∈ ([a, a + 1
4 (b − a)] ∪ [b − 1

4 (b − a), b]) × [0, d];

(jj)

∫ b

a
sup|ξ|�c g(t, ξ) dt

cp
<

m

M(1 + 2p−1)

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt

dp
;

(jjj) g(t, ξ) � µ(1 + |ξ|s) for all (t, ξ) ∈ [a, b] × R.
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Then, for each

λ ∈

⎤
⎦ 22p−1dp/((b − a)p−1mp)∫ b−(b−a)/4

a+(b−a)/4 g(t, d) dt −
∫ b

a
sup|ξ|�c g(t, ξ) dt

,
2pcp/((b − a)p−1Mp)∫ b

a
sup|ξ|�c g(t, ξ) dt

⎡
⎣ ,

the problem (P) admits at least three classical solutions.

Proof. For each u ∈ X, put Ψ(u) := −
∫ b

a
g(t, u(t)) dt.

It is well known that Ψ is a Gâteaux differentiable functional whose Gâteaux derivative
at the point u ∈ X is the functional Ψ ′(u) ∈ X∗, given by

Ψ ′(u)(v) = −
∫ b

a

f(t, u(t))v(t) dt

for every v ∈ X, and that Ψ ′ : X → X∗ is a continuous and compact operator.
We have seen in the previous section that Φ is a continuously Gâteaux differentiable

and sequentially weakly lower semicontinuous functional whose Gâteax derivative at the
point u ∈ X is the functional Φ′(u) ∈ X∗, given by (2.2) for every v ∈ X, and that
Φ′ : X → X∗ admits a continuous inverse on X∗.

Since, by Proposition 2.2, classical solutions to problem (P) coincide with weak ones,
and these are exactly the critical points of the functional Φ + λΨ , our aim is to apply
Theorem 1.1 to Φ and Ψ .

Hypothesis (i) of Theorem 1.1 follows in a simple way, by (jjj), (2.1) and

|u(t)| � 1
2 (b − a)(p−1)/p‖u‖

for all u ∈ X and for all t ∈ [a, b].
In order to prove (ii) of Theorem 1.1, we claim that

ϕ1(r) �
∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

r
(C1)

for each r > 0, and

ϕ2(r) � mp

∫ b

a
g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

‖y‖p
(C2)

for each r > 0 and every y ∈ X such that

1
M

‖y‖p

p
� r (3.1)

and ∫ b

a

g(t, y(t)) dt �
∫ b

a

sup
|ξ|�([prM(b−a)p−1]1/p)/2

g(t, ξ) dt. (3.2)
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In fact, for r > 0, and taking into account that the function u ≡ 0 on [a, b] obviously
belongs to Φ−1(] − ∞, r[), and that Ψ(0) = 0, we get

ϕ1(r) �
supΦ−1(]−∞,r[)

w

∫ b

a
g(t, x(t)) dt

r
,

and, since Φ−1(] − ∞, r[)
w

= Φ−1(] − ∞, r]), we have

supΦ−1(]−∞,r[)
w

∫ b

a
g(t, x(t)) dt

r
=

supΦ−1(]−∞,r])
∫ b

a
g(t, x(t)) dt

r
;

thus, from

Φ−1(] − ∞, r]) ⊂
{

x ∈ X :
1
M

‖x‖p

p
� r

}

and
|x(t)| � 1

2 (b − a)(p−1)/p‖x‖ � ([prM(b − a)p−1]1/p)/2,

for every x ∈ X such that
1
M

‖x‖p

p
� r

and for each t ∈ [a, b], we obtain

supΦ−1(]−∞,r])
∫ b

a
g(t, x(t)) dt

r
�

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

r
.

So, (C1) is proved.
Moreover, for each r > 0 and each y ∈ X such that Φ(y) � r, hence in particular for

each y ∈ X such that
1
M

‖y‖p

p
� r,

we have

ϕ2(r) � inf
x∈Φ−1(]−∞,r[)

∫ b

a
g(t, y(t)) dt −

∫ b

a
g(t, x(t)) dt

Φ(y) − Φ(x)
,

thus, from

Φ−1(] − ∞, r[) ⊂
{

x ∈ X :
1
M

‖x‖p

p
< r

}

and
|x(t)| � 1

2 (b − a)(p−1)/p‖x‖ < ([prM(b − a)p−1]1/p)/2,

for every x ∈ X such that
1
M

‖x‖p

p
< r
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and for each t ∈ [a, b], we obtain

inf
x∈Φ−1(]−∞,r[)

∫ b

a
g(t, y(t)) dt −

∫ b

a
g(t, x(t)) dt

Φ(y) − Φ(x)

� inf
x∈Φ−1(]−∞,r[)

∫ b

a
g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

Φ(y) − Φ(x)
,

from which, since

0 < Φ(y) − Φ(x) � Φ(y) � 1
m

‖y‖p

p

for every x ∈ Φ−1(] − ∞, r[), and under the further condition (3.2), we can write

inf
x∈Φ−1(]−∞,r[)

∫ b

a
g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

Φ(y) − Φ(x)

� mp

∫ b

a
g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

‖y‖p
.

So, (C2) is also proved.
Now, in order to prove (ii) of Theorem 1.1, taking into account (C1) and (C2), it

suffices to find r > 0 and y ∈ X, which verifies (3.1), and

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

r

< mp

∫ b

a
g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

‖y‖p
. (3.3)

Notice that (3.2) is a consequence of (3.3).
To this end, we define

y(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
b − a

d(t − a), if t ∈ [a, a + 1
4 (b − a)[,

d, if t ∈ [a + 1
4 (b − a), b − 1

4 (b − a)],
4

b − a
d(b − t), if t ∈ ]b − 1

4 (b − a), b]

and

r :=
(2c)p

pM

1
(b − a)p−1 .

Clearly, y ∈ X and

‖y‖p = 22p−1 1
(b − a)p−1 dp.

Hence, since c < d, we have
1
M

‖y‖p

p
> r.
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From (jj), since m/M � 1, we get∫ b

a
sup|ξ|�c g(t, ξ) dt

2p−1cp
<

1
2p−1(1 + 2p−1)

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt

dp

=
(

1
2p−1 − 1

1 + 2p−1

)∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt

dp
,

then

1
1 + 2p−1

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt

dp
+

∫ b

a
sup|ξ|�c g(t, ξ) dt

2p−1cp
<

1
2p−1

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt

dp
,

thus, since c < d,

1
1 + 2p−1

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt

dp
<

1
2p−1

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt −

∫ b

a
sup|ξ|�c g(t, ξ) dt

dp
,

hence, using (jj) again,∫ b

a
sup|ξ|�c g(t, ξ) dt

cp
<

m

M

1
2p−1

∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt −

∫ b

a
sup|ξ|�c g(t, ξ) dt

dp
.

Finally, taking into account the values of r and ‖y‖p, and using (j), we get∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

r

< mp

∫ b−(b−a)/4
a+(b−a)/4 g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

‖y‖p

� mp

∫ b

a
g(t, y(t)) dt −

∫ b

a
sup|ξ|�([prM(b−a)p−1]1/p)/2 g(t, ξ) dt

‖y‖p
.

Thus, the conclusion follows by Theorem 1.1, by observing that

1
ϕ2(r)

� 22p−1dp/((b − a)p−1mp)∫ b−(b−a)/4
a+(b−a)/4 g(t, d) dt −

∫ b

a
sup|ξ|�c g(t, ξ) dt

and

1
ϕ1(r)

� 2pcp/((b − a)p−1Mp)∫ b

a
sup|ξ|�c g(t, ξ) dt

.

�

Remark 3.2. Taking into account Remark 2.3, if we assume that f : [a, b]×R → R is
L1-Carathéodory, that there exist three positive constants c, d, s, with c < d and s < p,
such that (j) and (jj) in Theorem 3.1 hold and, furthermore, that there exists a function
µ ∈ L1([a, b]) such that

(jjj)′ g(t, ξ) � µ(t)(1 + |ξ|s) for almost every t ∈ [a, b] and for all ξ ∈ R,
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then, for each

λ ∈

⎤
⎦ 22p−1dp/((b − a)p−1mp)∫ b−(b−a)/4

a+(b−a)/4 g(t, d) dt −
∫ b

a
sup|ξ|�c g(t, ξ) dt

,
2pcp/((b − a)p−1Mp)∫ b

a
sup|ξ|�c g(t, ξ) dt

⎤
⎦ ,

the problem (P) admits at least three generalized solutions.

The following is an example of an application of Theorem 3.1.

Example 3.3. The problem{
− (|u′|2u′)′ = λ[e−tuu12(13 − tu)(1 + 1

2 sin u′) + (1 + 1
2 sin u′)],

u(0) = u(1) = 0,

admits at least three non-trivial classical solutions for each λ ∈ ] 23 , 4
3 [. In fact, the function

g(t, u) = e−tuu13 + u satisfies all assumptions of Theorem 3.1 by choosing, for instance,
c = 1 and d = 2.

We now point out a particular case of Theorem 3.1, in which the function f has
separated variables and h is equal to 1. Given two non-negative continuous functions
α : [a, b] → R, β : R → R, put

A :=
∫ b−(b−a)/4

a+(b−a)/4
α(t) dt, ‖α‖1 :=

∫ b

a

α(t) dt, B(ξ) :=
∫ ξ

0
β(x) dx (ξ ∈ R).

Theorem 3.4. Assume that there exist four positive constants c, d, µ, s, with c < d

and s < p, such that

(k) ‖α‖1
B(c)
cp

<
A

1 + 2p−1

B(d)
dp

;

(kk) B(ξ) � µ(1 + |ξ|s) for all ξ ∈ R.

Then, for each

λ ∈
]
22p−1dp/((b − a)p−1p)

AB(d) − ‖α‖1B(c)
,
2pcp/((b − a)p−1p)

‖α‖1B(c)

[
,

the problem {
− (|u′|p−2u′)′ = λα(t)β(u),

u(a) = u(b) = 0
(P1)

admits at least three classical solutions.

Remark 3.5. In similar assumptions to those of Theorem 3.4 (with α constant), in [3]
(see Theorem 2.3) it was proved that there exists an open interval Λ ⊆ ]0, +∞[ such that,
for each λ ∈ Λ, the problem (P1) admits at least three solutions, which are uniformly
bounded in norm with respect to λ. In the present case, we establish a precise interval
of parameters λ for which the problem (P1) has three solutions.
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As a consequence of Theorem 3.4, we obtain the proof of Theorem 1.2 in the introduc-
tion.

Proof of Theorem 1.2. Fix b > 0 and pick

λ >
1
bp

22p

p

dp

B(d)
.

Since

lim
x→0+

β(x)
xp−1 = 0,

there exists c > 0 such that c < d,

B(c)
cp

< min
{

1
1 + 2p−1

1
2

B(d)
dp

,
2p

bppλ

}
,

and

λ >
22pdp

bpp(B(d) − 2B(c))
.

Moreover, assumption (kk) of Theorem 3.4 follows easily from

lim
x→+∞

β(x)
xq

∈ R.

Hence, for each

λ >
1
bp

22p

p

dp

B(d)
,

the problem {
− (|u′|p−2u′)′ = λβ(u),

u(0) = u(b) = 0
(P2)

admits at least two non-trivial classical solutions and, as a consequence, by choosing

b̄ :=
(

22p

p

dp

B(d)

)1/p

, (3.4)

we have the conclusion. �

Finally, we present a very easy example of an application of Theorem 1.2.

Example 3.6. Let β : R → R be the function defined as follows:

β(u) :=

{
u4, if u � 1,

u2, if u > 1.

Taking into account that b̄ = 2(20)1/4 (see (3.4) with p = 4 and d = 1), from Theorem 1.2
we obtain that, for every b > b̄, the problem{

− (|u′|2u′)′ = β(u),

u(0) = u(b) = 0
(Pb)

admits at least two non-trivial classical solutions.
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