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Abstract In this paper we prove the existence of at least three classical solutions for the problem
— ([ [P72) = Af(t, w)h(u),
u(a) = u(b) =0,

when A lies in an explicitly determined open interval.

Our main tool is a very recent three-critical-points theorem stated in a paper by D. Averna and
G. Bonanno (Topolog. Meth. Nonlin. Analysis 22 (2003), 93-103).
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1. Introduction

The aim of this paper is to prove the existence of at least three classical solutions for the
following quasilinear two-point boundary-value problem:

{ = (' P72u') = M (8 w)h(u),

u(a) = u(b) =0, ()

where f : [a,b] xR — R is a continuous function, » : R — R is a continuous and bounded
function such that 0 < inf h, p > 1, and A is a positive parameter.

Several results are known about the existence of multiple solutions for problems involv-
ing the one-dimensional p-Laplacian (see, for example, [1,4,5] and the references cited
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therein), in which the right-hand side is independent of «’; principally they use methods
of quadrature, lower and upper solutions, or fixed-points theorems.

Here, under suitable hypotheses, we prove that the problem (P) has at least three
classical solutions when A lies in an explicitly determined open interval.

Our approach is of variational type, and is based on the following recent three-critical-
points theorem of [2].

Theorem 1.1 (Theorem B of [2]). Let X be a reflexive real Banach space, let
® : X — R be a continuously Gateaux differentiable and sequentially weakly lower
semicontinuous functional whose Gateaux derivative admits a continuous inverse on X*,
and let ¥ : X — R be a continuously Gateaux differentiable functional whose Gateaux
derivative is compact. Assume that

(1) im0 (P(x) + AW (2)) = +o0 for all A € [0, 4-00];

(ii) there is r € R such that

igl{f@ <r
and
p1(r) < a(r),
where

= inf
4,01(7") xE@*lla—oo,r[) T — @({E) ’
v 4
wa(r) = inf 7@) (y)7

sup
z€P~1(]—00,r[) yed—1([r,4o0[) P(y) — P(z)
and ¢~1(] — oo, r[)w is the closure of ®~1(] — oo, r[) in the weak topology.

Then, for each

SEREY
pa(r) " pr(r) [
the functional ¢ + AW has at least three critical points in X.

However, ¢1(r) in Theorem 1.1 could be 0. In this and similar cases, here and below,
we agree to read § as +0c.

In §2, the variational approach is justified and the regularity of an appropriate func-
tional involved is proved. In § 3, we prove our main result (Theorem 3.1) and give some
examples of applications. Here, by way of an example, we present a very particular case
of Theorem 3.1.

Theorem 1.2. Let p > 1 and assume that 3 : R — R is a non-negative continuous
function such that

B(d) >0
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for some d > 0,

B(x)

z—0+ TP~

1 i

and

lim Blz)

r—+oco x4

for some ¢ € ]0,p — 1].
Then, for every

the problem

— (Y = ), -
u(0) =u(d) =0

admits at least two non-trivial classical solutions.

For basic notation and definitions we refer to [7].

2. Preliminaries

Let f : [a,b] x R — R be a continuous function and let h : R — R be a bounded
continuous function such that 0 < m :=inf h. Let us put M := sup h.
Let us consider the following two-point problem:

{ — (Ju/P72u) = M f(tw)h(u),

u(a) = u(b) =0, ®)

where A is a positive parameter and p > 1.
We say that u is a classical solution to (P) if u € C([a,b]), |u'[P~2 € C'([a,b]),
u(a) = u(b) =0, and

—([u' @72 () = M (t, u(t)h(u' (1))

for every t € [a, b].
For p > 1, define ¢ : R — R by putting, for every z € R,

_ [T le=DlsP?
o(z) .—/0 Tds.

Clearly, ¢ is an increasing homeomorphism on R and one has

p—1
(@) < !

m

for all z € R.
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We say that u is a weak solution to (P) if u € W,?([a,b]) and

b b
/ (! (B)' (1) dt = A / £t u(t)yo(t) di

for every v € Wy?([a, b]).
The following straightforward lemma is the key tool for proving that classical and weak
solutions to (P) coincide.

Lemma 2.1. Let x : [a,b] — R be continuous at ty € [a,b]. If one among t — @(x(t))
and t — |z(t)[P~2z(t), t € [a,b], is differentiable at to, then the other is also differentiable

at to and we have
(Sototy) - WP ei0)s,

h(z(to))

Proof. For every t # tgy, by the first mean-value theorem and by the continuity of x
at ty, we can write

z(t) (p—1 p—2 x(t)
p )ls| 1 / -2
ds = p—1)|s|P7=ds,
/a:(to) h(s) h(&:) ac(to)( JIs

where lim¢_,+, & = x(to), from which the conclusion follows in an obvious way. O

Proposition 2.2. Classical and weak solutions to (P) coincide.
Proof. If u is a classical solution to (P), then u € W, *([a,b]) and

(' ()P’ (1))’
L ) A ult
w0
for every t € [a, b].
Multiplying by v € VVO1 "P([a,b]), by integration by parts between a and b, and taking
into account that, by the previous lemma, ¢(u/(¢)) is a primitive of

(' @)~ (t))'
h(w'(t)
we obtain that u is a weak solution to (P).

If u is a weak solution to (P), then by using usual methods, and taking into account
that ¢ is a homeomorphism, we have that u and pou’ lie in C*([a, b]), and —(p(u'(t))) =
A (t,u(t)) for every ¢ € [a,b], where (p(u/(t)))’ is the usual derivative. Thus we obtain
that u is a classical solution to (P) by virtue of Lemma 2.1. O

Remark 2.3. We explicitly observe that the continuity of f can be weakened if we
ask for generalized solutions to problem (P). To this end, we recall that a function
f:la,b] x R — R is said to be L!-Carathéodory if

(a) t— f(t,x) is measurable for every z € R;

(b) x — f(t, ) is continuous for almost every t € [a, ];
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(c) for every p > 0 there exists a function I, € L'([a,b]) such that

sup [f(t,z)| < 1p(2)
lz|<p

for almost every t € [a, b].

A function u : [a,b] — R is said to be a generalized solution to (P) if u € C'([a,b]),
[u'[P~2u’ € AC([a,b]), u(a) = u(b) = 0, and —(|u’/(t)[P~2/(t)) = Af(t,u(t))h(u'(t)) for
almost every t € [a, b].

Therefore, arguing as in Proposition 2.2 and taking into account that |u’|P=%u/ €
AC([a, b)) if and only if pou’ € AC([a,b]), generalized and weak solutions to (P) coincide
when f is an L!-Carathéodory function.

Now, let X be the Sobolev space VVO1 P([a,b]) endowed with the norm

nw:([wwwﬁe

and define the functional @ : X — R by putting, for every u € X,

B(u) = / ' ( /O O @ dx) dt.

Simple calculations show that, for every u € X,

1 u?
M p

[[e”

1
m p

<P(u) <

(2.1)

Clearly, @ is a Gateaux differentiable functional whose Gateaux derivative at the point
u € X is the functional ¢'(u) € X*, given by

b
W@@=/@W@W@& (2.2)

for every v € X, and &' : X — X* is continuous. Moreover, taking into account that @ is
convex, from Proposition 25.20 (i) of [7] we obtain that @ is a sequentially weakly lower
semicontinuous functional.

The remainder of this section is devoted to proving that ¢’ admits a continuous inverse
on X*.

Proposition 2.4. ¢’ is coercive for every p > 1.
If p > 2, then @' is uniformly monotone.
If 1 < p < 2, then there exists ¢ > 0 such that

lu = v]|?

(@' (1) — &' (v),u —v) > Ul + TolNz—"

for every u,v € X; hence, in particular, ' is strictly monotone.
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Proof. For every u € X \ {0} we have
(@ (w),u) _ Ju el () (1) dt

[ — ([
UL Dls2/h(s) dsyul (1) e
Jull
LU = Dls2ds)u (1) at
T M ]
LR ()2 dt
M Tull
— 1 p—1
= — [l

hence @' is coercive.
Moreover, given u,v € X we have

(@' (u) = &' (v),u—v) = /ab(go(u’(t)) — (' (1) (' () — ' (1)) dt
/ab (/Uu(:) @_hl(!;'p_z dS) (u'(t) —o'(t)) dt
M / (/<(>) S DI s () — o)t

M/a (' O~/ (1) — ' (O~ (1)) (u'(8) — o' (t)) dt

thus, by (2.2) of [6], there exists ¢, > 0 such that

Cp/|u ()P dt, ifp>2

o [0 W) =)

M Jo (' @)+ [v'(@)])*~
If p > 2, then it follows at once that

(@' (u) = &' (v), u—v) = (¢p/M)lu— vl

\\/

(@' (u) = @' (v),u—v) >

pdt, ifl<p<2.

thus @’ is uniformly monotone.
If 1 < p <2, by the Holder inequality, we obtain

[ e -varace ([ gt ) ([ vora)

and, since

b b
/ (O] + 0" @))F dt < 2”’1/ (' @O + ' (O)F) dt < 27([[u]l + [v])?,
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we get

b b W) — o (£)]2 p/2
/ |u'<t>v’(t)?dt@p(“)”(/ (|u',<t)(t)+|v,é?|')2_pdt) (ull + Jjo] @72,

thus

bW P lu — vf|?
/a @+ @ " > 2ol + o7

and, in conclusion,

< lu — ]

(@) = P (0) =) 2 F e el + ol

Corollary 2.5. &' : X — X* admits a continuous inverse.

Proof. Clearly, ' is hemicontinuous, since it is continuous. Moreover, it is coercive
by the first part of Proposition 2.4.

If p > 2, then &’ is uniformly monotone by Proposition 2.4, thus the conclusion follows
directly by Theorem 26.A (d) of [7].

If 1 < p < 2, then & is strictly monotone by Proposition 2.4, thus by Theorem 26.A (d)
of [7] we obtain that the inverse [#'] ! exists and is bounded. Furthermore, given g1, g2 €
X*, by inequality 2.3 of Proposition 2.4, where u := [®']71(g1), v := [®']71(ga), we get

1127 (1) = [@T (g2) Il < (/)27 (gl + 12T~ (g2))*Pllgr — g2l x,

from which the Lipschitz continuity of [¢']~! follows. O

3. Results

In this section we apply Theorem 1.1 to prove that under suitable assumptions the prob-
lem (P) admits at least three classical solutions. We present the main result, Theorem 3.1,
and some of its consequences.

Here, f, h, A\, p, ¢, X and ¢ are as in previous section. Moreover, for each (¢,&) €
[a,b] x R, put

13
g(t, &) 5:/0 f(t,x) da.

Theorem 3.1. Assume that there exist four positive constants ¢, d, i and s, with
¢ < d and s < p, such that

(3) g(t, &) = 0 for each (t,€) € ([a,a+ (b—a)] U [b— F(b—a),b]) x [0,d];
PR GO L O TR ot /L CL L)

JJ cP M(l + 2p—1) dp )
Gii) g(t,€) < p(1 + [€]°) for all (t,€) € [a,b] x R.
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Then, for each

220147 /(b — a)"~'mp) 2c /(b — )P~ Mp)

A€ b—(b—a)/4 b ’ b
fa+(b—a)/4 g(ta d) dt — fa SUP\g\gc g(t7 f) dt fa Sup|§|<c g(ta 5) dt

the problem (P) admits at least three classical solutions.

Proof. For each u € X, put ¥(u) := — f; g(t,u(t)) dt.
It is well known that ¥ is a Gateaux differentiable functional whose Gateaux derivative
at the point v € X is the functional ¥/ (u) € X*, given by

b
wmmw=—/meMMWﬂ

for every v € X, and that ¥’ : X — X* is a continuous and compact operator.

We have seen in the previous section that & is a continuously Gateaux differentiable
and sequentially weakly lower semicontinuous functional whose Gateax derivative at the
point u € X is the functional ¢'(u) € X*, given by (2.2) for every v € X, and that
@' . X — X* admits a continuous inverse on X*.

Since, by Proposition 2.2, classical solutions to problem (P) coincide with weak ones,
and these are exactly the critical points of the functional @ + AW, our aim is to apply
Theorem 1.1 to @ and V.

Hypothesis (i) of Theorem 1.1 follows in a simple way, by (jjj), (2.1) and

Ju(t)] < 5(b— )P V/Pjul|
for all w € X and for all ¢ € [a, ]].

In order to prove (ii) of Theorem 1.1, we claim that

b
Ja SUPIe| < ((praa v—ayr—171/r) /2 9(E; €) it

p1(r) < " (C1)
for each » > 0, and
b b
a g(tvy(t)) dt — a SUP|g1<([pr —a)p—1]t/p g(tag) dt
o) > mp- J. \5\H<y(|[|z; M(b—ayr-1)1/r) /2 (@)
for each > 0 and every y € X such that
L [yl
— > 3.1
e (31)

and

b b
/gwmmw>/ sup g(t.€) dt. (3.2)

|€]<([prM (b—a)P—1]1/P) /2
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In fact, for > 0, and taking into account that the function v = 0 on [a, b] obviously
belongs to ~1(] — oo, r[), and that ¥(0) = 0, we get

b
- SUDG=T ([ =og,]) I, g(t,z(t))dt

(Pl(r) X , s

and, since (] — 0o, r]) = ®1(] — 00,7]), we have

b
Supmw fa g(t,x(t))dt _ Sup¢71(]_oo,r}) f;g(t,$(t>)dt

)

r r

thus, from
1 P
sﬁ_l(]—oo,r])c{xeX:MHZ” <r}

and

j2(t)] < 50— @)Dz < (fprM (b —a)P1]1P) /2,

for every x € X such that
I
M p

<r
and for each t € [a,b], we obtain

b b
SUPG-1(]—co,r]) J, 9(t, (1)) dt o L SUD ¢ < (M (b—a)p—1]1/9) 2 9 (E, ) dt
r = r '

So, (C1) is proved.
Moreover, for each > 0 and each y € X such that @(y) > r, hence in particular for
each y € X such that

P
L,
M p
we have
b b
t,y(t)) dt — t,x(t)) dt
o) > it a9 ) dE— o glta()dt
z€P—1(]—o0,r[) @(y) - @({E)
thus, from
1 P
(] —o0,7]) C {x €X: M”J;)H < r}
and

[2(t)] < 50— @)D 7|z < (fprM (b —a)P 1]V 2,

for every € X such that
I
M p

<r
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and for each t € [a,b], we obtain

- 12 gt,y(t)) dt — [P g(t, () dt
eed—1(]—oc0,r|) D(y) — o(x)
b b
< uf S 9t y(t) dt — [ supe < (prasp—ayr—1p1/v) 2 9, €) dt
7 eed-1(]—oco,r]) D(y) — P(x)

)

from which, since
1 lyl®

m p

0<d(y) —P(x) < P(y) <

for every z € &71(] — 0o, 7[), and under the further condition (3.2), we can write

b b
it S 9(t,y(t) dt — [ supiei<(prar(p—ayp—111/9) /2 9(t, ) dt
z€d-1(]—00,r) P(y) — P(x)
b b
S mpfa g(t,y(t)) dt — [ SuD ¢\« ((pras(p—ayr—111/p) 2 9(t,€) dt
- vl .

So, (C2) is also proved.
Now, in order to prove (ii) of Theorem 1.1, taking into account (C1) and (C2), it

suffices to find r > 0 and y € X, which verifies (3.1), and

b
Ja SUP|¢|<((pra (b—ayp—1]1/py 2 9(E: €) dE

,
b b
<m fa g(tvy(t)) dt — fa SUP|¢|<([prM (b—a)P—1]1/P) /2 g(t7£) dt (3 3)
3 lyll” S
Notice that (3.2) is a consequence of (3.3).
To this end, we define
4 , )
md(t —a), iftefa,a+ 3(b—a),
y(t) := < d, iftefa+ z(b—a)b—1(b-a),
4
b_ad(b—t), iftelb—1(b—a),b
and
(2¢)P 1
ro= _—
pM (b—a)r—t
Clearly, y € X and
1
_ o2p—1
Il =2 g — e "
Hence, since ¢ < d, we have
R ] L
M p '
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From (jj), since m/M < 1, we get

b b—(b—a)/4
fa Sup|§|§cg(ta€) de < 1 fa+(b—a)/4 g(t’d) dt
op=1lep 2p=1(1 + 2v-1) v
b—(b—a)/4
(1 U\ S et dyat
T\l 1 yop1 dp ’
then
b—(b—a)/4 b b—(b—a)/4
1 fa+(b7a)/4 g(t,d)dt fa SuP|g|<c 9 g(t, &) dt 1 faJr(b a)/4 9 g(t,d)dt
14 2r-1 dr * 2p—1cp 21’*1 dp ’
thus, since ¢ < d,
b—(b—a)/4 b—(b—a)/4 b
1 fa+((b7a))//4 g(t,d)dt 1 er((b a)//4 (t.d)dt — [, supj¢|<. 9(t,§) dt
1+2p-1 dar < 1 dp ’

hence, using (jj) again,

(b—a)/4 b
ffsupmgcg(tﬁ)dt m 1 fa+b a))//4 (t,d)dt _fa Supmgcg(taﬁ) di
cP M 2p-1 dp

Finally, taking into account the values of r and ||y||?, and using (j), we get

b
fa SUDP|¢|<([prM (b—a)P—1]1/7) /2 g(t,§)dt

r
< plectomays 90 V) At = J P pratt—ayr iy 2 9 €)
[yl
< mpffg(@ y(t))dt — f,f SUD|¢|< ([prM (b—a)r—1]1/p) /2 9 (¢, &) dt
l[yl»
Thus, the conclusion follows by Theorem 1.1, by observing that
1 22107 (b — )"~ 'mp)

<
pa(r) f:ﬂ(l? ://: (t,d)dt — fbsup|5|<cg(t,£)dt
and
L 2o/t
p1(r) g f SUD|¢|<. J (t,f)dt-

O

Remark 3.2. Taking into account Remark 2.3, if we assume that f : [a,b] xR — R is
L'-Carathéodory, that there exist three positive constants ¢, d, s, with ¢ < d and s < p,

such that (j) and (jj) in Theorem 3.1 hold and, furthermore, that there exists a function
p € L([a,b]) such that

(Gi)) g(t, &) < u(t)(1 + |€]®) for almost every ¢ € [a,b] and for all £ € R,
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then, for each

22P~1d? /(b — a)P~ 'mp) 2vcP /((b— a)P~* Mp)

A€ b—(b—a)/4 b ’ b
fa+(b7a)/4 g(t7 d) dt — fa SUP\g\gc g(ta g) dt fa Sup|§|<c g(t’ 5) de

the problem (P) admits at least three generalized solutions.
The following is an example of an application of Theorem 3.1.
Example 3.3. The problem
{ — (' |P) = Ae™™ut?(13 — tu) (1 + S sinu/) + (1 + Lsina)],
u(0) =u(l) =0,
2 4

5> 31 In fact, the function
+ u satisfies all assumptions of Theorem 3.1 by choosing, for instance,

admits at least three non-trivial classical solutions for each A € |
g(t,u) = e”"ul?
c=1and d=2.

We now point out a particular case of Theorem 3.1, in which the function f has

separated variables and h is equal to 1. Given two non-negative continuous functions
a:la,b) = R, §:R = R, put

b—(b—a)/4

b '3
Am a)dt, ol ;:/ at)dt, B ::/0 B(z)dz (€ €R).

a+(b—a)/4

Theorem 3.4. Assume that there exist four positive constants ¢, d, i, s, with ¢ < d
and s < p, such that
B(c) A B(d)
k .
(9 ol =2 < T

(kk) B(€) < (1 +|€]°) for all € € R.

Then, for each

re | Bt ar ) e/ ap )
AB@ —aliB(©) '~ JaliB@ |’

the problem

(P1)

{ = (' P72)" = Xa(t)B(u),
u(a) =u(b) =0

admits at least three classical solutions.

Remark 3.5. In similar assumptions to those of Theorem 3.4 (with « constant), in [3]
(see Theorem 2.3) it was proved that there exists an open interval A C ]0, +oo[ such that,
for each A € A, the problem (P1) admits at least three solutions, which are uniformly
bounded in norm with respect to A. In the present case, we establish a precise interval
of parameters A for which the problem (P1) has three solutions.
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As a consequence of Theorem 3.4, we obtain the proof of Theorem 1.2 in the introduc-
tion.

Proof of Theorem 1.2. Fix b > 0 and pick

122P ¢p
" p Bld)
Since
Blz)

z—0+ Pl ’

there exists ¢ > 0 such that ¢ < d,

B(e) < mi 1 1B(d) 2°
min -
cP 14+2r-12 dr " brp) [’

and
922p P

> .
brp(B(d) — 2B(c))
Moreover, assumption (kk) of Theorem 3.4 follows easily from

lim @

rz—+oco x4

A

eR.

Hence, for each
1 2% qp

" p B@)
the problem

_ u/p—2u//:)\ w),
(I[P~ "u)" = AB(u) (P2)
u(0) =u(b) =0
admits at least two non-trivial classical solutions and, as a consequence, by choosing
, 920 gp )1/ P
b:=|(— , 3.4
(55w 34
we have the conclusion. a

Finally, we present a very easy example of an application of Theorem 1.2.

Example 3.6. Let 8: R — R be the function defined as follows:

Bu) = {U4’ ifus<t,

u?, ifu> 1.

Taking into account that b = 2(20)'/* (see (3.4) with p = 4 and d = 1), from Theorem 1.2
we obtain that, for every b > b, the problem

~ (P = B, )
u(0) =u(b) =0

admits at least two non-trivial classical solutions.
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