
Canad. J. Math. 2025, pp. 1–52
http://dx.doi.org/10.4153/S0008414X24000865
©The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is
properly cited.

2-classifiers via dense generators and
Hofmann–Streicher universe in stacks
Luca Mesiti
Abstract. We expand the theory of 2-classifiers, that are a 2-categorical generalization of subobject
classifiers introduced byWeber.The idea is to upgrademonomorphisms to discrete opfibrations.We
prove that the conditions of 2-classifier can be checked just on a dense generator.The study of what is
classified by a 2-classifier is similarly reduced to a study over the objects that form a dense generator.
We then apply our results to the cases of prestacks and stacks, where we can thus look just at the
representables. We produce a 2-classifier in prestacks that classifies all discrete opfibrations with
small fibres. Finally, we restrict such 2-classifier to a 2-classifier in stacks.This is the main ingredient
of a proof that Grothendieck 2-topoi are elementary 2-topoi. Our results also solve a problem posed
by Hofmann and Streicher when attempting to lift Grothendieck universes to sheaves.

1 Introduction

The notion of 2-classifier has been proposed by Weber in [20]. It is a 2-categorical
generalization of the concept of subobject classifier and thus the main ingredient of a
2-dimensional notion of elementary topos. In [20],Weber proposes aswell a definition
of elementary 2-topos. Although 2-dimensional elementary topos theory is still at its
beginning, we believe it has a great potential. Indeed, for example, elementary 2-topoi
could pave the way toward a 2-categorical logic and offer the right tools to study it.We
believe they could also be fruitful for theories of bundles in geometry.

In this paper, we contribute to expand 2-dimensional elementary topos theory.
We substantially reduce the work needed to prove that something is a 2-classifier,
and we present the main part of a proof that Grothendieck 2-topoi are elementary
2-topoi. The reason why we focus on 2-classifiers is that the rest of the definition of
elementary 2-topos proposed by Weber is yet to be ascertained. We hope that this
paper will contribute to reach a universally accepted notion of elementary 2-topos.
Weber’s idea for 2-categorical classifiers is that, moving to dimension 2, one can and
wants to classify morphisms with higher dimensional fibres. So monomorphisms
(or subobjects) are upgraded to discrete opfibrations in a 2-category, which have
been introduced by Street in [14]. Interestingly, a 2-classifier can also be thought
of as a Grothendieck construction inside a 2-category, thanks to Weber’s [20], see

Received by the editors February 29, 2024; revised September 02, 2024; accepted September 16, 2024.
AMS Subject Classification: 18B25, 18N10, 18F20, 18D30.
Keywords: Elementary topos, 2-category, classifier, stack, fibration.

https://doi.org/10.4153/S0008414X24000865 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X24000865
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4153/S0008414X24000865


2 L. Mesiti

also 2.1. Indeed the archetypal example of 2-classifier is given by the Grothendieck
construction (or category of elements), that exhibits the 2-category Cat of small
categories as the archetypal elementary 2-topos. We introduce the notion of good
2-classifier in Definition 2.15, which captures well-behaved 2-classifiers. The idea is
to keep as classifier a morphism with domain the terminal object, and upgrade the
classification process from one regulated by pullbacks to one regulated by comma
objects. Good 2-classifiers are closer to the point of view of logic, as they can still be
interpreted as the inclusion of a verum inside an object of generalized truth values.
Moreover, a classification process regulated by comma objects is sometimes more
natural and easier to handle. We also ask good 2-classifiers to classify all discrete
opfibrations that satisfy a fixed pullback-stable property P. In our examples, such a P
will be the property of having small fibres. Of course, the construction of the category
of elements, hosted by Cat , is a good 2-classifier, classifying all discrete opfibrations
(in Cat ) with small fibres. A problem with 2-classifiers is that it is quite hard and
lengthy to prove that something is a 2-classifier.

We prove that both the conditions of 2-classifier and what gets classified by a 2-
classifier can be checked just over the objects that form a dense generator. So that
the whole study of a would-be 2-classifier is substantially reduced. We also give a
concrete recipe to build the characteristic morphisms (i.e., the morphisms into the
universe that encode what gets classified).This is organized in the threeTheorems 3.2,
3.7 and 3.10; see also Corollaries 3.12 and 3.13. Dense generators capture the idea of
a family of objects that generate all the other ones via colimits in a nice way. The
preeminent example is given by representables in categories of presheaves. To have
a hint of the benefits offered by our theorems of reduction to dense generators, we
can look at the case of Cat . We have that the singleton category alone forms a dense
generator ofCat . All themajor properties of the Grothendieck construction are hence
deduced from the trivial observation that everything works well over the singleton
category (Example 3.15). The proof of our theorems of reduction to dense generators
uses our calculus of colimits in 2-dimensional slices, developed in [11]. Such calculus
generalizes to dimension 2 the well-known fact that a colimit in a 1-dimensional slice
is precisely themap from the colimit of the domains which is induced by the universal
property. It is based on the reduction of weighted 2-colimits to cartesian-marked oplax
conical ones, developed by Street in [15] and recalled in 2.4, and onF -category theory
(also called enhanced 2-category theory), for which we take as main reference Lack
and Shulman’s [10].

We then apply our theorems of reduction of the study of 2-classifiers to dense
generators to the case of 2-presheaves, i.e., prestacks. Our theorems allow us to
just consider the classification over representables. Yoneda lemma determines up
to equivalence the construction of a good 2-classifier in prestacks that classifies
all discrete opfibrations with small fibres. We explain how this involves discrete
opfibrations over representables, which offer a 2-categorical notion of sieve. Indeed,
the philosophy is to upgrade monomorphisms to discrete opfibrations. And sieves,
which can be characterized as subfunctors of representables, are hence upgraded to
discrete opfibrations over representables. Exactly as sieves are a key element for the
subobject classifier in presheaves, the 2-dimensional generalization of sieves described
above is a key element for the 2-classifier in prestacks.The only problem is that taking
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discrete opfibrations over representables only gives a pseudofunctor Ω which is not
a 2-functor and that a priori only lands in large categories. Thanks to our joint work
withCaviglia [3], we can apply an indexed version of theGrothendieck construction to
produce a nice concrete strictification of such pseudofunctor. Although it was already
known before [3] that any pseudofunctor can be strictified, by the theory developed
by Power in [13] and later by Lack in [9], the work of [3] can be applied to produce
an explicit and easy to handle strictification Ω̃ of Ω, which in addition lands in Cat .
Moreover, we will show in Section 5 that such strictification can also be restricted in a
natural way to a good 2-classifier in stacks. Explicitly, the 2-functor Ω̃ that we obtain
takes presheaves on slices (see Proposition 4.3). InTheorem4.14, we prove that Ω̃ gives
a good 2-classifier in prestacks that classifies all discrete opfibrations with small fibres.
A partial result on this direction is already in Weber’s [20]. Our result is in line with
Hofmann and Streicher’s [7], that uses a similar idea to lift Grothendieck universes to
presheaves, in order to interpret Martin–Löf type theory in a presheaf topos. It is also
in line with the recent Awodey’s [1], that captures the construction of the Hofmann
and Streicher’s universe in presheaves in a conceptual way. Our proof goes through
the bicategorical classification process given by the pseudofunctor Ω. We show that,
over representables, such classification is exactly the Yoneda lemma. We then use this
to prove that the strictification Ω̃ is a good 2-classifier in prestacks. Although some
points would be smoother in a bicategorical context, we believe that it is important
to show how strict the theory can be. In the case of prestacks, the strict classification
process, which involves an indexed Grothendieck construction, actually seems more
interesting than the bicategorical one, which reduces to the Yoneda lemma. In future
work,wewill adapt the results of this paper to the bicategorical context, using a suitable
bicategorical notion of classifier.

Finally, in Theorem 5.11, we restrict our good 2-classifier in prestacks to a good
2-classifier in stacks, that classifies again all discrete opfibrations with small fibres.
We achieve this by proving a general result of restriction of good 2-classifiers to nice
sub-2-categories (Theorem 3.24), involving factorization arguments and our theorems
of reduction to dense generators. Stacks are a bicategorical generalization of sheaves
and they were introduced by Giraud in [5]. Like sheaves, they are able to glue together
families of objects that are compatible under descent. But such descent compatibilities
are only asked up to isomorphism.And the produced global data then equally recovers
the starting local data up to isomorphism. Stacks are the right notion to use to gener-
alize Grothendieck topoi to dimension 2. Our result is thus the main part of a proof
that Grothendieck 2-topoi are elementary 2-topoi. As explained in Remark 2.37, we
consider strictly functorial stacks with respect to a subcanonical Grothendieck topol-
ogy. So that they form a full sub-2-category of the 2-category of 2-presheaves. While
our good 2-classifier in prestacks involves a 2-dimensional notion of sieves, our good
2-classifier in stacks involves a 2-dimensional notion of closed sieves. The idea is to
select, out of all the presheaves on slices considered in the definition of Ω̃, the sheaves
with respect to the Grothendieck topology induced on the slices.This restriction of Ω̃
is tight enough to give a stack ΩJ , but at the same time loose enough to still host the
classification process of prestacks.We prove that ΩJ is a good 2-classifier in stacks that
classifies all discrete opfibrations with small fibres. Our result solves a problem posed
by Hofmann and Streicher in [7]. Indeed, in a different context, they considered the
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same natural idea to restrict their analog of Ω̃ by taking sheaves on slices. However,
this did not work for them, as it does not give a sheaf. Only with a different approach
Streicher managed in [17] to construct a universe in sheaves. Our results show that
the natural restriction of Ω̃ to take sheaves on slices yields nonetheless a stack and
a good 2-classifier in stacks. The idea is that, in order to increase the dimension of
the fibres of the morphisms to classify, one should also increase the dimension of the
ambient. And thus stacks behave better than sheaves for the classification of small
families.

1.1 Outline of the paper

In Section 2, we recall 2-classifiers (2.1), dense generators (2.2), stacks (2.3) and
cartesian-marked oplax colimits (2.4). We also introduce good 2-classifiers (Defini-
tion 2.15).

In Section 3, we present a reduction of the study of a 2-classifier to dense generators
(Theorems 3.2, 3.7 and 3.10; see also Corollaries 3.12 and 3.13).We then prove a general
result of restriction of good 2-classifiers to nice sub-2-categories (Theorem 3.24).

In Section 4, we apply our theorems of reduction of the study of a 2-classifier
to dense generators to the case of prestacks. We thus produce a good 2-classifier in
prestacks that classifies all discrete opfibrations with small fibres (Theorem 4.14). We
also show a concrete recipe for the characteristic morphisms (Remark 4.16).

In Section 5, we applyTheorem 3.24 to restrict our good 2-classifier in prestacks to
a good 2-classifier in stacks, classifying again all discrete opfibrations with small fibres
(Theorem 5.11).

1.2 Notations

Throughout this paper, we fix Grothendieck universes U, V , and W such that U ∈
V ∈ W . We denote as Set the category of U-small sets, as Cat the 2-category of V -
small categories (i.e., categories such that both the collections of their objects and of
their morphisms are V -small) and as CAT the 2-category of W -small categories. So
thatSet ∈ Cat and the underlying categoryCat 0 ofCat is inCAT . Small categorywill
mean V -small category. Small fibres, for a discrete opfibration in Cat , will mean U-
small fibres. 2-categorywill mean a W -small Cat -enriched category. Small 2-category
will mean V -small 2-category.

We fix an arbitrary 2-category L with pullbacks along discrete opfibrations (see
Definition 2.2), comma objects and terminal object. We also fix a choice of such
pullbacks in L such that the change of base of an identity is always an identity.
Following the proofs, it will be clear that some results of this paper involving 2-
classifiers à la Weber work also without assuming comma objects, and that some
results involving good 2-classifiers (see Definition 2.15) work also without assuming
pullbacks along discrete opfibrations.

We will use the following notations.
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[C op ,Cat ] the (strict) functor 2-category from C op to Cat
[C op ,Cat ]oplaxcart the 2-category of 2-functors, cartesian-marked oplax natural

transformations and modifications
Ps [C op ,Cat ] the 2-category of pseudofunctors, pseudo-natural transforma-

tions and modifications
y ∶C →
[C op ,Cat ]

the 2-categorical Yoneda embedding

St (C , J) the full sub-2-category of [C op ,Cat ] on stacks with respect to
the Grothendieck topology J

G(F) ∶ ∫ F → C the 2-category of elements of a 2-functor F∶Aop → Cat (with A
a 2-category), or also the classical Grothendieck construction

(φ)B the fibre of an opfibration φ in Cat over an object B of the base
DOpFibL (F) the category of discrete opfibrations in a 2-category L over F
DOpFib P(F) the full subcategory of DOpFibL (F) on the discrete opfibra-

tions that satisfy a fixed pullback-stable property P; we will
denote as s the property of having small fibres

C /C the slice of a category C over C ∈ C
L /lax M the lax slice of a 2-category L over M ∈ L
dom the domain (2-)functor from a (lax) slice
1 the terminal object of a (2-)category; variant 1 for the singleton

category
Δ1 the constant at 1 presheaf
F ��⇒

pseudo
G a pseudo-natural transformation

F ���⇒
oplaxcart

G a cartesian-marked oplax natural transformation

limW F the enriched limit of F weighted by W ; variant colimW F for
colimits

oplaxcart-colimΔ1K the cartesian-marked oplax conical colimit of the 2-diagram K
f ○ g the composite of 1-cells or the vertical composition of 2-cells
α ∗ β the horizontal composition of 2-cells; variants α ∗ f and f ∗ α

for the whiskerings of a 2-cell α with a 1-cell f
idA the identity 1-cell on A; variants IdC for the identity (2-)functor

on C and id f for the identity 2-cell on a 1-cell f
A ↪�→

f f
B a fully faithful morphism in a 2-category or a fully faithful 2-

functor
M ⊆ L a full sub-2-category, i.e., an injective on objects and fully faithful

2-functor
− placeholder

2 Preliminaries

In this section, we recall some important concepts and results that we will use
throughout the paper. These include 2-classifiers, dense generators and stacks. As we
will need them to prove our theorems of reduction to dense generators of the study
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of 2-classifiers, we also recall cartesian-marked oplax conical colimits. Moreover, we
introduce the notion of good 2-classifier (Definition 2.15).

In Section 2.1, we recall the notion of 2-classifier. Weber’s idea (in [20]) is that a
2-classifier should be a discrete opfibration classifier.The definition of opfibration in a
2-category is due to Street [14], in terms of pseudo-algebras for a 2-monad. It is known
that opfibrations in a 2-category can be equivalently defined by representability, as
in Weber’s [20, Section 2.2]. In Definition 2.15, we introduce the notion of good 2-
classifier.

In Section 2.2, we briefly recall from Kelly [8, Chapter 5] (2-categorical) dense
generators and the preeminent example of representables in 2-presheaves. The idea
is that every object of a 2-category can be written as a nice colimit of a small family of
objects.

In Section 2.3, we recall the concept of stack, which is a bicategorical generalization
of sheaves. Stacks have been introduced by Giraud in [5]. Like sheaves, they are able to
glue together families of objects that are compatible under descent. But such descent
compatibilities are only asked up to isomorphism. The produced global data then
equally recovers the starting local data up to isomorphism.

Finally, in Section 2.4, we recall that the theory of weighted 2-colimits is equivalent
to the theory of cartesian-marked oplax conical colimits. We will use this to prove our
theorems of reduction to dense generators. Indeed cartesian-marked oplax conical
colimits are essentially conical and much easier to handle in our proofs. They are a
particular case of a general notion of (co)limit introduced by Gray in [6, Definition
I,7.9.1]. Street proved in [15, Theorems 14 and 15] that these colimits are weighted
colimits and that any weighted colimit can be reduced to one of this form. We gave
new, more elementary proofs of this in [12, Theorems 2.18 and 2.19].

2.1 2-classifiers

Weber’s idea is to define 2-classifiers by looking at the followingwell-known equivalent
definition of subobject classifier.

Definition 2.1 LetE be a category.A subobject classifier is amonomorphism i∶I ↪�→ Ω
in E such that for every F ∈ E the function

G i ,F ∶HomE (F , Ω) → Sub(F)
given by pulling back i is a bijection, where Sub(F) is the set of subobjects of F. When
this holds, I is forced to be the terminal object of E .

Toward a notion of 2-classifier, Weber proposed in [20] to upgrade the concept
of monomorphism to the one of discrete opfibration. The idea is that, moving to
dimension 2, i.e., increasing by 1 the dimension of the ambient, we want to increase
by 1 also the dimension of the fibres of the morphisms to classify. While injective
functions have as fibres either the singleton or the empty set, discrete opfibrations
have as fibres general sets. Exactly as the notion of injective function extends to the
one of monomorphism in any category, the notion of discrete opfibration extends to
the one inside any 2-category. This idea is closely connected with that of homotopy
level in Voevodsky’s univalent foundations, see [18, Chapter 7] and Voevodsky’s [19].

https://doi.org/10.4153/S0008414X24000865 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000865


2-classifiers via dense generators and Hofmann–Streicher universe in stacks 7

Exactly as Set is the archetypal elementary topos, Cat needs to be the archetypal
elementary 2-topos.AndCat hosts indeed a nice classification of discrete opfibrations,
given by the category of elements (or Grothendieck construction).

Definition 2.2 (Weber [20, Section 2.2], Street [14]) A morphism s ∶ G → F in L is a
discrete opfibration in L (over F) if for every X ∈ L the functor

L (X , G) s○− L (X , F)
induced between the hom-categories is a discrete opfibration in Cat .

We denote as DOpFibL (F) or just as DOpFib (F) the full subcategory of the
strict slice L /F on the discrete opfibrations over F. That is, a morphism between
discrete opfibrations s∶G → F and s′∶G′ → F is a morphism G → G′ that makes the
triangle with s and s′ commute. We denote as DOpFib P(F) the full subcategory of
DOpFib (F) on the discrete opfibrations that satisfy a fixed pullback-stable prop-
erty P.

Remark 2.3 By definition, a discrete opfibration s∶G → F inL is required to lift every
2-cell θ∶s ○ a �⇒ b to a unique 2-cell θ

a ∶a �⇒ θ∗a.We can draw the following diagram
to say that s ○ θ∗a = b and s ⋆ θa = θ.

X G

G
X F

a

θ∗a
s

sa

b

θ a

θ

Remark 2.4 Discrete opfibrations in L are stable under pullbacks. Indeed L (X , −)
preserves pullbacks (as it preserves all limits, because it is a representable) and discrete
opfibrations in Cat are stable under pullbacks.

Remark 2.5 Applying Definition 2.2 to L = Cat , we obtain a notion that is equiva-
lent to the usual one of discrete opfibration. This is essentially because for L = Cat it
suffices to require the above liftings for X = 1. We are then able to lift entire natural
transformations θ componentwise.

The following proposition from our joint work with Caviglia [3] extends the idea of
Remark 2.5 to prestacks. LetC be a small category and consider the functor 2-category
[C op ,Cat ] (i.e., the 2-category of prestacks).
Proposition 2.6 [3, Proposition 3.5] A morphism s ∶ G → F in [C op ,Cat ] (that is, a
2-natural transformation s) is a discrete opfibration in [C op ,Cat ] if and only if for every
C ∈ C the component sC of s on C is a discrete opfibration in Cat .

Recall from [3] also that Proposition 2.6 allows us to define having small fibres for
a discrete opfibration in [C op ,Cat ].
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Definition 2.7 [3, Definition 3.7] A discrete opfibration s∶G → F in [C op ,Cat ] has
small fibres if for every C ∈ C the component sC of s on C has small fibres.

Remark 2.8 [3, Remark 3.8] The property of having small fibres for a discrete
opfibration in [C op ,Cat ] is stable under pullbacks. Indeed taking components on
C ∈ C preserves 2-limits in 2-presheaves and discrete opfibrations in Cat with small
fibres are stable under pullbacks.

We denote as DOpFib s
[C op ,Cat] (F) the full subcategory of DOpFib [C op ,Cat] (F)

on the discrete opfibrations with small fibres (that is, denoting the property of having
small fibres as s).

Proposition 2.9 Let p∶E → B be a discrete opfibration in L . For every F ∈ L , pulling
back p extends to a functor

Gp,F ∶L (F , B) → DOpFib (F).
Proof Given a morphism z∶F → B in L , consider the chosen pullback in L

Gz E

F B

⌟ z̃

sz p

z

We define Gp,F(z) to be sz , which is a discrete opfibration in L by Remark 2.4.
Given a 2-cell α∶z �⇒ z′∶F → B, we induce Gp,F(α) by lifting the 2-cell

Gz F Bsz
z

z′

α

to z̃ along the discrete opfibration p. We obtain a unique 2-cell

Gz E
z̃

v

α̃

such that p ○ v = z′ ○ sz and pα̃ = αsz . We define Gp,F(α) to be the morphism from
Gz to Gz′ induced by sz and v via the universal property of the pullback Gz′ . We may
represent this with the following diagram:

Gz

Gz′ E

F
F B

Gp,F(α)

z̃

sz
z̃′

α̃

pzsz
′

z′

α

(2.1)

It is straightforward to show that Gp,F is a functor, using the universal property of the
pullback and the uniqueness of the liftings through the discrete opfibration p. ∎
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Notation 2.10 Given a morphism z∶F → B in L , we will denote as Gz
p,F or just as Gz

the domain of the discrete opfibration Gp,F(z). We will also often draw the action of
Gp,F on morphisms as in the diagram of Equation (2.1). Sometimes, we will denote the
functor Gp,F as Gp.

Proposition 2.11 [3, Proposition 3.9] The assignment F ∈ L ↦ DOpFib (F) ∈ CAT
extends to a pseudofunctor

DOpFib (−) ∶Lop → CAT .

Moreover this restricts to a pseudofunctor DOpFib P(−) that sends F ↦
DOpFib P(F).
Proof (Definition of the assignment) On the underlying category of Lop, we define
DOpFib (−) as the restriction of the pseudofunctor given by the pullback (thanks to
Remark 2.4). So, given a morphism H

y�→ F in L , we define

DOpFib (y) ∶= y∗∶DOpFib (F) → DOpFib (H) .
Given a 2-cell α∶y �⇒ y′∶H → F in L , we define DOpFib (α) = α∗∶y∗ → (y′)∗ as

the natural transformation whose component on a discrete opfibration s∶G → F in L
is Gs ,H(α). ∎
Proposition 2.12 Let p∶E → B be a discrete opfibration in L . The functors Gp,F are
pseudo-natural in F ∈ L .

Proof The proof is straightforward, using the universal property of the pullback and
the uniqueness of the liftings through a discrete opfibration. ∎
Definition 2.13 (Weber [20, Definition 4.1]) A 2-classifier in L is a discrete opfibra-
tion p∶E → B in L such that for every F ∈ L the functor

Gp,F ∶L (F , B) → DOpFib (F)
is fully faithful.

In that case, we say that a discrete opfibration s∶G → F inL is classified by p (or that
p classifies s) if s is in the essential image of Gp,F , and we call characteristic morphism
of s a morphism z∶F → B such that Gp,F(z) ≅ s.

Remark 2.14 While Definition 2.1 asks for a universal monomorphism, Defini-
tion 2.13 asks for a universal discrete opfibration. The classification process is kept to
be regulated by pullbacks.The condition to have a bijection is upgraded in dimension
2 to ask Gp,F to be an equivalence of categories with its essential image. Notice that
Definition 2.13 allows for a classification of a smaller class of discrete opfibrations. In
dimension 1, this idea brought for example to the concept of quasitopos.

However, Definition 2.13 loses the interpretation of the subobject classifier as
picking a verum inside an object of generalized truth values. Indeed the domain of
a 2-classifier is not forced at all to be the terminal object. In order to keep such point
of view, which is useful for categorical logic, we propose to upgrade the 1-dimensional
classification process, which is regulated by pullbacks, to one regulated by comma
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objects. This is slightly less general than Definition 2.13, but with better properties
(see the following two remarks).

Definition 2.15 Let P be a fixed pullback-stable property P for discrete opfibrations
in L . A good 2-classifier in L (with respect to P) is a morphism ω∶1→ Ω in L such
that for every F ∈ L the functor

Ĝω ,F ∶L (F , Ω) → DOpFib (F)
given by taking comma objects from ω is fully faithful and forms an equivalence
of categories when restricting the codomain to DOpFib P(F). (In particular, we are
asking that Ĝω ,F lands in DOpFib P(F).)

In the following two remarks, we show that Ĝω ,F is indeed a functor which lands
in DOpFib (F) and that good 2-classifiers are 2-classifiers enjoying better properties.
Remark 2.16 Taking comma objects fromω is equivalent to pulling back the lax limit
τ of the arrow ω, which serves as a replacement.

G 1

F Ω

Ĝω ,F(z) ωcomma

z

=
G Ω● 1

F Ω Ω

⌟
Gτ ,F(z) τ ω

comma

z

Moreover, by Weber’s [20, Theorem 2.11], the span with vertex Ω● formed by τ and
the map to 1 is a bisided discrete fibration. And we get that τ is a discrete opfibration.
(In L = Cat , it is also known that such a τ is the free opfibration on the functor ω.)
Explicitly, the lifting of θ∶τ ○ a → b to a is calculated by applying the universal property
of the comma object. Indeed θ∗a is induced by

X Ω● 1

Ω Ω
b

a

τθ commaω

and θ
a ∶a �⇒ θ∗a is then induced by the pair of 2-cells formed by the identity (between

X and 1) and θ (between X and Ω).
By Remark 2.4, it follows that Ĝω ,F lands in DOpFib (F). Moreover, Ĝω ,F lands

in DOpFib P(F) if and only if τ satisfies P. It is easy to see that, up to choosing
appropriate representatives of the comma objects, Ĝω ,F = Gτ ,F . So that if ω is a good
2-classifier, τ is a 2-classifier.
Remark 2.17 Good 2-classifiers enjoy better properties than 2-classifiers. They are
closer to the point of view of categorical logic, as they can still be thought of as
the inclusion of a verum inside an object of generalized truth values. Moreover,
a classification process regulated by taking comma objects from a morphism that
has the terminal object as domain is sometimes easier to handle. As an example,
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the assignment of Ĝω ,F on morphisms is just induced by the universal property of
the comma object, while for Gp,F , in Proposition 2.9, we had to consider liftings
along a discrete opfibration.Moreover such classification process regulated by comma
objects offers another justification for the idea of upgrading subobjects to discrete
opfibrations. Indeed discrete opfibrations are what gets produced by taking comma
objects from a morphism that has the terminal object as domain.

In our examples, P will be the property of having small fibres. In some sense, our
good 2-classifiers will classify “all possible morphisms”, as the Ĝω ,F ’s are required to
be equivalences of categories.

Example 2.18 Cat is the archetypal example of 2-category endowed with a (good)
2-classifier. Consider indeed ω = 1∶1 → Set . For every B ∈ Cat , the functor

Ĝω ,B ∶Cat (B , Set) → DOpFib (B)
is precisely the Grothendieck construction (or category of elements). It is well-known
that this forms an equivalence of categories when restricting the codomain to be
the full subcategory DOpFib s(B) of DOpFib (B) on the discrete opfibrations with
small fibres. So that 1∶1 → Set is a good 2-classifier in Cat .

E 1

B Set

∀p
disc opfib

small fibres comma
1

∃χp
taking fibres

Notice that the lax limit of the arrow ω is given by the forgetful functor τ∶Set ● →
Set from pointed sets to sets.

Remark 2.19 In light of this archetypal example, we can think of a 2-classifier as a
Grothendieck construction inside a 2-category.

Notation 2.20 We will often write as τ∶Ω● → Ω any 2-classifier or would-be 2-
classifier, having in mind the archetypal example of Cat .

Remark 2.21 Upgrading monomorphisms to discrete opfibrations, one could try to
upgrade Sub(F) to a category of isomorphism classes of discrete opfibrations over F. It
is possible to form such a category and almost the entire reduction to dense generators
of the study of 2-classifiers would equally work (if accordingly adjusted). However,
there is one point, in Theorem 3.7, that does not seem to work well with this choice.
We will give more details in Remark 3.8. We believe it is more natural and fruitful to
work without isomorphism classes.

2.2 Dense generators

In Section 3, we will reduce to dense generators the study of 2-classifiers. Here we
briefly recall what a (2-dimensional) dense generator is. The main reference we take
for this is Kelly’s [8, Chapter 5].
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12 L. Mesiti

The basic idea behind the concept of generator of a 2-category L is that of a family
of objects that builds all the objects of L via weighted 2-colimits.

Definition 2.22 A fully faithful 2-functor I∶K → L is a naive generator if every F ∈ L
is a weighted 2-colimit in L of a diagram which factors through K .

Definition 2.23 [8, Section 5.1] A 2-functor I∶Y→ L withY small is a dense generator
(or also just dense) if the restricted Yoneda embedding

Ĩ ∶ L �→ [Yop ,Cat ]
F ↦ L (I(−), F)

is (2-)fully faithful.

Remark 2.24 Of course the Yoneda embedding is fully faithful. And we may inter-
pret this by saying that considering all morphisms from any object into F we get the
whole information ofF.The idea of a dense generator is thatmorphisms froma smaller
family of objects are enough.

Definition 2.25 Let I∶Y→ L be a 2-functor. A weighted 2-colimit in L is called I-
absolute if it is preserved by Ĩ∶L → [Yop ,Cat ].

When I∶Y→ L is fully faithful, we can characterize density of I in terms ofweighted
2-colimits in L .

Theorem 2.26 [8, Theorem 5.19] Let I∶Y→ L be a fully faithful 2-functor. The follow-
ing are equivalent:
(i) I is a dense generator;
(ii) every F ∈ L is an I-absolute weighted 2-colimit in L of a diagram which factors

through Y.

Remark 2.27 We can thus interpret density of a fully faithful I∶Y→ L as the request
that all objects of L are nice weighted 2-colimits of objects of Y. So this is stronger
than being a naive generator.

Example 2.28 Let C be a small 2-category. The Yoneda embedding y ∶C →
[C op ,Cat ] is a dense generator. That is, representables form a dense generator of the
2-category of 2-presheaves. Indeed it is well-known that every 2-presheaf is a weighted
2-colimit of representables, weighted by itself. And y-absoluteness is automatic as ỹ is
essentially the identity.

In particular the singleton category 1 is a dense generator of Cat .

2.3 Stacks

We consider Cat -valued stacks that, for simplicity, have a 1-category as domain.
The stacks we consider have the usual gluing condition that gives an equivalence of
categories between the image on an object C and each category of descent data on C.
We recall below the explicit gluing conditions.

We will use the language of sieves, rather than the one of covering families. This
simplifies the form of the conditions of stack and will make it easier for us to prove
that our 2-classifier in stacks is indeed a stack.Moreover, sieves are also what forms the
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subobject classifier of sheaves, in dimension 1. The less standard equivalent definition
of stack that wewrite below can be obtained unravelling Street’s [16, Section 2] abstract
definition of stack, in the (more usual) case of a 1-dimensional Grothendieck topology.

Definition 2.29 Let C be a category. A sieve S on C ∈ C is a collection of morphisms
with codomain C that is closed under precomposition with any morphism of C .

Equivalently, a sieve S on C is a subfunctor of the representable y(C).
Themaximal sieve is the collection of all morphisms with codomain C, or equiva-

lently the identity on y(C).
Notation 2.30 Given a pseudofunctor F∶C op → Cat and a morphism g∶D′ → D in C ,
we denote as g∗ the functor F(g).

The following definition upgrades the concept of matching family to dimension 2.
The compatibility under descent of the local data is up to isomorphism.

Definition 2.31 Let F∶C op → Cat be a pseudofunctor and let S be a sieve on C ∈ C .
A descent datum for F with respect to S is an assignment

(D f�→ C) ∈ S m
↦�→ M f ∈ F(D)

together with, for all composable morphisms D′
g�→ D

f�→ C with f ∈ S, an isomor-
phism

φ f ,g ∶g∗M f
≃��→ Mg○ f

such that, for all composable morphisms D′′ h�→ D′
g�→ D

f�→ C with f ∈ S, the follow-
ing cocycle condition holds:

h∗g∗M f h∗M f ○g

(g ○ h)∗M f M f ○g○h .

≅

h∗φ f ,g

φ f○g ,h

φ f ,g○h

The following definition upgrades the concept of amalgamation for a matching
family to dimension 2. The global data produced only recovers the starting local data
up to isomorphism.

Definition 2.32 In the notation of Definition 2.31, a descent datum m for F with
respect to S is effective if there exists an object M ∈ F(C) together with, for every
morphism f ∶D → C in S, an isomorphism

ψ f ∶ f ∗M ≃��→ M f

such that, for all composable morphisms D′
g�→ D

f�→ C with f ∈ S

https://doi.org/10.4153/S0008414X24000865 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000865


14 L. Mesiti

g∗ f ∗M g∗M f

( f ○ g)∗M M f ○g .

≅

g∗ψ f

φ f ,g

ψ f○g

Remark 2.33 Notice that the square in Definition 2.32 is very similar to the one of
Definition 2.31. An objectM that makes a descent datumm effective plays the role of
an Mid , although the identity belongs to the sieve if and only if the sieve is maximal.

Definition 2.34 Let C be a category equipped with a Grothendieck topology J. A
pseudofunctor F∶C op → Cat is a stack (with respect to J) if it satisfies the following
three conditions for every C ∈ C and covering sieve in J on C:
(i) (gluing of objects) every descent datum for F with respect to S is effective;
(ii) (gluing of morphisms) for all X ,Y ∈ F(C) and for every assignment to each

f ∶D → C in S of a morphism h f ∶ f ∗X → f ∗Y in F(D) such that g∗(h f ) = h f ○g

for all composable morphisms D′
g�→ D

f�→ C, there exists a morphism h∶X → Y
such that f ∗h = h f ;

(iii) (uniqueness of gluings of morphisms) for all X ,Y ∈ F(C) and morphisms h, k ∶
X → Y such that f ∗h = f ∗k for every f ∶D → C in S, it holds that h = k.

Remark 2.35 Conditions (ii) and (iii) of Definition 2.34 may be interpreted as
saying that F is a sheaf on morphisms.

Theorem 2.36 (Street [16, Section 2]) Stacks form a bireflective sub-2-category of
the 2-category Ps [C op ,Cat ] of pseudofunctors, pseudo-natural transformations and
modifications.

Remark 2.37 As the notion of 2-classifier is rather strict, we will consider strictly
functorial stacks, so that they form a full sub-2-category of the functor 2-category
[C op ,Cat ]. We will also take a subcanonical Grothendieck topology, so that all
representables are sheaves (and hence stacks). We keep however the usual gluing
conditions written above, that give an equivalence of categories between F(C) and
each category of descent data on C with respect to a covering sieve S.

In future work, we will produce a suitable classifier for the usual pseudofunctorial
stacks.

2.4 Cartesian-marked oplax conical colimits

In Section 3, to prove our theorems of reduction to dense generators, we will need a
calculus of colimits in 2-dimensional slices. We explored such a calculus in [11]. A key
ingredient is the reduction of weighted 2-colimits to cartesian-marked oplax conical
ones, that we now recall from Street’s [15,Theorem 15]. See also our [12,Theorem 2.19]
for new, more elementary proofs. Such reduction is regulated by the 2-category of
elements construction, which is a natural extension of the Grothendieck construction
that admits Cat -valued presheaves on 2-categories (see [15, 12]).
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Cartesian-marked oplax conical colimits are a particular case of a general notion of
(co)limit introduced by Gray in [6, Definition I,7.9.1]. More recently, Descotte, Dubuc,
and Szyld brought attention to (a pseudo version of) this concept in [4], with the name
sigma limits.

Definition 2.38 Let W ∶Aop → Cat be a 2-functor with A small, and consider 2-
functors M ,N ∶(∫W)op → D , where G(W) ∶ ∫W → A is the 2-category of elements
of W. A cartesian-marked oplax natural transformation α from M to N, denoted
α∶M ���⇒

oplaxcart
N , is an oplax natural transformation α from M to N such that the

structure 2-cell on every morphism ( f , id)∶(A,W( f )(X)) ←� (B, X) in (∫W)op is
the identity.

Definition 2.39 Let W ∶Aop → Cat be a 2-functor with A small, and let F∶ ∫W →
C be a 2-functor. The cartesian-marked oplax conical 2-colimit of F, which we will
denote as oplaxcart-colimΔ1F, is (if it exists) an object C ∈ C together with a 2-natural
isomorphism of categories

C (C ,U) ≅ [(∫W)op ,Cat]
oplaxcart

(Δ1, C (F(−),U)) ,

where [(∫W)op ,Cat]
oplaxcart

is the 2-category of 2-functors from (∫W)op to Cat ,
cartesian-marked oplax natural transformations and modifications.

When oplaxcart-colimΔ1F exists, the identity on C provides a cartesian-marked
oplax natural transformation μ∶Δ1���⇒

oplaxcart
C (F(−), C) called the universal cartesian-

marked oplax cocone.

Theorem2.40 (Street [15,Theorem 15], new proof in our [12,Theorem2.19]) Every
weighted 2-colimit can be reduced to a cartesian-marked oplax conical one. Given 2-
functors F∶A → C andW ∶Aop → Cat with A small,

colimW F ≅ oplaxcart-colimΔ1(F ○ G(W))
where G(W) ∶ ∫W → A is the 2-category of elements ofW. ∎
Proposition 2.41 [12, Remark 2.20] A weighted 2-colimit is preserved or reflected
precisely when its associated cartesian-marked oplax conical colimit is so.

Example 2.42 Every 2-presheafW ∶Aop → Cat with A small can be expressed as

W ≅ colimW y ≅ oplaxcart-colimΔ1(y ○G(W)).
The universal cartesian-marked oplax cocone is given by

∀
(B, X′)

(A, X)
( f ,ν) in ∫W

y(A) W

y(B)

⌈X⌉

y( f )

⌈X′⌉

⌈ν⌉
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16 L. Mesiti

In particular, takingA = 1,W is a small categoryD andG(W) isD → 1.Weobtain
that 1 is “cartesian-marked oplax conical dense”, building D with universal cocone

∀ D

C
f in D

1 D

1

C

D

f

3 Reduction of 2-classifiers to dense generators

In this section, we present a novel reduction of the study of a 2-classifier to dense
generators. This is organized in the three Theorems 3.2, 3.7, and 3.10. More precisely,
we prove that all the conditions of 2-classifier (see Definition 2.13) can just be checked
on those objects F that form a dense generator (see Definition 2.23). The study of
what is classified by a 2-classifier is similarly reduced to a study over the objects that
form a dense generator. We also give a concrete recipe to build the characteristic
morphisms.

This result offers great benefits. For example, applied toCat , it reduces all themajor
properties of the Grothendieck construction to the trivial observation that everything
works well over the singleton category (see Example 3.15).

We will apply our theorems of reduction to dense generators of this section to the
cases of 2-presheaves (i.e., prestacks) and stacks, in Sections 4 and 5.This will allow us
to find a good 2-classifier in 2-presheaves that classifies all discrete opfibrations with
small fibres and to restrict it to a good 2-classifier in stacks.

InTheorem 3.24, we prove a general result of restriction of good 2-classifiers to nice
sub-2-categories, involving factorization arguments and our theorems of reduction to
dense generators. This is what we will use to produce our good 2-classifier in stacks.

Throughout this section, we fix a discrete opfibration τ∶Ω● → Ω in L . Recall from
Definition 2.13 that τ is a 2-classifier if for every F ∈ L the functor

Gτ ,F ∶L (F , Ω) → DOpFib (F)

is fully faithful. And that, provided that this is the case, the essential image of such
functors precisely represents which discrete opfibrations are classified.

The following proposition will often be useful.

Proposition 3.1 Let p∶E → B be a discrete opfibration in L . For every pair of compos-
able morphisms H

y�→ F z�→ B in L , the pseudo-naturality of Gp,− (see Proposition 2.12)
gives isomorphisms

Gp,H(z ○ y) ≅ y∗Gp,F(z) = GGp,F(z),H(y),(3.1)

where y∗ is the functor DOpFib (y) defined in the proof of Proposition 2.11.
Moreover, given a diagram
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H F B
y

y′

z

z′

α β

in L , the isomorphisms above form the following two commutative squares:

Gp,H(z ○ y) GGp,F(z),H(y)

Gp,H(z ○ y′) GGp,F(z),H(y′)
Gp,H(z α)

≃
GGp,F (z),H(α)

≃

Gp,H(z ○ y) GGp,F(z),H(y)

Gp,H(z′ ○ y) GGp,F(z′),H(y)
Gp,H(β y)

≃
y∗Gp,F(β)

≃

Proof The proof is straightforward. The first square is given by the 2-dimensional
part of the pseudo-naturality ofGp,− applied to the 2-cell α, whereas the second square
is given by the naturality in z of the isomorphisms of Equation (3.1). ∎

We now present the first of our three theorems of reduction to dense generators.
This reduces the study of the faithfulness of the functors Gτ ,F . Such first theorem is
much easier than the other two and actually works with any naive generator.

We also notice that injectivity on objects of the functors Gτ ,F can be reduced in a
similar way, although this is less interesting for us.

Theorem 3.2 Let Y be a full subcategory of L . If for every Y ∈ Y
Gτ ,Y ∶L (Y , Ω) → DOpFib (Y)

is faithful, then for every F in the closure of Y in L under weighted 2-colimits, also

Gτ ,F ∶L (F , Ω) → DOpFib (F)
is faithful.

In particular, if Y is a naive generator of L and Gτ ,Y is faithful for every Y ∈ Y, then
Gτ ,F is faithful for every F ∈ L .

Proof Let K∶I→ L be a 2-diagram which factors through Y and has a weighted 2-
colimit F in L , with weight W ∶ Iop → Cat . Call Λ∶W �⇒ L (K(−), F) the universal
cocylinder of such colimit.

In order to prove that Gτ ,F is faithful, take two arbitrary 2-cells in L

F Ω
z

z′

α and F Ω
z

z′
α′

such that Gτ ,F(α) = Gτ ,F(α′)∶Gz → Gz′ . We prove that α = α′.
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As F = colimWK with universal cocylinder Λ, it suffices to show that the two
modifications

W L (K(−), F) L (K(−), Ω)Λ

z○−

z′○−

α∗−

and (α′ ∗ −)Λ are equal, as we then conclude by the (2-dimensional) universal
property of the weighted 2-colimit F.

It then suffices to prove that, given arbitrary i ∈ I and X ∈W(i),
⎛⎜⎜⎝

K(i) F ΩΛ i(X)
z

z′

α
⎞⎟⎟⎠

=
⎛⎜⎜⎝

K(i) F ΩΛ i(X)
z

z′
α′

⎞⎟⎟⎠
But as K(i) ∈ Y and Gτ ,K(i) is faithful by assumption, it then suffices to show that

Gτ ,K(i) (α Λ i(X)) = Gτ ,K(i) (α′ Λ i(X)) .(3.2)

By Proposition 3.1, we can write Gτ ,K(i) (α Λ i(X)) as the composite

Gτ ,K(i)(z ○ Λ i(X)) ≅ Λ i(X)∗ (Gτ ,F(z))Λ i(X)∗(Gτ ,F(α))�������→ Λ i(X)∗ (Gτ ,F(z′))
≅ Gτ ,K(i)(z′ ○ Λ i(X))

and analogously for α′. Since such composites for α and for α′ are equal, we conclude
that equation (3.2) holds. ∎
Remark 3.3 In order to prove our second and third theorems of reduction to dense
generators, we apply our calculus of colimits in 2-dimensional slices, that we explored
in [11]. Such calculus generalizes to dimension 2 the well-known fact that a colimit in a
1-dimensional slice is precisely themap from the colimit of the domains of the diagram
which is induced by the universal property. It is based on the reduction of weighted
2-colimits to cartesian-marked oplax conical ones, recalled in Section 2.4, and on F -
category theory (also called enhanced 2-category theory), for which we take as main
reference Lack and Shulman’s [10].

We first need to compare, given p a discrete opfibration inL , the functorGp,F with
the 2-functor p∗ of change of base between lax slices introduced in [11].

Proposition 3.4 [11] Let p∶E → B be a discrete opfibration in L . Then pulling back
along p extends to a 2-functor

p∗∶L /lax B → L /lax E
.

Moreover, considering the canonical F -category structure on the lax slice, with the
tight part given by the strict slice, τ∗ is an F -functor.

Proof (Definition of the assignment) Given z∶F → B inL , we define p∗z as the upper
morphism of the chosen pullback square in L on the left below.
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Given then a morphism (α̂, α)∶z → z′ in L /lax B as in the middle below, we can lift
the 2-cell in L on the right below

Gz E

F B

⌟
p∗z

Gp,F(z) p

z

F F′

B

α̂

z z′
α

Gz E

F B

F′

p∗z

Gp,F(z) p

α̂

z

α
z′

along the discrete opfibration p, producing the unique 2-cell p∗α∶p∗z �⇒ v∶Gz →
E such that p ○ v = z′ ○ α̂ ○Gp,F(z) and p ∗ p∗α = α ∗Gp,F(z). By the universal
property of the pullback Gz′ of p and z′, we factorize v through p∗z′, obtaining a
morphism p̂∗α∶Gz → Gz′ .We define p∗(α̂, α) to be the upper triangle in the following
commutative solid:

Gz

Gz′ E

F
F′ B

p̂∗α

p∗z

Gp,F(z)
p∗z′

p∗α

p

α̂

zGp,F′(z
′)

z′

α

(3.3)

Given a 2-cell δ∶(α̂, α) → (β̂, β)∶z → z′ in L /lax B, we define p∗δ to be the unique
lifting of the 2-cell δ ∗Gp,F(z) along the Grothendieck opfibration Gp,F′(z′). ∎
Remark 3.5 In order to apply the results of [11], we need to compare dom ○p∗ with
dom ○Gp,F , given p∶E → B a discrete opfibration in L .

For every z∶F → B in L ,

dom(p∗z) = dom(Gp,F(z)).
Given (id, α)∶z → z′ in L /lax B, which is just α∶z �⇒ z′∶F → B, we have that

dom(p∗(id, α)) = dom(Gp,F(α))
by comparing the diagrams of Equations (2.1) and (3.3).

Given a general (α̂, α)∶z → z′ in L /lax B, we can still express dom(p∗(α̂, α)) =
p̂∗α in terms of dom(Gp,F(α)). Indeed consider the total pullback R of p with the
composite z′ ○ α̂ and the composite pullback S as below

S Gz′ E

F F′ B

⌟
Gp(z′)∗ α̂

GGp(z′)(α̂)
⌟

p∗z′

Gp(z′) p

α̂ z′
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Call i the induced isomorphism between R and S. Comparing the diagrams of
Equations (2.1) and (3.3) we obtain that

dom(p∗(α̂, α)) = Gp,F(z′)∗α̂ ○ i ○ dom(Gp,F(α))
The following constructionwill be useful to prove our second and third theorems of

reduction to dense generators. It is based on our calculus of colimits in 2-dimensional
slices, explored in [11].

Construction 3.6 Let I∶Y→ L be a fully faithful dense generator of L , and let F ∈ L .
ByTheorem 2.26, there exist a 2-diagram J∶I→ L which factors through Y and a weight
W ∶Iop → Cat such that

F = colimW J

in L and this colimit is I-absolute. By Theorem 2.40, the 2-diagram K ∶= J ○
G(W) ∶ ∫W → L factors through Y and is such that

F = oplaxcart-colimΔ1K .

Moreover this colimit is still I-absolute by Proposition 2.41. Call

Λ∶Δ1���⇒
oplaxcart

L (K(−), F)

the universal cartesian-marked oplax cocone that presents such colimit.
Consider now a discrete opfibration p∶E → B in L , a morphism z∶F → B and the

chosen pullback in L

Gz E

F B

⌟
p∗z

Gp,F(z) p

z

We want to exhibit Gz as a cartesian-marked oplax conical colimit of a diagram
constructed from K and Λ.

By [11], we can construct from K and Λ a 2-diagram K′z = K′∶ ∫W → L /lax B and a
universal cartesian-marked oplax cocone Λ′z = Λ′ which exhibits

F

B
z = oplaxcart-colimΔ1K

B
z = oplaxcart-colimΔ1K′

in the lax slice L /lax B. Explicitly, K′ is the 2-diagram that corresponds to the cartesian-
marked oplax cocone

λz ∶Δ1���⇒
oplaxcart

L (K(−), B) ∶(∫W)op → Cat
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associated with z. That is,

K′ ∶ ∫W �→ E /lax B
(C , X)

(D, X′)
( f ,ν) ↦

K(C , X) K(D, X′)

B

K( f ,ν)

λz(C ,X) λz
(D ,X′)

λzf ,ν

δ ↦ F(δ)
Considering the canonical F -category structure on ∫W, with the tight part given by the
morphisms of type ( f , id), we have that K′ is an F -diagram.

The universal cartesian-marked oplax cocone Λ′ has component on (C , X) given by
the identity filled triangle (which is thus a tight morphism in L /lax B)

K(C , X) F

B

Λ(C ,X)

λz(C ,X)
z

Then Λ′f ,ν = Λ f ,ν for every morphism ( f , ν) in ∫W.
By [11], the 2-functor

p∗∶L /lax B → L /lax E
preserves the colimit z = oplaxcart-colimΔ1K′, since K′ is an F -diagram, Λ′ has tight
components and the domain of such colimit is F = oplaxcart-colimΔ1K, which is I-
absolute.Then again by [11] the domain 2-functor dom ∶L /lax E → L preserves the latter
colimit p∗(z), since p∗ is an F -functor. We obtain that dom ○p∗ ○ Λ′ is a universal
cartesian-marked oplax cocone that presents

Gz = oplaxcart-colimΔ1(dom ○p∗ ○ K′).
Explicitly, given (D, X′) ( f ,ν)←��� (C , X) in ∫W, we have that dom (p∗(Λ′(C ,X))) is

the unique morphism into the pullback Gz induced by

Q(C ,X)

Gz E

K(C , X)
F B

Gp(K′(C ,X))

p∗K′(C ,X)

p∗z

p

Λ(C ,X)

K′(C ,X)
Gp(z)

z

Then dom (p∗(Λ′f ,ν)) is the unique lifting along the discrete opfibration Gp,F(z) of
the 2-cell Λ f ,ν ∗Gp,K(C ,X) (K′(C , X)) to dom (p∗(Λ′(C ,X))).

Notice that in particular this construction can be applied to z = idF , exhibiting the
domain of any discrete opfibration over F as a cartesian-marked oplax conical colimit
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(starting from K and Λ). Remember that we chose pullbacks in L such that the change
of base of an identity is always an identity. Notice also that, given z∶F → B,

λz = (z ○ −) ○ λid
Whence we can express the F -functor K′z constructed from z in terms of the one
constructed from id:

K′z = (z ○ −) ○ K′id
Then the components and the structure 2-cells of Λ′z and Λ′id have the same domains,
which determine them.

Wenow present the second of our three theorems of reduction to dense generators.
This reduces the study of the fullness of the functors Gτ ,F , provided that we already
know their faithfulness. Indeed such a theorem builds over Theorem 3.2.

Theorem 3.7 Let I∶Y→ L be a fully faithful dense generator of L . If for every Y ∈ Y
Gτ ,I(Y)∶L (I(Y), Ω) → DOpFib (I(Y))

is fully faithful, then for every F ∈ L also

Gτ ,F ∶L (F , Ω) → DOpFib (F)
is full, and hence fully faithful by Theorem 3.2, so that τ is a 2-classifier in L .

Proof Let F ∈ L ; we prove that Gτ ,F is full. Consider then two morphisms z, z′∶F →
Ω inL and amorphism h∶Gτ ,F(z) → Gτ ,F(z′) inDOpFib (F). We search for a 2-cell
α∶z �⇒ z′∶F → Ω such that Gτ ,F(α) = h. The idea is to write F as a colimit and define
α by giving its “components”, which we can produce by the fullness of the functors
Gτ ,I(Y) with the Y ’s in Y that generate F.

By Theorem 2.26, Theorem 2.40 and Proposition 2.41, there exists a 2-diagram
K∶ ∫W → L which factors through Y and a universal cartesian-marked oplax cocone

Λ∶Δ1���⇒
oplaxcart

L (K(−), F)
that exhibits F as the I-absolute cartesian-marked oplax conical colimit of K.

F = oplaxcart-colimΔ1K

Then, in order to produce α, it suffices to give a modification

Δ1 L (K(−), Ω)
(z○−)○Λ

(z′○−)○Λ

θ

Given (C , X) ∈ ∫W , we will have that

⎛⎜⎜⎝
K(C , X) F Ω

Λ(C ,X)
z

z′

α
⎞⎟⎟⎠
= θ(C ,X)
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So, we will need to have that

Gτ ,K(C ,X)(θ(C ,X)) = Gτ ,K(C ,X)(αΛ(C ,X))
and, by Proposition 3.1 and the request that Gτ ,F(α) = h, the right hand side of such
equation is equal to the composite

Gτ ,K(C ,X)(z ○ Λ(C ,X)) ≅ Λ(C ,X)
∗ (Gτ ,F(z))Λ(C ,X)

∗(h)���→ Λ(C ,X)
∗ (Gτ ,F(z′))

≅ Gτ ,K(C ,X)(z′ ○ Λ(C ,X))
Call hC ,X such composite morphism in DOpFib (K(C , X)). Since K(C , X) ∈ Y, the
functorGτ ,K(C ,X) is fully faithful by assumption, and hence there exists a unique 2-cell

K(C , X) Ω

z○Λ(C ,X)

z′○Λ(C ,X)

γC ,X

in L such that Gτ ,K(C ,X)(γC ,X) = hC ,X . We define the component θ(C ,X)
of θ on (C , X) to be such 2-cell γC ,X . The faithfulness of the functors
Gτ ,K(C ,X) guarantees that θ becomes a modification. Indeed, given
a morphism ( f , ν)∶(D, X′) → (C , X) in ∫W , we need to prove that

1 L (K(C , X), Ω) 1 L (K(C , X), Ω)

1 L (K(D, X′), Ω) 1 L (K(D, X′), Ω)

z′○Λ(C ,X)

−○K( f ,ν)

z′○Λ(C ,X)

z○Λ(C ,X) −○K( f ,ν)z′○Λ(D ,X′)

z○Λ(D ,X′)

z′Λ( f ,ν)

z○Λ(D ,X′)

zΛ( f , ν)

θ(C ,X)

θ(D ,X′)

But

since Gτ ,K(D ,X′) is faithful, it suffices to prove that

Gτ ,K(D ,X′)(z′Λ( f ,ν) ○ θD ,X′ ) = Gτ ,K(D ,X′)(θ(C ,X)K( f , ν) ○ zΛ( f ,ν))
and hence that

Gτ ,K(D ,X′)(z′Λ( f ,ν)) ○Gτ ,K(D ,X′)(θD ,X′ )
= Gτ ,K(D ,X′)(θ(C ,X)K( f , ν)) ○Gτ ,K(D ,X′)(zΛ( f ,ν))

At this point, it is straightforward to see that such equality is given by the naturality
square ofDOpFib (Λ( f ,ν)) (see Proposition 2.11) obtained considering themorphism
h∶Gτ ,F(z) → Gτ ,Ω(z′) in DOpFib (F). For this, one needs the pseudo-naturality of
Gτ ,− (Proposition 2.12), the equation Gτ ,K(C ,X)(θ(C ,X)) = kC ,X and the analogous
one for (D, X′), together with both the squares of Proposition 3.1. The square on
the right of Proposition 3.1 allows us to calculateGτ ,K(D ,X′)(θ(C ,X)K( f , ν)), whereas
the square on the left allows us to compare the components of DOpFib (Λ( f ,ν)) on
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Gτ ,F(z) and Gτ ,F(z′) with Gτ ,K(D ,X′)(zΛ( f ,ν)) and the analogous one with z′ instead
of z.

Thus we conclude that θ is a modification, and by the universal property of the

colimit F we obtain an induced 2-cell F Ω
z

z′

α in L . It remains to prove that

Gτ ,F(α) = h.
The idea is to conclude such equality by using the uniqueness part of the universal

property of a colimit. As Gτ ,F(α) and h are morphisms Gτ ,F(z) → Gτ ,F(z′) in
DOpFib (F), both are totally determined by a morphism in L from Gz to Gz′ ; we
call respectively Gτ ,F(α) and h such morphisms in L . By Construction 3.6, applied to
z = idF ,

Gz = oplaxcart-colimΔ1(dom ○Gτ ,F(z)∗ ○ K′),

presented by the universal cartesian-marked oplax cocone dom ○Gτ ,F(z)∗ ○ Λ′, with
Λ′ and K′ constructed from Λ and K as in Construction 3.6.

Then, in order to conclude that Gτ ,F(α) and h are equal, it suffices to show that

(Gτ ,F(α) ○ −) ○ dom ○Gτ ,F(z)∗ ○ Λ′ = (h ○ −) ○ dom ○Gτ ,F(z)∗ ○ Λ′(3.4)

as cartesian-marked oplax natural transformations. And the last part of Construction
3.6 gives us an explicit calculation of dom ○Gτ ,F(z)∗ ○ Λ′ in terms of Λ. Precisely,

given an arbitrary morphism (D, X′) ( f ,ν)←��� (C , X) in ∫W ,

dom (Gτ ,F(z)∗ (Λ′(C ,X))) = Gτ ,F(z)∗ (Λ(C ,X))

and dom (Gτ ,F(z)∗(Λ′f ,ν)) is the unique lifting of the 2-cell Λ f ,ν ∗
GGτ ,F(z),K(C ,X) (Λ(C ,X)) to Gτ ,F(z)∗ (Λ(C ,X)) along Gτ ,F(z). We now notice
that the following two squares are commutative:

GΛ(C ,X)
Gτ ,F(z),K(C ,X) Gz

GΛ(C ,X)
Gτ ,F(z′),K(C ,X) Gz′

Gτ ,F(z)∗(Λ(C ,X))

Λ(C ,X)
∗(Gτ ,F(α)) Gτ ,F(α)

Gτ ,F(z′)∗(Λ(C ,X))

GΛ(C ,X)
Gτ ,F(z),K(C ,X) Gz

GΛ(C ,X)
Gτ ,F(z′),K(C ,X) Gz′

Gτ ,F(z)∗(Λ(C ,X))

Λ(C ,X)
∗(h) h

Gτ ,F(z′)∗(Λ(C ,X))

Then, to prove that Equation (3.4) holds on component (C , X), it suffices to show that

Λ(C ,X)
∗ (Gτ ,F(α)) = Λ(C ,X)

∗ (h)
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as morphisms in DOpFib (K(C , X)). Using Proposition 3.1, we see that
Λ(C ,X)

∗ (Gτ ,F(α)) is equal to

Λ(C ,X)
∗ (Gτ ,F(z)) ≅ Gτ ,F(z ○ Λ(C ,X))Gτ ,F(αΛ(C ,X))������→ Gτ ,F(z′ ○ Λ(C ,X))

≅ Λ(C ,X)
∗ (Gτ ,F(z′))

and thus is equal to Λ(C ,X)
∗ (h) since αΛ(C ,X) = θ(C ,X), by construction of θ(C ,X).

It only remains to prove that Equation (3.4) holds onmorphism component ( f , ν).
But this is straightforward using the uniqueness of the liftings through a discrete
opfibration, that Equation (3.4) holds on object components and the fact that both
Gτ ,F(α) and h are morphisms of discrete opfibrations. ∎
Remark 3.8 As anticipated in Remark 2.21, the possibility of defining the functors
Gτ ,F to have as codomain a category of isomorphism classes of discrete opfibrations
does not work well with the reduction of the study of 2-classifiers to generators. The-
orem 3.7 is however the only delicate point one encounters. We can define a category
DOpFib (F)/≅ which has as objects isomorphism classes of discrete opfibrations
and asmorphisms collections of morphisms compatible with every possible change of
representative for the domain or the codomain. Notice that we then have a full functor

DOpFib (F) q��→
full

DOpFib (F)/≅
The problem with Theorem 3.7 is that, from the assumption that for every Y ∈ Y the
composite

L (Y , Ω) Gτ ,Y��→ DOpFib (Y) q��→
full

DOpFib (Y)/≅
is fully faithful, we cannot deduce the analog of this for every F ∈ L . Indeed, we can
no longer have

Gτ ,K(C ,X)(θ(C ,X)) = hC ,X

in DOpFib (F), but only in DOpFib (F)/≅ . Of course we then only need Gτ ,F(α) =
h in DOpFib (F)/≅ , but it seems that there is no way to find the isomorphisms that
regulate Gτ ,F(α) = h starting from the ones that regulate Gτ ,K(C ,X)(θ(C ,X)) = hC ,X

for every (C , X). One strategy could be to induce them using the universal property
of the colimit, but we cannot guarantee that the isomorphisms that regulate all the
Gτ ,K(C ,X)(θ(C ,X)) = hC ,X form a cocone.

We aim at the third of our three theorems of reduction to dense generators.
Theorems 3.2 and 3.7 allow to check the conditions for τ∶Ω● → Ω to be a 2-classifier
just on a dense generator. We now want to similarly reduce to dense generators the
study of what τ classifies. The following construction will be very important for this.

Recall that we denote asDOpFib P(F) the full subcategory of DOpFib (F) on the
discrete opfibrations that satisfy a fixed pullback-stable property P (in our examples,
P will be the property of having small fibres).
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Construction 3.9 Let I∶Y→ L be a fully faithful dense generator of L . Assume that τ
satisfies a satisfies a pullback-stable property P and that for every Y ∈ Y

Gτ ,I(Y)∶L (I(Y), Ω) → DOpFib P(I(Y))
is an equivalence of categories. Let then φ∶G → F be a discrete opfibration in L that
satisfies the property P. We would like to construct a characteristic morphism z∶F → Ω
for φ. That is, a z such that Gτ ,F(z) is isomorphic to φ, so that φ gets classified by τ.

There exist a 2-diagram K∶ ∫W → L which factors through Y and a universal
cartesian-marked oplax cocone Λ that exhibits F as the I-absolute

F = oplaxcart-colimΔ1K

We would like to induce z via the universal property of the colimit F. The idea is
condensed in the following diagram:

H(C ,X) G Ω●

K(C , X) F Ω

⌟
Gφ(Λ(C ,X)) φ τ

G−1τ (Gφ(Λ(C ,X)))

Λ(C ,X) z

For every (C , X) in ∫W, the change of base Gφ ,K(C ,X)(ΛC ,X) of φ along ΛC ,X
satisfies the property P and is thus in the essential image of Gτ ,K(C ,X). We can then
consider the oplax natural transformation χ given by the composite

Δ1 Λ���⇒
oplaxcart

L (K(−), F) Gφ ,K(−)��⇒
pseudo

DOpFib P(K(−)) Gτ ,K(−)
−1

���⇒
pseudo

L (K(−), Ω) ,

where every Gτ ,K(C ,X)
−1 is a right adjoint quasi-inverse of Gτ ,K(C ,X) giving an adjoint

equivalence. The action of such Gτ ,K(C ,X)
−1 on morphisms h∶ψ → ψ′ is exhibited by the

naturality squares of the counit ε

Gτ ,K(C ,X) (Gτ ,K(C ,X)
−1(ψ)) ψ

Gτ ,K(C ,X) (Gτ ,K(C ,X)
−1(ψ′)) ψ′

Gτ ,K(C ,X)(Gτ ,K(C ,X)
−1(h))

≅
εψ

h

≅
εψ′

We are also using that for every morphism ( f , ν)∶(D, X′) ←� (C , X) in ∫W the
functorDOpFib (K( f , ν)) = K( f , ν)∗ restricts to a functor between the essential image
of Gτ ,K(D ,X′) and the essential image of Gτ ,K(C ,X). Moreover, using Proposition 2.12, we
have thatG−1τ ,K(−) extends to a pseudo-natural transformation. Its structure 2-cell on any
( f , ν)∶(D, X′) ←� (C , X) in ∫W is given by the pasting
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DOpFib P(KD ,X′) L (KD ,X′ , Ω) L (KC ,X , Ω)

DOpFib P(KD ,X′) DOpFib P(KC ,X) L (KC ,X , Ω)

≅
ε−1

Gτ
−1

Gτ

−○K( f ,ν)

Gτ
(Gτ ,K( f ,ν))

−1

K( f ,ν)∗
≅η
−1

Gτ
−1

where η is the unit of the adjoint equivalence, and we denoted K(C , X) as KC ,X .
The composite χ above is readily seen to be a sigma natural transformation (of

Descotte, Dubuc, and Szyld’s [4], w.r.t. the cartesian marking). That is, χ is an oplax
natural transformation with the structure 2-cells χ f ,id being isomorphisms for every
morphism of type ( f , id) in (∫W)op. If we were in a bicategorical context, this would
then be enough to induce a morphism z∶F → Ω, as we will explore in detail in future
work. In our strict 2-categorical context, we further need to be able to “normalize” such
sigma natural transformation, ensuring that the structure 2-cells on the morphisms
( f , id) are identities. So that the morphisms G−1τ (Gφ (Λ(C ,X))) yield a cartesian-
marked oplax cocone. Essentially, this means that we can choose good quasi-inverses of
the Gτ ,K(C ,X)’s. Such an extra hypothesis is satisfied by 2-dimensional presheaves (i.e.,
prestacks), seeTheorem 4.14. ByTheorem 3.24, it is then satisfied by nice sub-2-categories
of prestacks, such as the 2-category of stacks (Theorem 5.11).

We now present the third of our three theorems of reduction to dense generators.
Building overTheorems 3.2 and 3.7, we reduce to dense generators the study of what a
2-classifier τ∶Ω● → Ω classifies. The proof is constructive, based on Construction 3.9,
so that we also give a concrete recipe for the characteristic morphisms.

Theorem 3.10 Let I∶Y→ L be a fully faithful dense generator of L . Assume that τ
satisfies a satisfies a pullback-stable property P and that for every Y ∈ Y

Gτ ,I(Y)∶L (I(Y), Ω) → DOpFib P(I(Y))
is an equivalence of categories. Assume further that, for every discrete opfibration φ∶G →
F in L that satisfies the property P, the sigma natural transformation χ produced in
Construction 3.9 (starting from φ and some K and Λ) is isomorphic to a cartesian-
marked oplax natural transformation ℵ (i.e., can be normalized).

Then for every F ∈ L

Gτ ,F ∶L (F , Ω) → DOpFib P(F)
is essentially surjective, and hence an equivalence of categories by Theorem 3.7.

Proof Let φ∶G → F be a discrete opfibration in L that satisfies the property P. Con-
sider the associated χ and ℵ as in the statement. Let z∶F → Ω be the uniquemorphism
induced by ℵ via the universal property of the colimit F = oplaxcart-colimΔ1K. We
prove that z is a characteristic morphism for φ with respect to τ.
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Consider the pullback

V Ω●

F Ω

⌟
z̃

Gτ ,F(z) τ

z

We want to prove that there is an isomorphism j∶G ≅ V such that Gτ ,F(z) ○ j = φ.
Applying Construction 3.6 to φ and idF , we construct K′ = K′id and Λ′ = Λ′id that
exhibits

G = oplaxcart-colimΔ1(dom ○φ∗ ○ K′).
Applying again Construction 3.6 to τ and z∶F → Ω we obtain

V = oplaxcart-colimΔ1(dom ○τ∗ ○ (z ○ −) ○ K′).
We show that

dom ○τ∗ ○ (z ○ −) ○ K′ ≅ dom ○φ∗ ○ K′ .
Notice that (z ○ −) ○ K′ is the 2-functor ∫W → L /lax Ω associated with the oplax
natural transformationℵ, as described inConstruction 3.6. Sinceℵ ≅ χ, we obtain that
(z ○ −) ○ K′ ≅ U where U is the 2-functor ∫W → L /lax Ω associated with the sigma
natural transformation χ. Moreover the general component tC ,X on (C , X) ∈ ∫W
of such isomorphism has first component equal to the identity. This produces an
isomorphism

dom ○τ∗ ○ (z ○ −) ○ K′ ≅ dom ○τ∗ ○U
whose general component on (C , X) is over K(C , X). Indeed by Remark 3.5

dom (τ∗ (t(C ,X))) = dom (Gτ ,K(C ,X) (pr2 (tC ,X)))
and is thus an isomorphism that makes the following triangle commute:

dom (Gτ ,K(C ,X) (ℵ(C ,X))) dom (Gτ ,K(C ,X) (χ(C ,X)))

K(C , X)

≃

Gτ ,K(C ,X)(ℵ(C ,X)) Gτ ,K(C ,X)(χ(C ,X))

In this way, we have handled the isomorphisms given by the normalization process.
We now show that

dom ○τ∗ ○U ≅ dom ○φ∗ ○ K′ .
Given (C , X) ∈ ∫W , by Remark 3.5 and by construction of χ we have

dom (τ∗ (χ(C ,X))) = dom (Gτ ,K(C ,X) (χ(C ,X)))
≅ dom (Gφ ,K(C ,X) (Λ(C ,X))) = dom (φ∗ (Λ(C ,X))) .
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So the counits of the adjoint equivalencesGτ ,K(C ,X) ⊣ Gτ ,K(C ,X)
−1 give isomorphisms

ξ(C ,X)∶Q(C ,X) = (dom ○τ∗ ○U) (C , X) ≃��→ (dom ○φ∗ ○ K′) (C , X) = H(C ,X)

over K(C , X), where the map to K(C , X) from the right hand side is
Gφ ,K(C ,X) (Λ(C ,X)). We prove that these isomorphisms form a 2-natural
transformation ξ. Take then ( f , ν)∶(C , X) → (D, X′) in ∫W . By Remark 3.5,
we can express the action of dom ○τ∗ on the morphism

U( f , ν) =
K(C , X) K(D, X′)

Ω

K( f ,ν)

χ(C ,X) χ(D ,X′)

χ f ,ν

in terms of dom (Gτ ,K(C ,X)(χ f ,ν)). Analogously, we express
dom (φ∗ (K( f , ν), Λ f ,ν)) in terms of dom (Gφ ,K(C ,X) (Λ f ,ν)). Consider the
composite pullbacks

SH H(D ,X′) G

K(C , X) K(D, X′) F

⌟ ⌟
Gφ(Λ(D ,X′)) φ

K( f ,ν) Λ(D ,X′)

SQ Q(D ,X′) Ω●

K(C , X) K(D, X′) Ω

⌟ ⌟
Gτ(χ(D ,X′)) τ

K( f ,ν) χ(D ,X′)

and call RH and RQrespectively the pullbacks of φ and of τ along the composites. By
construction of χ and by the action of Gτ ,K(C ,X)

−1 on morphisms, we calculate that
Gτ ,K(C ,X)(χ f ,ν) is precisely the composite

Q(C ,X) ≃���→
ξ(C ,X)

H(C ,X) Gφ ,K(C ,X)(Λ f ,ν)��������→ RH ≅ SH ≃��������→
K( f ,ν)∗ ξ−1

(D ,X′)

SQ ≅ RQ

Notice that we also need one triangular equality of the adjoint equivalence Gτ ,K(C ,X)
to handle the η−1 part of G−1τ ,K( f ,ν). In order to obtain dom (τ∗ (K( f , ν), χ f ,ν)), by
Remark 3.5, we compose Gτ ,K(C ,X)(χ f ,ν) with

RQ ≅ SQ �→ Q(D ,X′)

We conclude the naturality of ξ by definition of K( f , ν)∗ ξ−1(D ,X′). To prove that ξ is
2-natural, consider a 2-cell δ∶( f , ν) �⇒ ( f ′ , ν′)∶(C , X) → (D, X′) in ∫W . Both

ξ(D ,X′) ∗ (dom ○τ∗ ○U) (δ)

(dom ○φ∗ ○ K′) (δ) ∗ ξC ,X
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give the unique lifting ofK(δ) ∗Gτ ,K(C ,X) (χ(C ,X)) to ξ(D ,X′) ○ (dom ○τ∗ ○U) ( f , ν)
along Gφ ,K(D ,X′) (Λ(D ,X′)). Thus ξ is 2-natural. We then obtain a 2-natural isomor-
phism

ζ ∶dom ○τ∗ ○ (z ○ −) ○ K′ ≅ dom ○φ∗ ○ K′
whose general component on (C , X) ∈ ∫W is over K(C , X).

As a consequence, there is an isomorphism j∶G ≅ V , respecting the universal
cartesian-marked oplax cocones ΘG and ΘV that exhibit the two as colimits:

Δ1 L ((dom ○φ∗ ○ K′) (−), G)

L ((dom ○τ∗ ○ (z ○ −) ○ K′) (−), V) L ((dom ○φ∗ ○ K′) (−), V)

ΘG

oplaxcart

ΘV oplaxcart j○−

−○ζ−1(−)

We want to show that the following triangle is commutative:

G V

F

≃
j

φ Gτ ,F(z)
(3.5)

Since G is a cartesian-marked oplax conical colimit, it suffices to show that

(φ ○ −) ○ΘG = (Gτ ,F(z) ○ −) ○ ( j ○ −) ○ΘG

Whence it suffices to show that

(φ ○ −) ○ΘG = (Gτ ,F(z) ○ − ○ ζ−1(−)) ○ΘV

Given (C , X) ∈ ∫W , the two have equal components on (C , X) since by Construction
3.6

Gτ ,F(z) ○ΘV
(C ,X) ○ ζ−1(C ,X) = Λ(C ,X) ○Gτ ,K(C ,X) (ℵ(C ,X)) ○ ζ−1(C ,X)

= Λ(C ,X) ○Gφ ,K(C ,X) (Λ(C ,X)) ,
using that ζ(C ,X) is over K(C , X). Given ( f , ν)∶(D, X′) ←� (C , X) in ∫W , also the
structure 2-cells of the two cartesian-marked oplax natural transformations on ( f , ν)
are equal, since by Construction 3.6

Gτ ,F(z) ∗ΘV
( f ,ν) ∗ ζ−1(C ,X) = Λ f ,ν ∗ (Gτ ,K(C ,X) (ℵ(C ,X)) ○ ζ−1(C ,X))

= Λ f ,ν ∗Gφ ,K(C ,X) (Λ(C ,X)) .
Therefore the triangle of Equation (3.5) is commutative and φ is in the essential image
of Gτ ,F . ∎
Remark 3.11 In the proof of Theorem 3.10, we have actually proved the following
sharper result, that involves the classification of single discrete opfibrations φ.
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We also show that the operation of normalization described in Theorem 3.10 is
necessary.

Corollary 3.12 (of the proof of Theorem 3.10) Let I∶Y→ L be a fully faithful dense
generator of L . Assume that τ∶Ω● → Ω is a 2-classifier in L , and let φ∶G → F be an
arbitrary discrete opfibration in L . Consider K and Λ as in Construction 3.9. The
following properties are equivalent:
(i) φ is classified by τ, i.e., φ is in the essential image of Gτ ,F ;
(ii) for every (C , X) ∈ ∫W the change of base Gφ ,K(C ,X)(ΛC ,X) of φ along ΛC ,X is in

the essential image of Gτ ,K(C ,X), and the operation of normalization described in
Theorem 3.10 starting from φ is possible.

∎
Proof The proof of (ii) �⇒ (i) is exactly as the proof of Theorem 3.10, using the
essential image of Gτ ,K(C ,X) in place of DOpFib P(K(C , X)).

We prove (i) �⇒ (ii). By assumption, there exists a characteristic morphism z for
φ. For every (C , X), we then have that z ○ Λ(C ,X) is a characteristic morphism for
Gφ ,K(C ,X)(ΛC ,X). It remains to prove that the operation of normalization described in
Theorem 3.10 starting from φ is possible.We can choose the quasi-inverse ofGτ ,K(C ,X)
(restricted to its essential image) so that for every b∶K(C , X) → F in L

G−1τ ,K(C ,X)(Gφ ,K(C ,X)(b)) = z ○ b
and the component of the counit on Gφ ,K(C ,X)(b) is given by the pseudofunctoriality
of the pullback. Then for every morphism ( f , id)∶(D, F( f )(X)) ←� (C , X) in ∫W

χ(C ,X) = z ○ Λ(C ,X) = z ○ Λ(D ,F( f )(X)) ○ K( f , id) = χ(D ,F( f )(X)) ○ K( f , id).
In order to prove that χ f ,id = id, it suffices to prove that Gτ ,K(C ,X)(χ f ,id) = id. It
is straightforward to see that this holds, using the recipe described in the proof of
Theorem 3.10. Indeed it is just given by the compatibilities of a pullback along a
composite of three morphisms with the composite pullbacks. ∎
Corollary 3.13 Let I∶Y→ L be a fully faithful dense generator of L . Let ω∶1→ Ω be
a morphism in L such that the lax limit of the arrow ω satisfies a fixed pullback-stable
property P. If for every Y ∈ Y

Ĝω ,I(Y)∶L (I(Y), Ω) → DOpFib P(I(Y))
is an equivalence of categories and the operation of normalization described in Theo-
rem 3.10 (starting from every φ) is possible, then ω is a good 2-classifier inL with respect
to P.

Proof ByRemark 2.16, taking τ to be the lax limit of the arrowω, we have that Ĝω ,F =
Gτ ,F for every F ∈ L . We conclude byTheorem 3.10. ∎
Remark 3.14 The theorems of reduction of the study of 2-classifiers to dense genera-
tors offer great benefits. To have an idea of this, we can look at the following example.

In Sections 4 and 5, we will then apply the theorems of reduction to dense
generators to the cases of 2-presheaves (i.e., prestacks) and stacks.
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Example 3.15 The theorems of reduction to dense generators allow us to deduce all
the major properties of the Grothendieck construction (or category of elements) from
the trivial observation that everything works well over the singleton category.

Indeed the singleton category 1 is a dense generator in Cat . So we can just look
at the discrete opfibrations over 1. Let ω = 1∶1 → Set . The lax limit τ∶Set ● → Set
certainly has small fibres. In fact one immediately sees that any comma object from
ω, say to F∶B → Set , gives a discrete opfibration with small fibres, since the fibre over
B ∈ B is isomorphic to Set (1, F(B)). Let P = s be the property of having small fibres.

The functor

Ĝω ,1∶Cat (1, Set) → DOpFib s(1) ≅ Set

sends a functor 1 → Set to the set it picks, so it is clearly an equivalence of categories.
By the theorems of reduction to dense generators, we deduce that the construction
of the category of elements is fully faithful and classifies all discrete opfibrations with
small fibres (deducing thus the whole Example 2.18). Indeed, let p∶E → B be a discrete
opfibration with small fibres. The density of 1 allows us to express B as a cartesian-
marked oplax conical colimit of the constant at 1 functor Δ1. By Example 2.42 we know
that the universal cartesian-marked oplax cocone Λ is given by

∀ B′

B
f in B

1 B

1

B

B′

f

Following Construction 3.9 and the proof of Corollary 3.13, we consider the sigma
natural transformation χ given by the composite

Δ1 Λ���⇒
oplaxcart

Cat (Δ1(−), B)
Gp,Δ1(−)���⇒
pseudo

DOpFib s(Δ1(−))
Ĝ−1ω ,Δ1(−)���⇒
pseudo

Cat (Δ1(−), Set) .

But Gp,Δ1(−) is strict 2-natural (thanks to our choice of pullbacks). Similarly, also
Ĝω ,Δ1(−) and hence its quasi-inverse are strict 2-natural. So that χ is already cartesian-
marked oplax natural. Explicitly, χ is given by

∀ B′

B
f in B

1 Set

1

(p)B

(p)B′

f∗

where (p)B is the fibre of p on B, since the pullback of p along each B∶1 → B gives
precisely the fibre over B. This induces the known characteristic morphism B → Set
for p, collecting together the fibres of p. So the concrete recipe for characteristic
morphisms described in the proof of Theorem 3.10 recovers the usual recipe for the
quasi-inverse of the category of elements construction.

We now present two general results (Proposition 3.21 and Theorem 3.24) that
describe a strategy to restrict a good 2-classifier in L to a good 2-classifier in a nice
sub-2-category M of L . Such a strategy will involve factorization arguments and our
theorems of reduction of the study of 2-classifiers to dense generators. The key idea
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is to restrict Ω ∈ L to some ΩM ∈ M so that the characteristic morphisms in L of
discrete opfibrations in M factor through ΩM . This is the strategy that we will follow
in Section 5 to restrict our good 2-classifier in prestacks to one in stacks.

Notation 3.16 Throughout the rest of this section, we fix P an arbitrary pullback-stable
property P for discrete opfibrations in L . We assume of course that P only depends on
the isomorphism classes of discrete opfibrations.

Definition 3.17 A fully faithful 2-functor i∶M ↪�→
f f

L will be called nice if it lifts
pullbacks along discrete opfibrations, comma objects and the terminal object (that
is, such limits exist in M and are calculated in L) and preserves discrete opfibrations.

A sub-2-category i∶M ⊆ L (that is, an injective on objects and fully faithful 2-
functor i∶M ↪�→

f f
L) will be called nice if i is nice.

Example 3.18 Any reflective sub-2-category is nice. Indeed notice that any right 2-
adjoint preserves discrete opfibrations thanks to the natural isomorphism between
hom-categories given by the adjunction.

Remark 3.19 Given a nice fully faithful 2-functor i∶M ↪�→
f f

L , we will say that a

discrete opfibration φ in M satisfies P if i(φ) does so.
Wewill need the notions of fully faithfulmorphism and of chronicmorphism inL .

Definition 3.20 A morphism l ∶F → B in L is fully faithful if for every X ∈ L the
functor l ○ −∶L (X , F) → L (X , B) is fully faithful. l is chronic if every l ○ − is injective
on objects and fully faithful.

We are ready to present our first result of restriction. Rather than restricting a good
2-classifier, we start from a morphism ω∶1→ Ω in L such that its lax limit τ is a 2-
classifier in L . By Remark 2.16, this condition is weaker than being a good 2-classifier.
Indeed it means that for every F ∈ L

Ĝω ,F ∶L (F , Ω) → DOpFibL (F)
is fully faithful. Of course, the result can then be applied to a starting good 2-classifier
in L as well.

Proposition 3.21 Let i∶M ↪�→
f f

L be a nice fully faithful 2-functor (Definition 3.17). Let

then ω∶1 → Ω in L such that its lax limit τ is a 2-classifier in L . Finally, let ΩM ∈ M
such that there exists a fully faithful morphism �∶i(ΩM ) ↪�→

f f
Ω in M and ω factors

through �; call ωM ∶1→ ΩM the resulting morphism.Then the lax limit τM of the arrow
ωM is a 2-classifier in M .

In addition to this, if τ satisfies P then also τM satisfies P.
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Moreover, given φ a discrete opfibration in M , if i(φ) is classified by τ via a
characteristic morphism z that factors through � then φ is classified by τM .

1

i(ΩM ) Ω

i(ωM )
ω

�

ΩM ,● 1

ΩM ΩM

τM
ωM

comma

i(G) Ω●

i(F) Ω

i(ΩM )

⌟
i(φ) τ

z

∃ i(zM ) �

Proof We prove that, for every F′ ∈ L , there is an isomorphism

L (F′ , i(ΩM )) DOpFibL (F′)

L (F′ , Ω)

Ĝi(ωM ),F
′

�○−
≅

Ĝω ,F′

(3.6)

Given z∶F′ → i(ΩM ), consider the comma objects

LM 1

F′ i(ΩM )

sM i(ωM )λM

z

L 1

i(ΩM )
F′ i(ΩM ) Ω

s
λ

i(ωM )

�

z �

in L . It is straightforward to see that, since � is a fully faithful morphism, � ∗ λM
exhibits the comma object on the right hand side. Then LM ≅ L over F′, and such
isomorphism is natural in z by the universal property of the comma object. � ○ − is
fully faithful by definition of fully faithful morphism in L . Hence Ĝi(ωM ),F′ is fully
faithful.

Moreover, we obtain that if τ satisfies P then the lax limit ξ of the arrow i(ωM )
satisfies P. Since i lifts comma objects and the terminal objects, the lax limit τM of the
arrow ωM can be calculated in L . So i(τM ) = ξ satisfies P as well.

Let now F ∈ M . Since i preserves discrete opfibrations, i induces a fully faithful
functor

i∶DOpFibM (F) → DOpFibL (i(F)) .
Notice then that the following square is commutative:

M (F , ΩM ) DOpFibM (F)

L (i(F), i(ΩM )) DOpFibL (i(F))

ĜωM ,F

≅

i i

Ĝi(ωM ), i(F)

(3.7)

Indeed by assumption i lifts comma objects and the terminal object. Whence ĜωM ,F
is fully faithful and τM is a 2-classifier.
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Consider now a discrete opfibration φ in M . Following the diagrams of Equations
(3.6) and (3.7), we obtain that if i(φ) is classified by τ via a characteristic morphism z
that factors through � then φ is classified by τM .This can also be seen from the diagram
on the right in the statement, using the pullbacks lemma, after Remark 3.22. ∎
Remark 3.22 τM can be equivalently produced, in L , as the pullback of τ along the
fully faithful �∶i(ΩM ) ↪�→

f f
Ω̃. Indeed the lax limit τM of the arrow ωM corresponds

with the lax limit of the arrow i(ωM ) in L . By whiskering with �, we then see that the
latter is equivalently given by the comma object from ω to �, which is also the pullback
along � of the lax limit of the arrow ω. However, by producing τM as the lax limit of
the arrow ωM in M , it is guaranteed that τM is a morphism in M .

We would like to show that we can check the factorizations of the characteristic
morphisms inL of discrete opfibrations inM just on a dense generator.The following
construction helps with this.

Construction 3.23 Let i∶M ↪�→
f f

L be a fully faithful 2-functor. Consider then I∶Y→ M
a fully faithful 2-functor such that i ○ I∶Y→ L is a dense generator of L . By Kelly’s [8,
Theorem 5.13], then I is a fully faithful dense generator of M .

Moreover, let F ∈ M .Wewant to exhibit F as a nice colimit of the objects that form the
dense generator I. By Construction 3.6, there exist a 2-diagram J∶A → L which factors
through i ○ I and a weight W ∶Aop → Cat such that, calling K ∶= J ○ G(W),

i(F) = oplaxcart-colimΔ1K

and this colimit is (i ○ I)-absolute. Call Λ the universal cartesian-marked oplax cocone
that presents such colimit. Notice that, as K factors through i ○ I, it also factors through
i. Call KM ∶ ∫W → M the resulting diagram; so that i ○ KM = K. It is clear that KM
factors through I. TakeΛM to be the unique cartesian-marked oplax cocone such that i ○
ΛM = Λ.Then, since a fully faithful 2-functor reflects colimits (see also Proposition 2.41),

F = oplaxcart-colimΔ1KM ,

exhibited by ΛM . Moreover, this colimit is I-absolute, as Ĩ ≅ (̃i ○ I) ○ i.
Building over Proposition 3.21, we now present a general result of restriction of

good 2-classifiers inL to nice sub-2-categoriesM ofL .We show that the factorization
of the characteristicmorphisms inL of discrete opfibrations inM can be checked just
on a dense generator of the kind described in Construction 3.23.Then our theorems of
reduction of the study of a 2-classifier to dense generators (Corollary 3.13) guarantee
that we find a good 2-classifier in M . For this, we need to ensure that the operation of
normalization described inTheorem 3.10 (starting from every φ) is possible. We show
that we can just do the normalization process in L , where it is certainly possible since
we have a good 2-classifier; see Corollary 3.12.

Theorem 3.24 Let i∶M ⊆ L be a nice sub-2-category (Definition 3.17). Let ω∶1 → Ω in
L be a good 2-classifier in L with respect to P. Let then ΩM ∈ M such that there exists
a chronic arrow (Definition 3.20) �∶i(ΩM ) ↪�→

f f
Ω in M and ω factors through �; call

ωM ∶1→ ΩM the resulting morphism. Finally, let I∶Y→ M be a fully faithful 2-functor
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such that i ○ I is a dense generator of L . Assume that for every ψ∶H → I(Y) a discrete
opfibration in M that satisfies P over I(Y) with Y ∈ Y, every characteristic morphism
of i(ψ) with respect to ω factors through �. Then ωM is a good 2-classifier in M with
respect to P.

Proof By Construction 3.23, I∶Y→ M is a fully faithful dense generator of M . By
Proposition 3.21, the lax limit of the arrow ωM satisfies P and for every Y ∈ Y

ĜωM ,I(Y)∶M (I(Y), ΩM ) → DOpFib P(I(Y))
is an equivalence of categories. Indeed ĜωM ,I(Y) is fully faithful and, given ψ∶H →
I(Y) a discrete opfibration in M that satisfies P, any characteristic morphism of i(ψ)
in L factors through �∶i(ΩM ) ↪�→

f f
Ω. In order to prove that ωM ∶1→ ΩM is a good

2-classifier in M , by Corollary 3.13, it only remains to prove that the operation of
normalization described in the proof of Theorem 3.10 is possible.

So let φ∶G → F be a discrete opfibration inM that satisfies P. By Construction 3.23,
we express

F = oplaxcart-colimΔ1KM ,

exhibited by ΛM . Looking at the proof of Corollary 3.13 (and Construction 3.9), we
consider the sigma natural transformation χM given by the composite

Δ1
ΛM���⇒

oplaxcart
M (KM (−), F)Gφ ,KM (−)��⇒

pseudo
DOpFib P

M (KM (−))
Ĝ−1ωM ,KM (−)���⇒

pseudo
M (KM (−), ΩM ) .

We can visualize it as follows:

H(C ,X)
M G 1

KM (C , X) F ΩM

⌟
Gφ(ΛM ,(C ,X))

φ ωM

Ĝ−1ωM
(Gφ(ΛM ,(C ,X)))

ΛM ,(C ,X) zM

For this, we need to choose an adjoint quasi-inverse of ĜωM ,KM (C ,X) for every
(C , X) ∈ ∫W . Let then ψ∶H → KM (C , X) be a discrete opfibration inM that satisfies
P. By assumption, the “normalized” characteristicmorphism Ĝ−1ω , i(KM (C ,X))(i(ψ)) = t
defined as in the proof of Corollary 3.12 starting from i(φ) and K and Λ, factors
through �∶i(ΩM ) ↪�→

f f
Ω.We define Ĝ−1ωM ,KM (C ,X)(ψ) = tM to be the morphism in M

corresponding to the resulting morphism i(KM (C , X)) → i(ΩM ) in L given by the
factorization. So that � ○ i(tM ) = t. We then extend Ĝ−1ωM ,KM (C ,X) to a right adjoint
quasi-inverse of ĜωM ,KM (C ,X), choosing the components of the counit on the objects
ψ to be the isomorphismcorresponding to the one inL from the commaof i(ωM ) and
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i(tM ) to the comma of ω = � ○ i(ωM ) and t = � ○ i(tM ) composed with the counit of
Ĝω ,K(C ,X) ⊣ Ĝ−1ω ,K(C ,X).

We prove that χM is cartesian-marked oplax natural. It suffices to prove that

(� ○ −) ○ i ○ χM = χ

where χ is the cartesian-marked (i.e., “normal”) oplax natural transformation pro-
duced as in the proof of Corollary 3.12, starting from i(φ) and K and Λ. Indeed � is
a chronic arrow and i is injective on objects and fully faithful. So we show that the
following diagram of oplax natural transformations is commutative:

Δ1 M (KM (−), F) DOpFib P
M (KM (−)) M (KM (−), ΩM )

Δ1 L (K(−), i(F)) DOpFib P
L (K(−)) L (K(−), Ω) .

ΛM

i

Gφ ,KM (−)

i

Ĝ−1ωM ,KM (−)

(�○−)○i

Λ Gi(φ),K(−) Ĝ−1ω ,K(−)

The square on the left is commutative by construction of ΛM . The square in the
middle is commutative because pullbacks along opfibrations in M are calculated in
L , by assumption. We also use that the structure of a discrete opfibration in M is just
given by the structure of the underlying discrete opfibration in L . We prove that the
square on the right is commutative aswell. Let (C , X) ∈ ∫W . Givenψ∶H → KM (C , X)
a discrete opfibration in M that satisfies P,

� ○ i (Ĝ−1ωM ,y(C)(ψ)) = Ĝ−1ω , i(KM (C ,X))(i(ψ))
by construction of Ĝ−1ωM ,KM (C ,X). Given θ∶ψ → ψ′ in DOpFib P

M (KM (C , X)),
� ∗ i (Ĝ−1ωM ,KM (C ,X)(θ)) = Ĝ−1ω , i(KM (C ,X))(i(θ))

because they are equal after applying the fully faithful Ĝω , i(KM (C ,X)), by construction
of the counit of ĜωM ,KM (C ,X) ⊣ Ĝ−1ωM ,KM (C ,X) (together with the proof of Propo-
sition 3.21). Finally, let ( f , ν)∶(D, X′) ←� (C , X) in ∫W . The two composite oplax
natural transformations of the square on the right also have the same structure 2-cells
on ( f , ν). Indeed it suffices to show it after applying the fully faithful Ĝω , i(KM (C ,X)).
And this is straightforward to prove, following (part of) the recipe for Gτ(χ f ,ν)
described in the proof of Theorem 3.10 (together with the construction of the counit
of ĜωM ,KM (C ,X) ⊣ Ĝ−1ωM ,KM (C ,X) and the proof of Proposition 3.21). We conclude that
χM is cartesian-marked oplax natural. ∎
Remark 3.25 Theorem 3.24 offers another strategy to produce a good 2-classifier in a
2-category via a dense generator. Indeed, this is what wewill do in Section 5 to produce
our good 2-classifier in stacks. An advantage of this strategy is that we do not have to
do the normalization process described in Theorem 3.10. By Kelly’s [8, Proposition
5.16], any 2-category M equipped with a fully faithful dense generator I∶Y→ M is
equivalent to a full sub-2-category of [Yop ,Cat ] containing the representables. So,
after Section 4, the strategy described inTheorem 5.11 can be very helpful.
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Notice that the proof ofTheorem 3.24 shows that we just need to be able to factorize
the “normalized” characteristic morphisms produced as in the proof of Corollary 3.12
(starting from every φ).

4 A 2-classifier in prestacks

In this section, we apply our theorems of reduction of the study of 2-classifiers to
dense generators to the case of prestacks. Our theorems offer great benefits here.
Indeed they allow us to just consider the classification over representables, which
is essentially given by the Yoneda lemma (see Proposition 4.12). We show that the
normalization process required byTheorem 3.10 is possible in prestacks (Theorem4.14
and Remark 4.15). Whence, by Theorem 3.24, it is also possible in any nice sub-2-
category of prestacks (such as the 2-category of stacks, see Theorem 5.11).

We thus produce a good 2-classifier in prestacks, in Theorem 4.14 (see also
Definition 2.15). Our result is in line with Hofmann and Streicher’s [7] and with the
recent Awodey’s [1], see Remark 4.4. We conclude the section extracting from the
constructive proof ofTheorem 3.10 a concrete recipe for the characteristic morphisms
in prestacks (Remark 4.16).

In Section 5, we will restrict the good 2-classifier in prestacks to a good 2-classifier
in stacks (Theorem 5.11, usingTheorem 3.24).

Throughout the rest of this paper, we consider the 2-category L = [C op ,Cat ] of
2-presheaves on a small category C (that is, prestacks on C ). Notice that this 2-
category is complete and cocomplete, since Cat is so. Recall from Proposition 2.6 the
characterization of discrete opfibrations in [C op ,Cat ] and from Definition 2.7 the
definition of discrete opfibration in [C op ,Cat ] with small fibres.
Notation 4.1 Given p∶E → B a discrete opfibration inCat with small fibres, we denote
as (p)B the fibre of p on B ∈ B .
Construction 4.2 We search for a good 2-classifier ω∶1→ Ω in [C op ,Cat ]. Looking at
the archetypal example of Cat , we expect such a good 2-classifier to classify all discrete
opfibrations in [C op ,Cat ] with small fibres. By Example 2.28, representables form a
dense generator

I = y ∶C → [C op ,Cat ] .
Then, by our theorems of reduction to dense generators (see Corollary 3.13), we will be
able to look just at the functors

Ĝω ,y(C)∶[C op ,Cat ] (y(C), Ω) → DOpFib s(y(C))
with C ∈ C . Notice that the left hand side is isomorphic to Ω(C), by the Yoneda lemma.
As we want all the Ĝω ,y(C)’s with C ∈ C to be equivalences of categories (forming then
a pseudo-natural equivalence by Proposition 2.12), the assignment of Ω is forced up to
equivalence to be

C Ω
↦�→ DOpFib s(y(C)) .

This is a nice generalization of what happens in dimension 1. Indeed recall that the
subobject classifier in 1-dimensional presheaves sends C to the set of sieves on C. And
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sieves on C are equivalently the subfunctors of y(C). In line with the philosophy to
upgrade subobjects to discrete opfibrations (discussed in Section 2.1), discrete opfibrations
over y(C) generalize the concept of sieve to dimension 2. Notice that Ω coincides with
the composite

C op yop��→ [C op ,Cat ]op DOpFib s(−)������→ CAT

and is thus a pseudofunctor by Proposition 2.11. We then take as ω∶1→ Ω the pseudo-
natural transformation with component on C ∈ C that picks the identity idy(C) on y(C).
However, Ω is not a strict 2-functor and, a priori, does not land in Cat ; so Ω cannot be
a 2-classifier in [C op ,Cat ]. Thanks to our joint work with Caviglia [3], we can produce
a nice concrete strictification of Ω. Although it was already known before [3] that any
pseudofunctor can be strictified, by the theory developed by Power in [13] and later by
Lack in [9], the work of [3] can be applied to produce an explicit and easy to handle
strictification of Ω, which in addition lands in Cat . Moreover, as we will present in
Section 5, such strictification can also be restricted in a natural way to a good 2-classifier
in stacks.

Proposition 4.3 [3, Example 5.9, Theorem 4.7, Construction 4.8] The pseudofunctor
Ω∶C ↦ DOpFib s(y(C)) is pseudonaturally equivalent to the 2-functor

Ω̃ ∶ C op �→ Cat

C ↦ [(C /C )op , Set]
(C f←� D) ↦ − ○ ( f ○ =)op

The pseudonatural equivalence j∶Ω̃ ≃ Ω is given by an indexed version of the
Grothendieck construction. Explicitly, a discrete opfibration ψ∶H → y(C) with small
fibres corresponds with the presheaf

j−1C (ψ) ∶ (C /C )op �→ Set

(D f�→ C) ↦ (ψD) f
( f g←� f ○ g) ↦ H(g)

Remark 4.4 Call j−1 the quasi-inverse of j described in [3, Construction 4.8] and

hinted above (that transforms ψ into j−1C (ψ)). The composite 1 ω�→ Ω
j−1�→ Ω̃ is (iso-

morphic to) a 2-natural transformation ω̃. Explicitly, the component ω̃C ∶1 → Ω̃(C)
of ω̃ on C ∈ C picks the constant at 1 presheaf Δ1∶(C /C )op → Set .

We will prove in Theorem 4.14 that ω̃∶1→ Ω̃ is a good 2-classifier in [C op ,Cat ]
that classifies all discrete opfibrations with small fibres. This is in line with Hof-
mann and Streicher’s [7], where a similar idea is used to construct a universe in
1-dimensional presheaves for small families, in order to interpret Martin–Löf type
theory in a presheaf topos. See also the recent Awodey’s [1], that constructs Hofmann
and Streicher’s universe in 1-dimensional presheaves in a more conceptual way.
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Remark 4.5 In [3, Example 5.9] we also suggest a strategy to prove that, for C a 2-
category, what works is Ω̃∶C ↦ [π∗(C /oplax C)op , Set], where π∗ is the left adjoint of
the inclusion Cat ↪ 2-Cat .

Proposition 4.6 The lax limit τ̃∶Ω̃● → Ω̃ of the arrow ω̃∶1→ Ω̃ is a discrete opfibration
in [C op ,Cat ] with small fibres.

As a consequence, for every F ∈ [C op ,Cat ], the functor
Ĝω̃ ,F ∶[C op ,Cat ] (F , Ω̃) → DOpFib (F)

lands in DOpFib s(F).
Proof By Remark 2.16 any comma object from ω̃ can be expressed as a pullback of
τ̃, and by Remark 2.8 the property of having small fibres is stable under pullback. So
we can just look at τ̃. Since comma objects in [C op ,Cat ] are calculated pointwise, for
every C ∈ C the component τ̃C of τ̃ on C is given by the comma object in Cat from
ω̃C = Δ1 to idΩ̃(C). Given Z ∈ Ω̃(C) = [(C /C )op , Set],

(τ̃C)Z ≅ Ω̃(C) (Δ1, Z) = [(C /C )op , Set] (Δ1, Z) ≅ Z(idC)
and thus τ̃C has small fibres. Indeed a natural transformation from Δ1 to Z is the same
thing as an element in Z(idC), by the naturality condition.This is similar to the proof
of the Yoneda lemma; see also Remark 4.9. ∎
Remark 4.7 Ω̃● is a pointed version of Ω̃.The “points” of Z ∈ Ω̃(C) are the elements
of Z(idC).

It will be useful to consider first the bicategorical classification process produced
by the pseudofunctor Ω.

Remark 4.8 We need to consider the 2-category (actually CAT -enriched category)
Ps [C op ,CAT ] of pseudofunctors from C op to CAT , pseudonatural transformations
and modifications. We can of course extend the definition of discrete opfibration in
a 2-category to one in any CAT -enriched category, considering CAT in the place of
Cat .

By Bird, Kelly, Power, and Street’s [2, Remark 7.4], Ps [C op ,CAT ] has all bilimits
and all flexible limits, calculated pointwise. In particular, it has all comma objects,
the terminal object and all pullbacks along discrete opfibrations, calculated pointwise.
Indeed, for the latter, recall that in CAT pullbacks along discrete opfibrations exhibit
bi-iso-comma objects (the idea is similar to that of the diagram of Equation (2.1)). So,
given p∶E → B and z∶F → B in Ps [C op ,CAT ] with p a discrete opfibration, we can
construct (pointwise) a bi-iso-comma object G of p and z whose universal square is
filled with an identity. This is obtained by choosing the pullbacks as representatives
for the bi-iso-comma objects in CAT on every component. It follows that G is also a
pullback in Ps [C op ,CAT ], using that discrete opfibrations lift identities to identities.

Remark 4.9 As hinted in the proof of Proposition 4.6, the Yoneda lemma is the rea-
son why that proposition holds. Consider the pseudofunctor Ω and the lax limit τ of
the arrow ω∶1→ Ω in Ps [C op ,CAT ]. For every C ∈ C and every discrete opfibration
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ψ∶H → y(C) in [C op ,Cat ] with small fibres, by the Yoneda lemma

(τC)ψ ≅ Ω(C) (idy(C) , ψ) ≅ (ψC)idC
.

Thus τC has small fibres.

Proposition 4.10 For every F ∈ [C op ,Cat ], taking comma objects from ω∶1→ Ω
extends to a functor

Ĝω ,F ∶Ps [C op ,CAT ] (F , Ω) → DOpFib s
[C op ,Cat] (F)

Proof Taking comma objects from the morphism ω∶1→ Ω in Ps [C op ,CAT ] cer-
tainly extends to a functor

Ĝω ,F ∶Ps [C op ,CAT ] (F , Ω) → DOpFibPs[C op ,CAT ] (F)
by Remark 2.16. But, given z∶F → Ω, the comma object

L 1

F Ω

s ωcomma

z

in Ps [C op ,CAT ] is calculated pointwise. Since 1 and F are both strict 2-functors, the
universal property of the comma object induces a strict 2-functor L and a strict 2-
natural transformation s. The functor Ĝω ,F also sends modifications between F and
Ω to strict 2-natural transformations over F. Moreover, every component sC of s on
C ∈ C needs to be a discrete opfibration in CAT with small fibres, by Remark 4.9 and
the fact that the property of having small fibres is pullback-stable. Since F(C) ∈ Cat , it
follows that sC is a discrete opfibration inCat with small fibres. And then s is a discrete
opfibration in [C op ,Cat ] with small fibres, by Proposition 2.6 (and Definition 2.7).

∎
Remark 4.11 The following proposition shows how the bicategorical classification
process in prestacks is essentially given by the Yoneda lemma.

Proposition 4.12 For every C ∈ C , the functor

Ĝω ,y(C)∶Ps [C op ,CAT ] (y(C), Ω) → DOpFib s
[C op ,Cat] (y(C)) = Ω(C)

is isomorphic to the Yoneda lemma’s equivalence of categories.
Thus Ĝω ,y(C) is an equivalence of categories.

Proof Given z∶ y(C) → Ω, call z∶G → y(C) the corresponding element in Ω(C) via
the Yoneda lemma and s∶L → y(C) the morphism on the left of the comma object

L 1

y(C) Ω

s ωcomma

z
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in Ps [C op ,CAT ]. We show that there is a 2-natural isomorphism L ≅ G over y(C).
Given D ∈ C , we have that L(D) ≅ G(D) over C (D, C) because of the following
bijection between the fibres, which is natural in f ∶D → C

(sD) f ≅ Ω(D) (idy(D), zD( f )) ≅ Ω(D) (idy(D) , y( f )∗ z)
≅ ((y( f )∗ z)D)idD

≅ (zD) f
Thefirst isomorphism is given by the explicit construction of comma objects in CAT .
It is natural by construction of the structure of discrete opfibration on s induced
by the comma object (see Remark 2.16). The second natural isomorphism is given
by pseudonaturality of z. The third one is given by the Yoneda lemma and trivially
natural. The fourth one is given by the explicit construction of pullbacks in Cat and
is natural by construction of Gz ,y(D) on morphisms. It is straightforward to show that
the isomorphism L(D) ≅ G(D) is 2-natural over y(C) and to conclude the proof. ∎

We are ready to prove that, at least over representables, ω̃∶1→ Ω̃ satisfies the
conditions of a good 2-classifier in prestacks that classifies all discrete opfibrations
with small fibres.

Proposition 4.13 For every C ∈ C , the functor

Ĝω̃ ,y(C)∶[C op ,Cat ] (y(C), Ω̃) → DOpFib s(y(C))
is an equivalence of categories.

Proof We prove that there is an isomorphism

[C op ,Cat ] (y(C), Ω̃) DOpFib s
[C op ,Cat] (y(C))

Ps [C op ,CAT ] (y(C), Ω)

Ĝω̃ ,y(C)

j○−
≅

Ĝω ,y(C)

(4.1)

Given z∶ y(C) → Ω̃, consider the comma objects

L̃ 1

y(C) Ω̃

s̃ ω̃
λ̃

z

L 1

Ω̃

y(C) Ω̃ Ω

s
λ

ω̃

j

z j

respectively in [C op ,Cat ] and inPs [C op ,CAT ]. Notice that the lefthand side comma
is also a comma object in Ps [C op ,CAT ] because commas are calculated pointwise in
both 2-categories. We have that L̃(D) ≅ L(D) over C (D, C) for every D ∈ C , since
jD is an equivalence of categories. Indeed ( j ∗ λ̃)D exhibits the comma object on the
right hand side in component D. It is straightforward to show that the isomorphism
L̃(D) ≅ L(D) is 2-natural in D ∈ C over y(C) and to conclude the isomorphism of
Equation (4.1). Notice that j ○ ω̃ is isomorphic to ω, whence Ĝω ,y(C) is isomorphic to
Ĝ j○ω̃ ,y(C).
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By Proposition 4.12, the functor Ĝω ,y(C) is an equivalence of categories. By the
Yoneda lemma, also j ○ − is an equivalence of categories. Indeed the following square
is commutative:

[C op ,Cat ] (y(C), Ω̃) Ps [C op ,CAT ] (y(C), Ω)

Ω̃(C) Ω(C)

≅

j○−

≃
jC

And thus j ○ − is an equivalence of categories by the two out of three property.
Therefore also Ĝω̃ ,y(C) is an equivalence of categories. ∎

We now apply the theorems of reduction of 2-classifiers to dense generators
to prove that ω̃∶1→ Ω̃ is a good 2-classifier in prestacks that classifies all discrete
opfibrations with small fibres. The partial result that (the lax limit of the arrow) ω̃
gives a 2-classifier can be obtained fromWeber’s [20, Example 4.7]. However, Weber’s
paper does not address the problem of which discrete opfibrations get classified.

Theorem 4.14 The 2-natural transformation ω̃ from 1 to

Ω̃ ∶ C op �→ Cat

C ↦ [(C /C )op , Set]
(C f←� D) ↦ − ○ ( f ○ =)op

that picks the constant at 1 presheaf on every component is a good 2-classifier in
[C op ,Cat ] that classifies all discrete opfibrations with small fibres.

Proof Consider the fully faithful dense generator y ∶C → [C op ,Cat ] formed by
representables. By Proposition 4.6, the lax limit of the arrow ω̃ has small fibres. By
Proposition 4.13, we have that for every C ∈ C the functor

Ĝω̃ ,y(C)∶[C op ,Cat ] (y(C), Ω̃) → DOpFib s(y(C))
is an equivalence of categories. In order to prove that ω̃∶1→ Ω̃ is a good 2-classifier
in [C op ,Cat ] with respect to the property of having small fibres, by Corollary 3.13, it
only remains to prove that the operation of normalization described in Theorem 3.10
is possible.

So let φ∶G → F be a discrete opfibration in [C op ,Cat ] with small fibres. Using the
dense generator y ∶C → [C op ,Cat ], we express F as a cartesian-marked oplax colimit
of representables. By Example 2.42,

F ≅ colimF y ≅ oplaxcart-colimΔ1(y ○G(F)),
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whence K = y ○G(F), with the universal cartesian-marked oplax cocone Λ given by

∀
(D, X′)

(C , X)
( f ,ν) in ∫ F

y(C) F

y(D)

⌈X⌉

y( f )

⌈X′⌉

⌈ν⌉

Looking at the proof of Corollary 3.13 (and Construction 3.9), we consider the sigma
natural transformation χ given by the composite

Δ1 Λ���⇒
oplaxcart

[C op ,Cat ] (K(−), F) Gφ ,K(−)��⇒
pseudo

DOpFib s(K(−))
Ĝ−1ω̃ ,K(−)��⇒
pseudo

[C op ,Cat ] (K(−), Ω̃) .
We can visualize it as follows:

H(C ,X) G 1

y(C) F Ω̃

⌟
Gφ(Λ(C ,X)) φ ω̃

Ĝ−1ω̃ (Gφ(Λ(C ,X)))

Λ(C ,X) z

For this, we need to choose an adjoint quasi-inverse of Ĝω̃ ,K(C ,X) = Ĝω̃ ,y(C) for
every (C , X) ∈ ∫ F. By Proposition 4.13, we can construct such a quasi-inverse by
taking quasi-inverses of j ○ − and Ĝω ,y(C). Both the latter are given by the Yoneda
lemma, respectively by the proof of Proposition 4.13 and by Proposition 4.12. So
given ψ∶H → y(C), we can take Ĝ−1ω̃ ,y(C)(ψ) to be the morphism y(C) → Ω̃ which
corresponds to j−1C (ψ) (see Proposition 4.3). With this choice, χ(C ,X) would be the
morphism y(C) → Ω̃ which corresponds to

j−1C (Gφ (Λ(C ,X))) ∶ (C /C )op �→ Set

(D f�→ C) ↦ (Gφ (Λ(C ,X))D) f
( f g←� f ○ g) ↦ H(C ,X)(g).

Using the explicit construction of pullbacks in Cat to calculate (Gφ (Λ(C ,X))D) f , we
do not obtain a cartesian-marked oplax natural transformation χ. This is due to the
unnecessary keeping track of themorphisms f ∶D → C other than the objects ofG(D).

Instead, we choose Ĝ−1ω̃ ,y(C) on the objects Gφ (Λ(C ,X)) so that χ(C ,X) is the
morphism y(C) → Ω̃ which corresponds to

⌈χ(C ,X)⌉ ∶ (C /C )op �→ Set

(D f�→ C) ↦ (φD)F( f )(X)
( f g←� f ○ g) ↦ G(g).
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This is the operation of normalization that we need. Notice that

(φD)F( f )(X) = (φD)Λ(C ,X)( f ) ≅ (Gφ(Λ(C ,X))D) f
and that such isomorphism is natural in f ∈ (C /C )op. So that, thanks to
the argument above, Ĝω̃ ,y(C)(χ(C ,X))∶Q(C ,X) → y(C) is indeed isomorphic to
Gφ (Λ(C ,X)) ∶H(C ,X) → y(C). We then extend Ĝ−1ω̃ ,y(C) to a right adjoint quasi-inverse
of Ĝω̃ ,y(C), choosing the components of the counit on the objects Gφ (Λ(C ,X)) to be
the just obtained isomorphisms.

We prove that χ is cartesian-marked oplax natural. Given a morphism
( f , id)∶(D, X′) ←� (C , F( f )(X)) in (∫ F)op, it is straightforward to show that

χ(D ,X′) ○ y( f ) = χ(C ,F( f )(X))

using that F is a strict 2-functor. We still need to show that χ f ,id = id. For this, it is
straightforward to prove that

Ĝω̃ ,y(C)(χ f ,id) = id,

following the recipe given in the proof ofTheorem 3.10. So we conclude using the fully
faithfulness of Ĝω̃ ,y(C). ∎
Remark 4.15 Looking at the proof of Theorem 4.14, we see that the idea of the
operation of normalization in prestacks is the following. Rather than considering the
“local fibres” of the Gφ(Λ(C ,X))’s, that are not compatible with each other, we express
all of them in terms of the “global fibres” of φ.

Remark 4.16 The proof of Theorem 4.14 also gives us a recipe for the characteristic
morphism z∶F → Ω̃ of a discrete opfibration φ∶G → F in [C op ,Cat ]with small fibres.

G 1

F Ω̃

φ ω̃comma

z

We obtain that z is the 2-natural transformation whose component on C ∈ C is the
functor zC that sends X ∈ F(C) to

zC(X) ∶ (C /C )op �→ Set

(D f�→ C) ↦ (φD)F( f )(X)
( f g←� f ○ g) ↦ G(g).

Given ν∶X → X′ in F(C), we have that zC(ν) is the natural transformation whose
component on f ∶D → C is the function

F( f )(ν)∗∶(φD)F( f )(X) → (φD)F( f )(X′)
that calculates the codomain of the liftings along φD of F( f )(ν).
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It is interesting to compare our result with what happens in dimension 1. The
characteristic morphism for a subobject G ↪ F in 1-dimensional presheaves has
component on C that sends X ∈ F(C) to

⋃
D∈C

{D f�→ C ∣ F( f )(X) ∈ G(D)}.

While in dimension 1 the fibre on F( f )(X) can only be either empty or a singleton,
in dimension 2 we need to handle the general sets formed by such fibres.

5 A 2-classifier in stacks

In this section, we restrict our good 2-classifier in prestacks (Theorem 4.14) to a
good 2-classifier in stacks that classifies all discrete opfibrations with small fibres
(Theorem 5.11). We follow the strategy described in the general Theorem 3.24 to
restrict a good 2-classifier to a nice sub-2-category. The idea is to select, out of all
the presheaves on slices involved in the definition of Ω̃, the sheaves with respect to
the Grothendieck topology induced on the slices.This restriction of Ω̃ is tight enough
to give a stack ΩJ , but at the same time loose enough to still host the classification
process of prestacks.

Our result solves a problem posed by Hofmann and Streicher in [7]. Indeed, in a
different context, they considered the same natural idea to restrict their analog of Ω̃
by taking sheaves on slices. However, this did not work for them, as it does not give a
sheaf. Our results show that such a restriction yields nonetheless a stack and a good
2-classifier in stacks.

As explained in Remark 2.37, we take strictly functorial stacks with the respect
to a subcanonical topology J. Throughout this section, we consider the full sub-2-
categorySt (C , J)of [C op ,Cat ]on stacks. Call i∶St (C , J) ↪�→

f f
[C op ,Cat ] the injective

on objects and fully faithful 2-functor of inclusion.
We want to show that i satisfies all the assumptions of Theorem 3.24.
The following proposition does not seem to appear in the literature.

Proposition 5.1 The 2-category St Ps (C , J) of pseudofunctorial stacks has all bilimits
and all flexible limits, calculated in Ps [C op ,Cat ] and hence pointwise.

St (C , J) has all flexible limits (thus all comma objects and the terminal object) and
all pullbacks along discrete opfibrations, calculated in [C op ,Cat ] and hence pointwise.
Proof ByTheorem 2.36, St Ps (C , J) is a bireflective sub-2-category of Ps [C op ,Cat ].
So by Remark 4.8 it has all bilimits, calculated in Ps [C op ,Cat ]. Consider then a
flexible weight W and a 2-diagram F in St Ps (C , J). Then the flexible limit of F
weighted by W exists in Ps [C op ,Cat ], by Remark 4.8. In particular, by flexibility of
W, it satisfies the universal property of a bilimit of a 2-diagram that factors through
St Ps (C , J). And it is then a pseudofunctorial stack. It follows that it is the flexible limit
of F weighted byW in St Ps (C , J), since fully faithful 2-functors reflect 2-limits.

Consider now a 2-diagram F in St (C , J) and a flexible weight W. The flexible
limit of F weighted by W exists in [C op ,Cat ], calculated pointwise. Then it is also
the flexible limit in Ps [C op ,Cat ], as the latter is as well calculated pointwise. So it is a
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stack, as the 2-diagram in Ps [C op ,Cat ] factors through St Ps (C , J). Whence we have
produced the flexible limit of F weighted byW in St (C , J).

Finally, consider p∶E → B and z∶F → B in St (C , J), with p a discrete opfibration.
The pullback of p and z exists in [C op ,Cat ], calculated pointwise. Then it is also the
bi-iso-comma object of p and z in Ps [C op ,Cat ], by Remark 4.8. We conclude that it
is a stack and hence the pullback of p and z in St (C , J), by the argument above. ∎
Proposition 5.2 A morphism in St (C , J) is a discrete opfibration if and only if
its underlying morphism in [C op ,Cat ] is so. In particular, i∶St (C , J) ↪�→

f f
[C op ,Cat ]

preserves discrete opfibrations.
Proof The “if ” part is clear by the fact that St (C , J) ↪�→

f f
[C op ,Cat ] is fully faithful.

The “only if ” part follows from Proposition 2.6, since J is subcanonical. ∎
Remark 5.3 Putting together Propositions 5.1 and 5.2, we have thus proved that
i∶St (C , J) ⊆ [C op ,Cat ] is a nice sub-2-category (Definition 3.17).
Definition 5.4 We say that a discrete opfibration φ in St (C , J) has small fibres if i(φ)
has small fibres. Notice that this is in line with Remark 3.19.
Proposition 5.5 Let l ∶F → B be a morphism in [C op ,Cat ] (that is, a 2-natural
transformation l). l is a fully faithful morphism if and only if for every C ∈ C the
component lC of l on C is a fully faithful functor.

l is chronic (Definition 3.20) if and only if for every C ∈ C the component lC of l on C
is an injective on objects and fully faithful functor.
Proof The proof is straightforward. ∎
Construction 5.6 Wewant to produce the objectΩM ofTheorem 3.24 in our case with
i∶St (C , J) ⊆ [C op ,Cat ]. That is, a stack, which we will callΩJ , that is a nice restriction
of the good 2-classifier Ω̃ in prestacks. Recall that, in dimension 1, the subobject classifier
in sheaves is given by taking closed sieves. We produce a 2-categorical notion of closed
sieve.

We have already said in Construction 4.2 that discrete opfibrations over representa-
bles generalize the concept of sieve to dimension 2; we call them 2-sieves. Thanks to
Proposition 4.3 (indexed Grothendieck construction, explored in our joint work with
Caviglia [3]), we can equivalently consider presheaves on slice categories.We now need to
generalize closedness of a sieve to dimension 2. The indexed Grothendieck construction
can be restricted to a bijection between 1-dimensional sieves on C ∈ C and presheaves
(C /C )op → 2. It can be shown that closed 1-sieves correspondwith sheaves (C /C )op →
2, and that the closure of a sieve corresponds to the sheafification of the corresponding
presheaves. So we define closed 2-sieves to be the sheaves (C /C )op → Set (with respect
to the Grothendieck topology induced by J on the slices, that we call again J). And we
use them to restrict our good 2-classifier ω∶1→ Ω̃ in prestacks to a good 2-classifier
ωJ ∶1→ ΩJ in stacks (Theorem 5.11).

Remark 5.7 The “maximal” 2-sieve idy(C), associated with ω̃C = Δ1∶(C /C )op → Set
(see Remark 4.4), is a closed 2-sieve.

Closed 2-sieves are stable under pullbacks. Indeed if F∶C /C op → Set is a sheaf and
f ∶D → C is a morphism in C then also F ○ ( f ○ =)∶C /D op → Set is a sheaf.
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Proposition 5.8 The 2-functor

ΩJ ∶ C op �→ Cat

C ↦ Sh (C /C , J)
(C f←� D) ↦ − ○ ( f ○ =)op

is a stack with respect to the Grothendieck topology J.
Moreover, the inclusions Sh (C /C , J) ↪�→

f f
[(C /C )op , Set] form a chronic arrow

�∶i(ΩJ) ↪�→
f f

Ω̃ in [C op ,Cat ]. And ω̃∶1→ Ω̃ factors through �; call ωJ ∶1→ ΩJ the result-
ing morphism.

Proof The second part of the statement is clear after Proposition 5.5 and Remark 5.7.
We prove that ΩJ is a stack (recall fromDefinition 2.34 the definition). So let C ∈ C

and S ∈ J(C) a covering sieve on C.
We first prove the uniqueness of gluings of morphisms. Let M ,N ∈ Sh (C /C , J)

and let α, β∶M �⇒ N twonatural transformations such that f ∗α = f ∗β for every (D f�→
C) ∈ S. We show that α = β. Given (D f�→ C) ∈ S,

α f = ( f ∗α)idD = ( f ∗β)idD = β f .

Let now g∶E → C in C and consider g∗S ∈ J(g) = J(E). SinceM is a sheaf,

M(g) ≅MatchM (g∗S)
where the right hand side denotes the set of matching families for M with respect to
the covering sieve g∗S. And this holds analogously for N. We produce a commutative
square

M(g) N(g)

MatchM (g∗S) MatchN (g∗S)

≅

αg

≅

[αg]

and analogously for β. We define [αg] to send a matching family (h ∈ g∗S) m
↦�→ (xh ∈

M(g ○ h)) to the matching family (h ∈ g∗S) ↦ (αg○h(xh) ∈ N(g ○ h)). The latter is
indeed a matching family by naturality of α. The square above commutes since, for
every m ∈MatchM (g∗S), calling X the amalgamation ofm, we have that αg(X) is an
amalgamation of [αg](m). Notice now that [αg] = [βg], as for every h ∈ g∗S we have
that g ○ h ∈ S and hence αg○h = βg○h . Thus αg = βg .

We prove that we have the gluings of morphisms. Let M ,N ∈ Sh (C /C , J) and
consider a matching family

(D f�→ C) ∈ S ↦ (α f ∶ f ∗M �⇒ f ∗N) in Sh (C /D , J)
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So that for every D′ l�→ D
f�→ C with f ∈ S it holds that l∗α f = α f ○l . We produce a

natural transformation λ∶M �⇒ N such that f ∗λ = α f for every (D f�→ C) ∈ S. Given
(D f�→ C) ∈ S, we would like to define λ f ∶= (α f )idD

. Let g∶E → C in C . We define λg
to be the composite

M(g) ≅MatchM (g∗S) [λg]��→MatchN (g∗S) ≅ N(g)

where [λg] sends a matching family (h ∈ g∗S) m
↦�→ (xh ∈ M(g ○ h)) to the matching

family (h ∈ g∗S) ↦ ((αg○h)id(xh) ∈ N(g ○ h)).The latter is indeed amatching family

by naturality of αg○h . It is then straightforward to prove that λ is natural. Given (D f�→
C) ∈ S, we have that λ f = (α f )idD

, since idD ∈ f ∗S and hence the amalgamation of
any matching family on f ∗S is just the datum on idD . So f ∗λ = α f . Indeed for every
l ∶D′ → D in C

( f ∗λ)l = λ f ○l = (α f ○l)idE
= (l∗α f )idE

= (α f )l .
It remains to prove that we have the gluing of objects. So consider a descent datum

(D f�→ C) ∈ S ↦ M f ∈ Sh (C /D , J)

with φ f ,h ∶h∗M f ≅ M f ○h such that the cocycle condition

k∗h∗M f k∗M f ○h

(h ○ k)∗M f M f ○h○k .

≅

k∗φ f ,h

φ f○h ,k

φ f ,h○k

holds for everyD′′ k�→ D′ h�→ D
f�→ C with f ∈ S.We produceM ∈ Sh (C /C , J) and for

every (D f�→ C) ∈ S isomorphisms ψ f ∶ f ∗M ≅ M f such that

h∗ f ∗M h∗M f

( f ○ h)∗M M f ○h .

≅

h∗ψ f

φ f ,h

ψ f○h
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for every D′ h�→ D
f�→ C with f ∈ S. We construct the presheaf

Z ∶ (C /C )op �→ Set

D C

D′

f ∈S

h
f ′

1→
M f (idD)

M f ′(idD′)
Z(h)

(D g∉S��→ C) 1→ ∅
where Z(h) is the composite

M f (idD) M f (h)���→ M f (h) = (h∗M f )(idD′) ≃���→
φ f ,h
idD′

M f ○h(idD′).

Z is indeed a functor, by the cocycle condition.Moreover, it is straightforward to show
that f ∗Z ≅ M f for every (D f�→ C) ∈ S. However, Z is not a sheaf. So we define M ∶=
Z++, where Z+ is the plus construction of Z and hence Z++ is the sheafification of Z. It
is straightforward to check that ( f ∗Z)+ ≅ f ∗(Z+), by the explicit plus construction.
Thus, using that f ∗Z ≅ M f , we define ψ f to be the composite

f ∗(Z++) ≅ ( f ∗Z+)+ ≅ ( f ∗Z)++ ≅ (M f )++ ≅ M f ,

where the last isomorphism is given by the fact that M f is a sheaf. It is then
straightforward to show that the isomorphisms ψ f satisfy the required condition. ∎
Remark 5.9 Representables form a fully faithful dense generator y ∶C → St (C , J) of
the kind described in Construction 3.23. We want to apply Theorem 3.24 on such a
dense generator. So we need to factorize the characteristic morphisms in [C op ,Cat ]
of discrete opfibrations with small fibres in St (C , J) over representables.
Proposition 5.10 For every ψ∶H → y(C) a discrete opfibration in St (C , J) with small
fibres, with C ∈ C , every characteristic morphism of i(ψ) with respect to ω̃ factors
through �∶i(ΩJ) ↪�→

f f
Ω̃.

Proof It suffices to prove that the characteristic morphism z for i(φ) with respect
to ω̃ produced in Remark 4.16 (and Theorem 4.14) factors through �. Indeed such
factorization only depends on the isomorphism class of z, by the Yoneda lemma,
as any presheaf isomorphic to a sheaf is a sheaf. By Remark 4.16, z is the 2-natural
transformation y(C) → Ω̃ that corresponds with the functor

zC(idC) ∶ (C /C )op �→ Set

(D f�→ C) ↦ (φD) f
( f g←� f ○ g) ↦ H(g)

So it suffices to prove that such functor is a sheaf. Let f ∶D → C in C and R a covering
sieve on f ∶D → C, i.e., R ∈ J(D). Consider then a matching family
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D′

D C

g

f

∈ R m�1→ Xg ∈ (φD′) f ○g

on R for zC(idC). We need to show that there is a unique X ∈ (φD) f such that

H(g)(X) = Xg for every (D′ g�→ D) ∈ R. Notice that m is also a matching family on
R ∈ J(D) forH, as (φD′) f ○g ⊆ H(D′) and the action of zC(idC) onmorphisms is given
by the action ofH. Since y(C) ∶C op → Set , also H∶C op → Set . AsH is a stack, it then
needs to be a sheaf. So there is a unique X ∈ H(D) such that H(g)(X) = Xg for every
(D′ g�→ D) ∈ R. It remains to prove that φD(X) = f . Since y(C) is separated, it suffices
to prove that φD(X) ○ g = f ○ g for every (D′ g�→ D) ∈ R. But by naturality of φ

φD(X) ○ g = φD′(H(g)(X)) = φD′(Xg) = f ○ g .
We thus conclude that zC(idC) is a sheaf. ∎

We can now apply Theorem 3.24 (based on our theorems of reduction of the
study of a 2-classifier to dense generators) to guarantee that we have produced a
good 2-classifier in stacks that classifies all discrete opfibrations with small fibres. The
following theorem is original.

Theorem 5.11 The 2-natural transformation ωJ from 1 to

ΩJ ∶ C op �→ Cat

C ↦ Sh (C /C , J)
(C f←� D) ↦ − ○ ( f ○ =)op

that picks the constant at 1 sheaf on every component is a good 2-classifier in St (C , J)
that classifies all discrete opfibrations with small fibres.

Proof By Theorem 3.24, the restriction ωJ of the good 2-classifier ω̃ in [C op ,Cat ]
along i∶St (C , J) ↪�→

f f
[C op ,Cat ] is a good 2-classifier in St (C , J) with respect to the

property of having small fibres. We can apply Theorem 3.24 thanks to Remarks 5.3
and 5.9, Propositions 5.8 and 5.10, andTheorem 4.14. ∎
Remark 5.12 We can extract from Theorem 3.24 and Remark 4.16 a recipe for the
characteristicmorphism zJ ∶F → ΩJ of a discrete opfibration φ∶G → F inSt (C , J)with
small fibres.

G 1

F ΩJ

φ ω Jcomma

z J

Recall that we denote as i the inclusion St (C , J) ⊆ [C op ,Cat ]. We obtain that zJ
corresponds to the 2-natural transformation i(zJ)∶i(F) → i(ΩJ) whose component
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on C ∈ C is the functor i(zJ)C that sends X ∈ i(F)(C) to the sheaf
i(zJ)C(X) ∶ (C /C )op �→ Set

(D f�→ C) ↦ (i(φ)D)i(F)( f )(X)
( f g←� f ○ g) ↦ i(G)(g)
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