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Is a straight line the shortest path?

JESSICA E. BANKS

Is the shortest path from  to  the straight line between them? Your
first response might be to think it's obviously so. But in fact you know that
it's not quite that straightforward. Your sat-nav knows it's not that straight-
forward. It asks whether you would like it to find the shortest route or the
fastest route, because finding the best path depends on knowing what
exactly you mean by ‘long’. Likewise, if you're on a walk in the mountains,
there's a good chance you'd rather follow the path around the head of the
valley, rather than heading down the steep slope and up the other side.

A B

The same sorts of considerations apply in mathematical worlds. I use
the mountainside image because it is my preferred way of thinking of a
Riemannian metric. Pick an abstract surface . A Riemannian metric on
gives a well-behaved distance function. By force of habit I tend to picture
as sitting somehow within the physical world. Probably, I'm looking at it
from the outside. But if I change viewpoint, so that I am walking around on
, I can picture how the topography affects the idea of the ‘shortest path’.

S S
S

S
A path that is locally the shortest path between any two points on it is

called a geodesic. Given an embedded path  on , we can
choose a Riemannian metric for which  is a geodesic: put  at the bottom of
a very steep valley. So, if you generalise far enough, ‘short’ paths can be
very much not straight. That's perhaps not very surprising; many things
become possible if you relax the rules enough.

p : [0,  1] → S S
p p

Here I'd like to focus on a much more restricted situation: the case
where all points on the surface are ‘the same’. If you're standing on the
surface , and every direction you look looks exactly the same, intuition
says that the best way to reach a given point is to head straight for it. My
aim here is to use that sameness to show that this intuition is correct.

S

Euclidean space
First consider the Euclidean plane , with its usual metric�2

d ((x1, y1) , (x2, y2)) = (x1 − x2)2 + (y1 − y2)2.
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Our aim is to show that the unique geodesic between two points is the
straight line between them. To do so we'll use the following result.

Proposition 1: (Strict triangle inequality for )�2

Given three points in  that do not lie on a line, the sum of the lengths
of any two sides of the triangle is strictly greater than the length of the third
side.  That is, 

�2

|(x1, y1) − (x2, y2)| + |(x2, y2) − (x3, y3)| > |(x1, y1) − (x3, y3)| .

Proof:  We could show this by calculation as follows. To make this as
simple as possible, assume .  If x1 = y1 = y2 = 0

x2
2 + (x2 − x3)2 + y2

3 ≤ x2
3 + y2

3

then

x2
2 y2

3 ≤ 0.
This cannot be the case, since the hypothesis that the three points are not
collinear means both  and .x2 ≠ 0 y3 ≠ 0

On the other hand, we know this result intuitively: if you bend a straw
in the middle, the ends get closer together, never further apart.

Alternatively, we can prove the proposition with isosceles triangles.

Proof:  Clearly we only need to worry about the longest edge of the triangle.
Let ,  and  be the vertices of a triangle, where  is the longest side.
Suppose the angle at  is , the angle at  is  and the angle at  is .  Then

.

A B C AC
A α B β C γ

α + β + γ = 180°
Extend the edge  past  to a point  so that  is the same length as

. Then . See Figure 1.
AB B D AD

AC ∠ADC = 1
2 (180° − α)

α

β

γ
A

B

C

D
180° − α

2

FIGURE 1

Again extend the edge  past , this time to a point  such that  is
the same length as . Then . See Figure 2.

AB B E BE
BC ∠AEC = 1

2β
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α

β

γ
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β
2

180° − β

FIGURE 2

Now compare the angles  and . The first is
, while the second is .  Notice that

∠ACD ∠ACE
180° − α − 1

2 (180° − α) γ + 1
2β

180° − α −
180° − α

2
=

180° − α
2

=
β + γ

2

< γ +
β
2

.

This tells us that  is further from  than  is.E A D

Armed with this fact, we can now show our main result.

Proposition 2:  Geodesics are all straight lines.

Proof:  Fix two points  and , and join them by a geodesic . Also draw the
line  that passes through  and , and name the segment of this line
between  and  as .  Using translation and rotation if necessary, we can
safely picture  as being horizontal, with  on the left and  on the right. See
Figure 3.

A B g
l∞ A B

A B l
l A B

A Bl∞ l

g

FIGURE 3

We want to show that all points of  lie on .  The proof will be by
contradiction, so we shall assume this is not the case. Then there is a point
on  that is not on . By using reflection if needed, we can picture  as
above . The point  divides the geodesic  into two pieces,  and , each

g l∞
C

g l∞ C
l∞ C g gA gB
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of which is also geodesic. Draw two straight lines,  and , joining  and
respectively to . See Figure 4.

lA lB A B
C

C
lA lB

gA gB

FIGURE 4

Our next step is to make use of the existence of a rotation by any angle
about any point. How we proceed depends on the relative lengths of ,  and

. Since we have done nothing to distinguish  from , we can assume that
 is at least as long as .

l lA
lB A B
lA lB

We can construct a rotation around  that moves  to a segment  of
that overlaps with . This rotation also takes  to a point , and  to a
geodesic  between  and . See Figure 5.  Notice that  is the same length
as , and  is the same length as .  Since  is strictly shorter that , this
means  cannot coincide with . Accordingly, either  is strictly shorter
than , in which case  lies on  between  and , or else  is strictly longer
than , in which case  lies on  between  and .

A lA l′A l∞
l C D gA

g′A A D l′A
lA g′A gA gA g

D B l′A
l D l A B l′A
l B l′A A D

D
l′A

g′A

FIGURE 5

Likewise, we can rotate about  to take  to a segment  of ,  to a
point , and  to a geodesic  from  to . There are two possible
positions for the point , determined by whether  overlaps with  or not.
Our aim is to arrange that the points  and  interleave with  and  along

. Here we consider two cases.

B lB l′B l∞ C
E gB g′B B E

E l′B l
A D B E

l∞

If  is strictly shorter than , then  is also shorter than . On the other
hand, by the strict triangle inequality,  is strictly shorter than the sum of the
lengths of  and . In this case we arrange that  overlaps with . The point

 must then lie between  and .

l′A l l′B l
l

l′A l′B l′B l
E A D

If  is strictly longer than , we arrange that  does not overlap with .
Again using the strict triangle inequality, we know that  is strictly shorter
than the sum of the lengths of  and . This tells us that  must lie on the
other side of  to .

l′A l l′B l
l′A

l l′B E
D B
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In either case, we have a pair of geodesics,  joining  to  and
joining  to , and the points  and  interleave with the points  and
along .

g′A A D g′B
B E A D B E

l∞

Using the reflection in , we can create from  a geodesic  from  to
 that lies entirely on or above . See Figure 6.  The path  has the same

length as , and so also as . Similarly, we can create a geodesic  from
to  that lies entirely on or above  and has the same length as .

l∞ g′A hA A
D l∞ hA

g′A gA hB E
B l∞ gB

hA

FIGURE 6

Since their endpoints interleave,  and  must meet at a point . See
Figure 7.  Following  from  to , and then following  from  to  gives
a path from  to  that is strictly shorter than . That is not possible, since
we chose  to be a geodesic between  and . This contradiction shows that
our original assumption was wrong, so every point of  must lie in .

hA hB F
hA A F hB F B

A B g
g A B

g l∞

Since a geodesic cannot pass through the same point twice, the path
must coincide with .

g
l

E

F

FIGURE 7

This proof doesn't make much use of the Euclidean metric. It uses the
strict triangle inequality. It uses the fact that we can rotate by any angle
about any point. It uses the fact that we can reflect in any line. That's all. If
we can find other situations where the same three things are true, then the
same proof will apply.
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Spherical geometry
Another form of geometry we find in everyday life is spherical

geometry. When walking, or even driving, we can safely pretend that we
live on a flat Earth, but once you start trying to run an airline it becomes
important to remember that the surface of the Earth is actually (roughly)
spherical.

Mathematically, we picture ‘the’ sphere as the set of points at distance 1
from the origin in three-space. That is, the equation of the 2-sphere  is

.
�2

x2 + y2 + z2 = 1
In this context, the term ‘line’ refers to a great circle. A great circle is

the intersection of  with a plane through the origin in . It passes through
pairs of antipodal points on .  Examples of great circles on Earth include
all the lines of longitude and the Equator (but not the other lines of latitude).

�2 �3

�2

As in Euclidean 2-space, in spherical 2-space we can reflect in any line,
and we can rotate by any angle about any point (the rotation will also be a
rotation about the antipodal point). To prove Proposition 2, we therefore
only need to establish that the strict triangle inequality also holds in
spherical geometry.

The catch is that it doesn't. One big difference between Euclidean and
spherical geometry is that if you keep walking in the same direction for a
long time, in Euclidean space you continue getting farther from where you
started, but in spherical space you eventually get back to where you started.
If two sides of a triangle together reach more than halfway round , the
third side can be shorter because it ‘goes round the other way’.

�2

Nevertheless, we can still use the proof of Proposition 2 for spherical
geometry. The reason for this is that the property of being a geodesic is a
local property. That is, to check if a path is a geodesic, you only need to
look at a small part of it at a time. We will see that the strict triangle
inequality holds in  if we restrict it to sufficiently small scales. The proof
of Proposition 2 will then hold under the additional assumption that the
points  and  chosen are suitably close together.

�2

A B
Before we can actually prove what we want, we need to consider how to

find the lengths of sections of great circles.  If we take a great circle in ,
and consider it as a circle in the plane through the origin used to define it,
we can use the standard formula to relate the length of an arc to the angle
subtended at the centre of the circle. Given a sector with angle  of a circle
with radius  (see Figure 8), the length  of the corresponding arc of the
circle is proportional to . If we measure  in radians then in fact .
If we measure in degrees instead, the constant of proportionality serves to
convert the units.  This relationship between lengths and angles is used in
the following proof to convert one problem into another (easier) one.

�2

θ
r l

rθ θ l = rθ
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θ

r

l

FIGURE 8

Proposition 3: (Strict triangle inequality for  )�2

Given three points close together in  that do not lie on a line, join the
three points by short arcs of great circles.  Then the sum of the lengths of
any two sides of the resulting triangle is strictly greater than the length of
the third side.

�2

Proof:  Call the three points ,  and . Label the arc opposite  as , the
arc opposite  as  and the arc opposite  as . Also join each vertex to the
origin  by a (Euclidean) straight line. See Figure 9.  The three lengths ,
and  correspond to the three angles ,  and  made at  by these lines.
See Figure 10.  This means that proving the triangle inequality for the
lengths is the same problem as proving it for the angles.  However, when we
think about the angles, this is again a situation we know about from real life.
Imagine making the sector  out of paper, and using a second piece of
paper, folded, to make the two other sectors  and . See Figure 11.
Once you unfold the second piece of paper to lie it flat, it will open out to
have a bigger angle than the first piece of paper.

A B C A α
B β C γ

O α β
γ α′ β′ γ′ O

AOC
AOB BOC

α

β

γ

A

B

C

O

FIGURE 9

α

β

γ

γ′

β′

α′

FIGURE 10
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FIGURE 11

Alternatively, add in the three Euclidean straight lines ,  and .
Focusing on these lines, instead of the arcs, gives a Euclidean triangle
with side lengths ,  and . See Figure 12.  As the three edges ,
and  all have the same length, the triangle inequality holds for ,  and

 if, and only if, it holds for ,  and . That is, we can deduce the result
in the spherical case from the result in the Euclidean case.

AB BC AC
ABC

α″ β″ γ″ OA OB
OC α′ β′

γ′ α″ β″ γ″

α

β

γ γ″

β″

α″

FIGURE 12

Hyperbolic geometry
The third form of geometry we will consider is hyperbolic geometry.

This is harder to visualise than Euclidean or spherical geometry, as we do
not really encounter it in everyday life. Hilbert's Theorem (see [1, 5.11] or
[2, 5.12]) says that there is no way to fit the whole of the hyperbolic plane

 smoothly inside  so that all distances are correct.  We can, however,
make small pieces of the hyperbolic plane. The pseudosphere (see Figure 13
and [3, 20.7]) is a geometrical shape that locally models . For a more
intuitive, if less mathematically precise, understanding of hyperbolic
geometry, you could crochet some hyperbolic coral (originally designed by
Daina Taimina, see [4, 5, 6] or sew yourself a hyperbolic blanket
(instructions by Jeff Weeks are available at [7], with credit for the design
given to Helaman Ferguson).

�2 �3

�2
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FIGURE 13

To work mathematically with , we use different models that fit more
happily in  (in fact in ) by changing the metric.  For our purposes now,
we will use the Poincaré disc model  of .  In this model, the points of
are identified with the open unit disc in the complex plane :

�2

�3 �2

� �2 �2

�

� = {z ∈ � : | z | < 1} .

The metric at each point is scaled by a factor of .  The bounding

circle  is called the boundary of .

2
1 − | z |2

| z | = 1 �2

The ‘straight lines’ in this case are given by circles perpendicular to the
boundary. This includes the lines through the origin, which can be thought
of as ‘circles with infinite radius’. These are often the easiest hyperbolic
lines to calculate with. For example, consider the line segment along the real
axis from the origin to the point , where . The hyperbolic
length of this line segment is given by the integral

r 0 < r < 1

∫
 r

0

2
1 − t2

 dt = ∫
 r

0

1
1 − t

+
1

1 + t
 dt

 

= [− ln |1 − t| + ln |1 + t|]r

0

= ln (1 + r
1 − r ) .

This value becomes arbitrarily large as  approaches 1; that is, the boundary
is infinitely far away.

r

To apply the proof of Proposition 2 to , we need to know about
isometries.  One type of isometry that is easy to picture is a rotation by any
angle around the origin. This is an isometry because the metric is scaled by a
factor that only depends on the distance from the origin.  Another type of
isometry is a reflection in a line through the origin.  Moreover, although we
will not prove it here, any function of the complex numbers of the form

�2

f (z) =
az + b
b⎯z + a⎯

,
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for complex numbers  and , is an isometry of . Given a point ,
taking  and  gives a map  that takes  to the origin, while
the inverse map

a b � ω ∈ �
a = 1 b = −ω f ω ω

f  −1
ω (z) =

z + ω
ω⎯z + 1

takes 0 to .  By combining these three types of isometry, it is possible to
rotate by any angle about any point, and to reflect in any hyperbolic line.
The following result, which makes use of these ideas, is therefore the final
step in proving Proposition 2 for .

ω

�2

Proposition 4:  (Strict triangle inequality for the Poincaré disc)
Let ,  and  be three points in  that do not lie on a hyperbolic line

(that is, on a single circle perpendicular to the boundary). Join the three
points by hyperbolic line segments to form a triangle. Then the length of the
line segment from  to  is strictly less than the sum of the lengths of the
other two sides.

A B C �

B C

Proof:  In , we can move any point to any other by an isometry, and we
can rotate about any point by any angle. This means we can assume the
three vertices are ,  and  for positive real values of
and . Since the points are not collinear, we know ,
and .

�

A = 0 B = r C = seiθ r
s 0 < r < 1 0 < s < 1
−1 < cos θ < 1
We have already calculated that the distance from  to  along the line

joining them is given by
A B

γ = ln (1 + r
1 − r )

and the distance from  to  is given byA C

β = ln (1 + s
1 − s) .

Denote by  the distance from  to .  Rather than trying to calculate the
line connecting  to  directly, we can use another isometry to change the
line into one we already know about. Define a map  by

α B C
B C

f r : � → �

f r (z) =
z − r

1 − rz
.

This map is chosen because ; we can find the distance of  from
by calculating the Euclidean distance  of  from 0. To make things
simpler, we will focus on the square of the distance, which is given by
multiplying by the complex conjugate of the complex number :

f r (r) = 0 C B
t f r (seiθ)

f r (seiθ)

t2 = ( seiθ − r
1 − rseiθ ) ( seiθ − r

1 − rseiθ )
⎯ ⎯⎯⎯⎯⎯⎯ ⎯

= ( seiθ − r
1 − rseiθ ) ( se−iθ − r

1 − rse−iθ)
=

r2 + s2 − rs (eiθ + e−iθ)
1 + r2s2 − rs (eiθ + e−iθ)

=
r2 + s2 − 2rs cos θ
1 + r2s2 − 2rs cos θ

.
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Our aim is to prove that . Assume otherwise (that is, that
). Then

α < β + γ
α ≥ β + γ

ln (1 + s
1 − s) + ln (1 + r

1 − r ) ≤ ln (1 + t
1 − t )

⇒ (1 + s
1 − s) (1 + r

1 − r ) ≤ (1 + t
1 − t )

⇒ t (2 + 2rs) ≥ 2r + 2s

⇒ t2 (1 + rs)2 ≥ (r + s)2 .
Substituting in the formula for  shows thatt2

(r2 + s2 − 2rs cosθ)(1 + rs)2 ≥ (r + s)2(1 + r2s2 − 2rs cosθ)
⇒ ((r + s)2 − 2rs(1 + cosθ))(1 + rs)2 ≥ (r + s)2((1 + rs)2 − 2rs(1 + cosθ))

⇒ −2rs(1 + cosθ)(1 + rs)2 ≥ −2rs(1 + cosθ)(r + s)2 .
Recalling that ,  and , this simplifies tor > 0 s > 0 1 + cosθ > 0

(1 + rs)2 ≤ (r + s)2

⇒ 1 + r2s2 − r2 − s2 ≤ 0

⇒ (1 − r2) (1 − s2) ≤ 0.
This is not possible, since  and . We therefore conclude that

, as required.
r2 < 1 s2 < 1

α < β + γ

Ideas for further reading
Euclidean, spherical and hyperbolic geometry are closely related. They

each satisfy the first four of Euclid's postulates, and are distinguished by
satisfying distinct variants of the fifth ([8] is an online edition of Euclid's
Elements).  The history of the study of these different cases is widely
documented (for example see [9], [10] or [11]).

Coxeter [3] discusses Euclidean and hyperbolic geometry, as well as
projective geometry (which is also known as elliptic geometry, and is
closely related to spherical geometry). Some of the results are proved in the
setting of absolute geometry (the case where the fifth postulate is not used at
all, giving proofs that are equally applicable to Euclidean, hyperbolic and
spherical geometry).

An exploration of other geometric ideas taking an intuitive approach is
given in [12]. If, on the other hand, you prefer a more calculation-based
approach, other techniques for proving Proposition 2 can be found at [13].
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