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Mass dispersion in oscillatory flows is closely tied to various environmental and biological
processes, differing markedly from dispersion in steady flows due to the periodic
expansion and contraction of particle patches. In this study, we investigate the Taylor–
Aris dispersion of active particles in laminar oscillatory flows between parallel plates.
Two complementary approaches are employed: a two-time-variable expansion of the
Smoluchowski equation is used to facilitate Aris’ method of moments for the pre-
asymptotic dispersion, while the generalised Taylor dispersion theory is extended to
capture phase-dependent periodic drift and dispersivity in the long-time asymptotic limit.
Applying both frameworks, we find that spherical non-gyrotactic swimmers can exhibit
greater or lesser diffusivity than passive solutes in purely oscillatory flows, depending
on the oscillation frequency. This behaviour arises primarily from the disruption of
cross-streamline migration governed by Jeffery orbits. When a steady component is
superimposed, oscillation induces a non-monotonic dual effect on diffusivity. We further
examine two well-studied shear-related accumulation mechanisms, arising from gyrotaxis
and elongation. Although these accumulation effects are less pronounced than in steady
flows due to flow unsteadiness, gyrotactic swimmers respond more strongly to the unsteady
shear profile, significantly modifying their drift and dispersivity. This work offers new
insights into the dispersion of active particles in oscillatory flows, and also provides a
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foundation for studying periodic active dispersion beyond the oscillatory flow, such as
periodic variations in shape and swimming speed.

Key words: micro-organism dynamics, dispersion

1. Introduction
Oscillatory flows occur in various aquatic and biological systems, including tidal and
wind-driven currents (Bars, Cébron & Gal 2015; Wang, Li & Dong 2021), tributary
inflows subject to diurnal discharge regulation (Long et al. 2020), and biological flows
(Secomb 2017; Lawrence et al. 2019; Alaminos-Quesada et al. 2024), as well as in
engineered fluidic systems (Reis et al. 2006; Vedel, Olesen & Bruus 2010; Hacioglu &
Narayanan 2016). Compared with steady flows, mass transfer in oscillatory flows is more
complex. A substance patch can alternately expand and contract as the advective velocity
profile develops, decays and reverses. The extent of streamwise dispersion in this process
depends on cross-sectional passive diffusion or active migration, which determines the
ability to exploit differential advection between streamlines. It is therefore of interest to
investigate how active particles, whose cross-sectional migration is jointly influenced by
shear and motility (Bees & Croze 2010; Bearon, Bees & Croze 2012; Croze et al. 2013,
2017), disperse differently from solute particles, whose cross-sectional migration is purely
diffusive and independent of the flow profile under laminar conditions.

Research on solute dispersion in oscillatory flows began shortly after the seminal work
of Taylor (1953) on dispersion in steady pipe flows. A significant milestone came when
Aris (1960) applied his method of concentration moments (Aris 1956) to analyse the
period-averaged asymptotic dispersion of solute in oscillatory pipe flows. A key finding
from previous studies (Bowden 1965; Holley, Harleman & Fischer 1970; Fischer et al.
1979) is that in a purely oscillatory flow, the effective period-averaged dispersivity is
significantly lower than in a steady flow of the same amplitude, due to concentration
contraction when the flow reverses. Building on Aris’s (1956) method of moments,
Brenner & Edwards (1993) systematically developed generalised Taylor dispersion (GTD)
theory – a versatile framework capable of addressing both time- and space-dependent
transport processes. The core formulation of GTD involves the so-called a posteriori
trial forms of the first- and second-order concentration moments, which, however, rely
on intuitive judgement.

In contrast to the aforementioned studies on period-averaged asymptotic dispersion,
Chatwin (1975) focused on the variation within the oscillation period. Through statistical
analysis, he inferred that as the solute tracers ultimately sample the entire cross-section,
their time-dependent mean speed equals the instantaneous cross-sectional average of
the streamwise advection velocity. Based on this inference, he further conjectured
that the time-dependent dispersivity oscillates at twice the flow frequency, due to the
multiplicative interaction of time-dependent terms in the definition of mean square
displacement. Although Chatwin’s (1975) formal proof of these conclusions relied on
the simplifying assumption that the concentration varies linearly in the streamwise
direction, his inferences were subsequently validated by other researchers (Yasuda 1984;
Mukherjee & Mazumder 1988).

Researchers have identified two key parameters governing solute dispersion in
oscillatory flows: the oscillation period and the cross-sectional diffusion time scale.
Consider solute dispersion in an oscillatory flow driven by a time-periodic pressure
gradient, with an initial uniform line source in the cross-section, released when the mean
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flow is zero. During the first half of the oscillation cycle, the solute patch spreads in one
streamwise direction. If cross-sectional diffusion is relatively slow, then the patch largely
returns to its original position during the second half of the cycle, producing only limited
net dispersion in the streamwise direction. Therefore, transient negative dispersivity may
arise in the latter half of this expansion–contraction process, even though the period-
averaged dispersivity remains positive. This phenomenon motivated Smith (1982) to
develop a more robust delayed-diffusion model to address the singularities caused by
transient negative dispersivity. Yasuda (1984) later clarified the seemingly paradoxical
transient negative dispersivity by proposing an alternative procedure for its calculation.
He compared the commonly used approach – averaging across the cross-section before
calculating the mean square displacement – with the newly proposed method, where
the mean square displacement is calculated prior to averaging. While the first method
reproduces the previously observed transient negative dispersivity, the second method,
which he regarded as more reasonable, consistently yields a positive transient dispersivity.

In light of the aforementioned research on dispersion in oscillatory flows, most studies
assume simplified cross-sectional transport processes characterised by a constant and
steady diffusivity. Under this setting, the cross-sectional distribution eventually becomes
uniform, i.e. the zeroth-order longitudinal concentration moment (i.e. the marginal
distribution of solute across the cross-section) approaches a uniform state, significantly
simplifying the transient and asymptotic calculations. For instance, based on an initial
condition of uniform line release in the cross-section, Ding et al. (2021) derived explicit
expressions for the concentration moments up to third order. While this setting holds for
solute dispersion in laminar oscillatory flows, it is not suitable for either active particles
with non-diffusive migration (Fung, Bearon & Hwang 2022), or turbulent conditions with
non-uniform cross-sectional diffusivity (Bowden 1965).

Beyond the special case of the ultimate uniform zeroth-order streamwise concentration
moment in the cross-section, the GTD theory for time-periodic processes, proposed
by Brenner & Edwards (1993, ch. 6), addresses the dispersion of Brownian particles
subjected to a time-periodic external force in the cross-section (Haber, Brenner & Shapira
1990; Shapiro & Brenner 1990a,b). In these circumstances, the zeroth-order streamwise
concentration moment becomes time-periodic as well. However, although the GTD theory
for time-periodic processes of Brenner & Edwards (1993) has solved the time-dependent
zeroth-order streamwise concentration moment, which adequately reflects the asymptotic
transport mechanisms in the cross-section, it does not extend to how the drift and
dispersivity behave asymptotically within the oscillation period, as only period-averaged
solutions are obtained.

In this study, we consider the dispersion of active particles in oscillatory channel flows
between parallel plates driven by a time-periodic pressure gradient. The active particles
propel at a constant speed, referred to as swimmers hereafter, mimicking micro-organisms
such as motile micro-algae and bacteria. The swimming directions are governed by the
Jeffery equation (Jeffery 1922), with a possible modification from gyrotaxis, typically
induced by bottom-heaviness (Pedley & Kessler 1992). The original Jeffery equation
describes how the angular velocity of a spheroid depends on flow shear and rate-of-
strain. For elongated swimmers suspended in a steady laminar pressure-driven flow, the
steady concentration distribution shows a non-trivial response to the mean shear rate
(Vennamneni, Nambiar & Subramanian 2020), as reported for both strongly elongated
bacteria cells (Rusconi, Guasto & Stocker 2014; Bearon & Hazel 2015) and less elongated
algal cells (Barry et al. 2015). On the other hand, gyrotactic swimmers also possess a
shear-sensitive feature. They are efficiently guided by the flow to accumulate near regions
with the fastest downwelling speed (Kessler 1985a,b), which can lead to a modification of
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the flow profile and even hydrodynamic instabilities in relatively concentrated suspensions
(Kessler 1986; Hwang & Pedley 2014b; Bees 2020; Fung, Bearon & Hwang 2020;
Fung & Hwang 2020; Ishikawa, Dang & Lauga 2022; Fung 2023; Wang, Jiang & Chen
2023; Ishikawa, Brumley & Pedley 2025). Thus both the elongated shape and gyrotaxis
introduce a dependence of the swimmers’ cross-sectional migration on the local time-
periodic shear. As a result, the existing transient solutions for the concentration moment
equations (Mukherjee & Mazumder 1988) cannot be directly applied due to the inherent
shear-dependent transport in the orientation and position space. Instead, a reformulation
of the solutions for the moment equations, derived from the Smoluchowski equation for
the transport of orientable swimmers in oscillatory flows, should be pursued to better
understand the associated physics. It is important to note that several orientational-
averaged models have been developed to characterise swimmer transport in position space,
including the Pedley–Kessler model (Pedley & Kessler 1990), the two-step GTD model
(Hill & Bees 2002; Manela & Frankel 2003), and a more recent new model by Fung
et al. (2022). However, these models are generally considered inapplicable when the flow
shear varies rapidly, such as in high-frequency oscillatory flows (Caldag & Bees 2025).
Therefore, these models are not employed here.

For the long-time asymptotic dispersion regime, we revisit the classical GTD theory by
Brenner & Edwards (1993), with an extension to the asymptotic oscillatory behaviours of
the drift and dispersivity during an oscillation period. Such an extension is particularly
useful for investigating the dispersion mechanism at a specific phase of the oscillation.
For the transient dispersion processes, we adopt the method of moments proposed by
Aris (1956). It is important to note that the introduction of self-propulsion results in the
non-self-adjointness of the eigenvalue problem, which poses challenges for the solution
technique of Barton (1983). This challenge is partially addressed by employing the bi-
orthogonal expansion method (Strand, Kim & Karrila 1987; Nambiar et al. 2019; Jiang &
Chen 2021). However, the time-dependent eigenvalue problem becomes significantly
more complex to solve, especially when an additional orientation space is involved.
Even for solutes, related works addressing the time-dependent eigenvalue problem,
or equally complex Green’s function problem, have only derived the concentration
moments up to second order (Yasuda 1984; Mukherjee & Mazumder 1988; Wu et al.
2012). Therefore, while it is theoretically possible to solve for the transient dispersion
of orientable swimmers in oscillatory flows, the dispersivity still presents significant
technical challenges, let alone the calculation of higher-order statistics.

Recently, Jiang & Chen (2025) applied a two-time-variable expansion to the
concentration moment equations before solving them with the eigenfunction expansion
method (Barton 1983), which is particularly efficient for higher-order concentration
moments. They introduced an auxiliary oscillation time variable that characterises
the inherent oscillation in the dispersion due to the continuous expansion–contraction
processes of the concentration. The concept underlying this new method actually shares
a fundamental principle with the GTD theory for asymptotic dispersion – both feature
an inherent periodic process governing the dispersion, while other transient modes decay
gradually. The present work extends the two-time-variable expansion method by Jiang &
Chen (2025) to analyse the transient dispersion of swimmers in oscillatory flows, while
also advancing the GTD theory to predict long-time asymptotic periodic behaviour of
drift and dispersivity, rather than only their period-averaged values.

The remainder of this paper is organised as follows. In § 2, we describe the problem
set-up for swimmer dispersion in oscillatory flows between parallel plates. In § 3, we
develop the general solution procedure for the transient moment equations. In § 4, we
revisit the GTD theory for long-time asymptotic dispersion, and extend it to account for
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Figure 1. Schematic illustration of swimmer dispersion in a vertical oscillatory channel flow. (a) A gyrotactic
swimmer in the oscillatory channel flow experiences a viscous torque and a gravitational torque, in addition
to rotational diffusion. (b) Time evolution of oscillatory velocity profile for the case with P∗

0 = 0, Q∗
0 =

8ν∗D∗
r /W

∗, δ∗ = 0.86W ∗ and ω∗ = D∗
r .

phase-resolved drift and dispersivity. In § 5, we present and discuss the results. Finally, in
§ 6, we provide concluding remarks.

2. Problem set-up

2.1. Governing equation
As shown in figure 1, we consider the dispersion of a patch of swimmers released into an
oscillatory flow between two vertical, parallel plates separated at distance W ∗. Assuming a
dilute suspension of swimmers, and thereby neglecting the forces exerted by the swimmer,
the flow is driven by a pressure gradient composed of a steady part (which includes the
contribution from gravitational acceleration) and a zero-mean oscillatory part:

G∗
p(z

∗, t∗) = −P∗
0 ex − Q∗

0 cos ω∗t∗ ex . (2.1)

The velocity profile is given by (Von Kerczek 1982)

U∗(z∗, t∗) = P∗
0 (W ∗ − z∗)z∗

2ν∗ + Q∗
0

ω∗ Im

{[
1 − cosh

[
(1 + i)(2z∗ − W ∗)/(2δ∗)

]
cosh

[
(1 + i)W ∗/(2δ∗)

]
]

eiω∗t∗
}

,

(2.2)

where ν∗ is the kinematic viscosity of water, ω∗ is the angular frequency of oscillation,
and δ∗ = √

2ν∗/ω∗ denotes the thickness of the Stokes layer.
The swimmer propels itself at a constant speed V ∗

s along an unsteady direction described
by a unit vector p. We note that the swimmers may exhibit more complex behaviours if
they are allowed to rotate out of the x–z plane, even when the flow velocity gradient exists
solely in the z-direction. An example is the resonate alignment of helical swimmers in
oscillatory channel flows, as observed in Hope et al. (2016). As a first step in investigating
oscillatory active dispersion, we therefore restrict our attention to particles whose rotation
is constrained to the x–z plane, for mathematical convenience. In this case, the orientation
of the swimmer is characterised by the angle θ , defined as the anticlockwise angle between
ex and p, such that p = cos θ ex + sin θ ez .

Apart from the random rotational diffusion, the deterministic rate of change of the swim-
mer’s direction is influenced by the vorticity, rate-of-strain and gravitational reorientation,
as described by the modified Jeffery’s orbit (Jeffery 1922; Pedley & Kessler 1992):

1021 A3-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
70

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10700


B. Wang, W. Jiang, L. Zeng, Z. Wu and P. Wang

ṗ∗ = 1
2
ω∗ × p + α0 p · E∗ · (I − pp) + 1

2B∗ p × k × p. (2.3)

Here,

ω∗ = ∂U∗

∂z∗ ez × ex (2.4)

denotes the vorticity, α0 is the Bretherton parameter (with α0 = 0 for a sphere, and α0 = 1
for a slender rod),

E∗ = 1
2

∂U∗

∂z∗ (ex ez + ez ez) (2.5)

is the rate-of-strain tensor, I is the identity tensor, B∗ is the gravitational reorientation
time scale, and k = −ex is the unit vector directed opposite to gravity.

The governing equation of the probability density function (p.d.f.) P of the swimmers
takes the form of the Smoluchowski equation, with the dimensional form written as

∂P

∂t∗
+

(
∂

∂x∗ ex + ∂

∂z∗ ez

)
· J∗

p +
(

∂

∂θ
eθ

)
· j∗r = 0, (2.6)

where

J∗
p = [V ∗

s p +U∗(z∗, t∗)ex ]P − D∗
t

(
∂P

∂x∗ ex + ∂P

∂z∗ ez

)
(2.7a)

and

j∗r = ṗ∗P − D∗
r
∂P

∂θ
eθ (2.7b)

are the fluxes in the position and orientation spaces, respectively. Here, D∗
r and D∗

t
represent the rotational and translational diffusivity, respectively.

We non-dimensionalise the problem by

t = t∗D∗
r , ω = ω∗

D∗
r
, z = z∗

W ∗ , x = x∗

W ∗ , Wo = W ∗

δ∗ , U = U∗

D∗
r W

∗ ,

Pes = V ∗
s

D∗
r W

∗ , Pesf = U∗
s

D∗
r W

∗ , Peof = U∗
o

D∗
r W

∗ , λ= 1
2B∗D∗

r
, Dt = D∗

t

D∗
r W

∗2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

Here, the characteristic velocities U∗
s = W ∗2P∗

0 /(8ν∗) and U∗
o = W ∗2Q∗

0/(8ν∗) are
defined based on the steady and oscillatory pressure gradients, respectively. In (2.8),
t denotes the dimensionless time, rescaled with the rotational diffusion time scale; ω is
the angular frequency of oscillation non-dimensionalised by the rotational diffusivity;
z and x are the cross-sectional and streamwise coordinates, respectively, rescaled with
the channel width; Wo is the Womersley number; U is the dimensionless flow velocity,
normalised by the characteristic velocity required to cross the channel width over one
rotational diffusion time scale; Pes is the dimensionless swimming Péclet number; Pesf
and Peof correspond to the steady and oscillatory flow Péclet numbers, respectively; Dt

is the dimensionless translational diffusivity rescaled with the characteristic diffusivity
associated with diffusing across the channel width within one rotational diffusion time
scale; and λ is the dimensionless gravitactic bias parameter.
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The dimensionless Smoluchowski equation is given by

∂P

∂t
+ (U + Pes cos θ)

∂P

∂x
− Dt

∂2P

∂x2 + Pes sin θ
∂P

∂z
− Dt

∂2P

∂z2 + ∂(θ̇ P)

∂θ
− ∂2P

∂θ2 = 0,

(2.9)

where the dimensionless rate of change of θ is

θ̇ (z, θ, t) = 1
2

∂U

∂z
(−1 + α0 cos 2θ) + λ sin θ, (2.10)

and the dimensionless flow velocity is

U (z, t) = 4Pesf (1 − z)z + 4 Peof
Wo2 Im

{[
1 − cosh

[
Wo (1 + i)(2z − 1)/2

]
cosh[Wo (1 + i)/2]

]
eiωt

}
.

(2.11)

We further define T = 2π/ω as the dimensionless oscillation period.

2.2. Periodic, boundary and initial conditions
The periodic conditions in the orientation variable θ are naturally satisfied:

P|θ=0 = P|θ=2π, (2.12a)
∂P

∂θ
|θ=0 = ∂P

∂θ
|θ=2π. (2.12b)

The interaction between swimmer and wall is inherently complex (Maretvadakethope
et al. 2023; Zeng et al. 2025), involving potential wall-induced modifications to swimming
speed, angular velocity and rotational diffusivity (Kantsler et al. 2013; Zeng, Jiang &
Pedley 2022). However, since the primary aim of this work is to elucidate the dispersion
mechanism governed predominantly by swimming and oscillatory shear, we adopt one of
the most idealised and widely used boundary conditions in the continuum models – the
reflective boundary conditions:

P|θ=θ0 = P|θ=2π−θ0 on z = 0, 1, (2.13a)
∂P

∂z

∣∣∣∣
θ=θ0

= −∂P

∂z

∣∣∣∣
θ=2π−θ0

on z = 0, 1. (2.13b)

The reflective boundary conditions ensure the no-flux condition at the channel walls,∫ 2π

0

(
Pes sin θ

∂P

∂z
− Dt

∂2P

∂z2

)
dθ = 0 on z = 0, 1, (2.14)

thereby guaranteeing the conservation of the total number of swimmers.
The initial condition for P(x, z, θ, t) is formally prescribed as a source located in x = 0:

P|t=0 = Iini (z, θ) δ(x), (2.15)

where Iini (z, θ) represents the initial distribution in the cross-section-orientation space
and satisfies the normalisation condition∫ 1

0

∫ 2π

0
Iini (z, θ) dθ dz = 1. (2.16)
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3. Two-time-variable expansion for the transient moments

3.1. Smoluchowski equation in the two-time-variable system
Following Jiang & Chen (2025), we introduce a two-time-variable expansion into the
problem – the basic time variable and an auxiliary oscillatory time variable:

t0 � t, t1 �ωt. (3.1)

The auxiliary oscillatory time variable t1 is introduced to characterise the intrinsic periodic
oscillation of the flow, and is applied exclusively to the time-periodic oscillatory advection
term, thus the advection velocity becomes

U (z, t1) = 4 Pesf (1 − z)z + 4 Peof
Wo2 Im

{[
1 − cosh

[
Wo (1 + i)(2z − 1)/2

]
cosh[Wo (1 + i)/2]

]
eit1

}
. (3.2)

As the original time variable t splits into two new time variables, t0 and t1, the p.d.f.
must be redefined accordingly to reflect its dependence on both time scales:

P̂(x, z, θ, t0, t1)� P(x, z, θ, t = t0), (3.3)

where the hat notation is used to distinguish the new two-time-variable p.d.f. from the
original p.d.f.

Since t1 is introduced to characterise the time-periodic behaviour of the system, we
impose periodicity of P̂ in t1 as

P̂(x, z, θ, t0, t1) = P̂(x, z, θ, t0, t1 + 2π). (3.4)

Accordingly, we map t1 to the interval [0, 2π) via

t1 = t1 mod 2π. (3.5)

The use of two time variables offers two main advantages. First, it circumvents the
complexity associated with solving the time-dependent eigenvalue problem, such as in
Mukherjee & Mazumder (1988). Second, it clarifies the underlying physical interpretation
of the dispersion problem: t0 represents the time scale associated with the evolving
dispersion from the initial release, while t1 captures the time-periodic dispersion process
due to the flow oscillation. As will be further discussed in § 4, this approach aligns
naturally with the GTD theory, wherein t1 emerges as the sole relevant time variable
governing the asymptotic dispersion regime.

Under the two-time-variable expansion, the time derivative transforms as

∂

∂t
−→ ∂

∂t0
+ ω

∂

∂t1
. (3.6)

It is worth noting that splitting of the time derivative has also been employed in several
studies investigating the emergent dynamics of single swimmers with periodically varying
shape and/or speed (Gaffney et al. 2022; Walker et al. 2022a,b, 2023; Dalwadi et al.
2024a,b). However, the methodologies diverge from this point on. In the multiple-time-
scale approach, the periodic variation in shape or speed is assumed to be fast (ω � 1),
which naturally defines t1 as a fast time scale to facilitate perturbation analysis. In contrast,
the two-time-variable method employed here does not assume any separation of time scale
between t0 and t1.

Another less directly related category of works focuses on deriving effective evolution
equations for the concentration of swimmer populations subject to rotational and/or
translational noises. Representative works include Bearon & Hazel (2015), Vennamneni
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et al. (2020) and Fung et al. (2022), all of which also employ multiple-time-scale
perturbation analysis. These studies typically introduce a slow time scale to derive
effective transport equations tailored to different physical scenarios. However, none
explicitly considers time-periodic transport processes. Instead, their scale hierarchy is
based on the small swimming Péclet number, which compares the mean straight swimming
length to the confinement scale.

Substituting (3.6) into the original transport equation (2.9) yields the two-time-variable
formulation of the Smoluchowski equation:

∂ P̂

∂t0
+ ω

∂ P̂

∂t1
+Ux

∂ P̂

∂x
− Dt

∂2 P̂

∂x2 + Pes sin θ
∂ P̂

∂z
− Dt

∂2 P̂

∂z2 + ∂(θ̇ P̂)

∂θ
− ∂2 P̂

∂θ2 = 0,

(3.7)

where

Ux (z, θ, t1) =U (z, t1) + Pes cos θ (3.8)

is the streamwise translational velocity, comprising both oscillatory advection and
autonomous swimming.

It is important to note that by implementing the two-time-variable expansion and
imposing periodic conditions on the oscillatory time variable t1, this variable can
effectively be regarded and treated as a pseudo-spatial variable defined on the interval
[0, 2π), associated with a convection term ω(∂(·)/∂t1). The absence of a diffusion term
in (3.7) for t1 actually is a direct consequence of intrinsic relationship between t1 and t0:
specifically, t1 evolves proportionally with t0 at a rate governed by ω, which manifests
solely through the convective term in the transport equation. We also note that the
definition of t0 relates bidirectionally with the original time variable t , whereas t1 relates
unidirectionally from t . Consequently, specifying t0 uniquely determines the original
single time variable t , while specifying t1 alone does not.

In summary, the application of the two-time-variable expansion appears to increase
the dimensionality of the Smoluchowski equation by 1. However, this transformation
facilitates the subsequent solution of moment equations. Equation (3.7) also underscores a
key distinction between passive and active dispersion: the motility of the swimmers causes
the streamwise translation velocity and cross-sectional migration velocity to depend not
on only the position but also on the orientation, which is simultaneously influenced by the
background shear.

3.2. Moment equations in the two-time-variable system
The nth-order local p.d.f. moment is defined as

P̂n(z, θ, t0, t1)�
∫ ∞

−∞
xn P̂ dx . (3.9)

The governing equations for the first three local p.d.f. moments, P̂0, P̂1 and P̂2, can be
derived from (3.7), under the assumptions that P̂ → 0 and ∂ P̂/∂x → 0 as |x | → ∞:

∂ P̂0

∂t0
+ ω

∂ P̂0

∂t1
+Lco P̂0 = 0, (3.10a)

∂ P̂1

∂t0
+ ω

∂ P̂1

∂t1
+Lco P̂1 =Ux P̂0, (3.10b)

∂ P̂2

∂t0
+ ω

∂ P̂2

∂t1
+Lco P̂2 = 2Dt P̂0 + 2Ux P̂1, (3.10c)
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where Lco denotes the flux operator in the cross-section-orientation (z, θ) space:

Lco(·)� Pes sin θ
∂(·)
∂z

− Dt
∂2(·)
∂z2 + ∂(θ̇(·))

∂θ
− ∂2(·)

∂θ2 . (3.11)

The periodic conditions satisfied by P in θ -space are inherited by P̂n:

P̂n|θ=0 = P̂n|θ=2π, (3.12a)

∂ P̂n
∂θ

|θ=0 = ∂ P̂n
∂θ

|θ=2π. (3.12b)

Similarly, P̂n satisfies the periodicity in t1:

P̂n|t1=0 = P̂n|t1=2π. (3.13)

The reflective boundary conditions imposed on P in the (z, θ) space also apply to P̂n:

P̂n|θ=θ0 = P̂n|θ=2π−θ0 on z = 0, 1, (3.14a)

∂ P̂n
∂z

|θ=θ0 = −∂ P̂n
∂z

|θ=2π−θ0 on z = 0, 1. (3.14b)

For the initial condition of P̂ , the following relation can be deduced based on (3.1) and
(3.3):

P̂|t0=0,t1=0 = P|t=0. (3.15)

Thus we use

P̂|t0 = 0 = Iini (z, θ) δ(x) (3.16)

to satisfy (3.15), with the normalisation condition

1
2π

∫ ∞

−∞

∫ 1

0

∫ 2π

0

∫ 2π

0
P̂|t0 = 0 dt1 dθ dz dx = 1. (3.17)

The initial conditions for the moments are

P̂0|t0 = 0 = Iini (z, θ), (3.18a)

P̂1|t0 = 0 = 0, (3.18b)

P̂2|t0 = 0 = 0. (3.18c)

The total moments integrated over (z, θ) are defined as

〈
P̂n

〉
z,θ (t0, t1) =

∫ 1

0

∫ 2π

0
P̂n dθ dz, (3.19)

with the corresponding governing equations

∂
〈
P̂n

〉
z,θ

∂t0
+ ω

∂
〈
P̂n

〉
z,θ

∂t1
= n(n − 1)Dt

〈
P̂n−2

〉
z,θ + n

〈
Ux P̂n−1

〉
z,θ . (3.20)

Note that we have implicitly used the relations 〈Lco P̂n〉z,θ = 0, based on the no-flux
condition at the boundary and the periodicity in θ . It is noted that 〈P̂n〉z,θ can be interpreted
as the total moments in the single-time-variable dispersion problem, which are also used
to calculate the transient evolution of drift and dispersivity.
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A further integration of (3.20) over t1 ∈ [0, 2π], followed by division by 2π, yields

∂ M̂n

∂t0
= n(n − 1)Dt M̂n−2 + n

〈
Ux P̂n−1

〉
z,θ

, (3.21)

where

(·)� 1
2π

∫ 2π

0
(·) dt1 (3.22)

represents the mean operation over t1, and

M̂n =
〈
P̂n

〉
z,θ

(3.23)

can be interpreted as the total moments in the two-time-variable system viewing t1 as
a periodic variable. Equation (3.21) describes how the moments evolve from a period-
averaged perspective.

3.3. Eigenfunction expansions and bi-orthogonality relation
Up to this point, we can solve (3.10a)–(3.10c) successively, subject to the appropriate
boundary and initial conditions. Next, we define the new effective flux operator Lcoo in
the cross-section-orientation-oscillation space (z, θ, t1), incorporating the advection term
in t1:

Lcoo(·)�Lco(·) + ω
∂(·)
∂t1

. (3.24)

To solve for the moment equations using the Barton (1983) eigenfunction expansion
method, we seek to solve the eigenvalue problem

Lcoo fi = λi fi , (3.25)

where fi are the eigenfunctions, and λi are the corresponding eigenvalues. Due to the
orientable motility of swimmers, Lcoo is non-self-adjoint; therefore, we employ a Galerkin
method to numerically solve (3.25). The main steps involved in this approach are as
follows.

(i) Find the appropriate basis functions in the (z, θ, t1) space that satisfy the reflective
boundary conditions (2.13) in (z, θ) space, and the periodicity in t1 space. These
basis functions are denoted as {ei }∞i=1, with the normalisation condition∫ 1

0

∫ 2π

0

∫ 2π

0
ei ej dt1 dθ dz = δi j , (3.26)

where δi j is the Kronecker delta function. The basis functions satisfying the reflective
boundary conditions, as given in Wang, Jiang & Chen (2022a) for steady channel
flow, are modified here by multiplying them by a normalised Fourier series:

1√
2π

,
sin(nt1)√

π
,

cos(nt1)√
π

, n = 1, 2, 3, . . . . (3.27)

(ii) Construct the inner product matrix A, whose elements are expressed as

Ai j = A(ei , ej ) =
∫ 1

0

∫ 2π

0

∫ 2π

0
ei (Lcooej ) dt1 dθ dz. (3.28)
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(iii) Solve the weak formulation of the eigenvalue problem (3.25) at a truncation degree:

Aφi = λiφi , (3.29)

where φi is the vector of the coefficients of fi .

Due to non-self-adjointness of Lcoo, the dual eigenfunctions { f �
i }∞i=1 are introduced

for eigenfunction expansion, which satisfy the bi-orthogonality relation with the
eigenfunctions { fi }∞i=1 (Jiang & Chen 2021). The bi-orthogonality relation is given by∫ 1

0

∫ 2π

0

∫ 2π

0
fi f

�
j dt1 dθ dz = δi j . (3.30)

This condition ensures mutual orthogonality between the eigenfunctions and their dual
counterparts. The dual eigenfunctions satisfy the following eigenvalue problem for the
adjoint operator L�

coo:

L�
coo f

�
i = λi f �

i . (3.31)

With the obtained eigenfunctions, dual eigenfunctions and eigenvalues, the local p.d.f.
moments can be expanded into the series (Barton 1983; Jiang & Chen 2021)

P̂n(z, θ, t1, t0) =
∞∑
i=1

pni e−λi t0 fi (z, θ, t1), n = 0, 1, . . . , (3.32)

where pni are the expansion coefficients for local p.d.f. moments of each order.
For the first step in solving for the zeroth local p.d.f. moment P̂0, we find the expansion

coefficients p0i using the initial condition (3.18a):

p0i =
∫ 1

0

∫ 2π

0

∫ 2π

0
Iini (z, θ) f �

i dt1 dθ dz, (3.33)

where N denotes the truncation degree. The higher-order local p.d.f. moments P̂1 and P̂2
can be successively solved with the series representations given in Jiang & Chen (2021,
App. A).

With the solved transient moments in the two-time-variable system, we return to the
moments in the single-time-variable system using

Pn(z, θ, t) = P̂n(z, θ, t0 = t, t1 = ωt) (3.34)

for straightforward definitions of the drift and dispersivity:

Ud �
d 〈P1〉z,θ

dt
, (3.35a)

DT � 1
2

dσ 2

dt
, (3.35b)

where

σ 2 = 〈P2〉z,θ − 〈P1〉2
z,θ (3.36)

is the mean square displacement of the cross-section-averaged concentration.
We validate our transient moments solutions by comparing with Brownian dynamics

(BD) simulations, as described in Appendix A. Figure 2 presents a typical case of
gyrotactic swimmers released as a uniform line source. As shown, the results of method
of moments and BD simulations are in good agreement.
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Moment equations BD

Figure 2. Comparison of the results obtained from moments equations and BD simulations over the first two
oscillation periods. (a) First-order total moment 〈P1〉z,θ . (b) Mean square displacement of the cross-section-
averaged concentration σ 2. Note that quantities obtained with moments equations are expressed with the single
original time variable t using the substitutions t0 −→ t and t1 −→ ωt , and the hat symbols are simultaneously
removed. Parameters are Pes = 0.1, Pesf = 0, Peof = 1, α0 = 0, λ= 2.19, ω = 1, Wo = 1.72, Iini = 1/(2π).

In the method of moments, the components of the basis functions in each variable are
truncated at the following degrees: 50 for z, 12 for θ , and 4 for t1. Additionally, 500 pairs
of eigenvalues and eigenfunctions are retained. These truncation degrees are determined
through independence tests, comparing the moments and cross-sectional concentration.

4. The GTD theory for the long-time asymptotic periodic dispersion
According to GTD theory for time-periodic dispersion problems (Brenner & Edwards
1993), the long-time asymptotic solution of zeroth-order local moment P0, denoted by
P∞

0 , becomes periodic over the oscillation cycle. Consequently, it is natural to seek the
governing equation for the redefined zeroth-order local moment P̂∞

0 within the two-time-
variable formulation by neglecting the time derivative with respect to t0, while retaining
the derivative with respect to t1:

Lcoo P̂
∞
0 = 0. (4.1)

Equation (4.1) can be solved using a Galerkin method with the same basis functions as
described in § 3:

P̂∞
0 (z, θ, t1) =

∞∑
i=1

ai ei (z, θ, t1), (4.2)

which is equivalent to the expression in (3.32) for n = 0 in the limit t0 → ∞. We expect
P̂∞

0 to exhibit oscillatory behaviour for gyrotactic and elongated swimmers under the
reflection boundary conditions, since their cross-sectional migration is predominantly
influenced by the oscillatory shear.

4.1. Long-time periodic drift
The long-time asymptotic drift velocity can be directly evaluated as

U∞
d (t1) = 〈

P̂∞
0 Ux

〉
z,θ , (4.3)

where the averaging is performed over the (z, θ) phase space only. As a result,U∞
d remains

time-periodic. To characterise the net transport over one oscillation cycle, we define the
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period-averaged asymptotic drift velocity as

U∞
d = 1

2π

∫ 2π

0
U∞
d dt1. (4.4)

4.2. Long-time period-averaged dispersivity
We assume that the solution for the first-order total p.d.f. moment, further averaged over
the oscillatory time variable t1, takes the form

M̂1(t0) ∼U∞
d t0 + 〈b〉z,θ + e.d.t. (4.5)

Equation (4.5) can be interpreted as follows: from a period-averaged perspective, the
centroid of the swimmer distribution moves with the period-averaged asymptotic drift
velocity U∞

d , offset by a constant term 〈b〉z,θ , and accompanied by an exponential decay
term (e.d.t.) in t0.

Based on (4.5) and the relationship between P̂1 and M̂1 given in (3.23), we assume that
the solution for the first-order local p.d.f. moment takes the form

P̂1(z, θ, t1, t0) ∼ P̂∞
0 U∞

d t0 + b(z, θ, t1) + e.d.t., (4.6)

where we define the scalar field

B(z, θ, t1) = b

P̂∞
0

= lim
t0→∞

(
P̂1

P̂∞
0

− M̂1

)
+ 〈b〉z,θ . (4.7)

Inspection of (4.7) reveals that B(z, θ, t1) can be interpreted as the deviation between
the mean streamwise position of swimmers located at (z, θ, t1) and the overall mean
streamwise position of all swimmers, with the addition of a constant 〈b〉z,θ . The scalar
field B(z, θ, t1), which is often called the ‘Brenner field’, thus encapsulates all relevant
information regarding the dispersion mechanisms (Brenner & Edwards 1993; Haugerud,
Linga & Flekkøy 2022; Wang et al. 2025).

Substituting (4.6) into the governing equation for P̂1, (3.10b), we obtain the equation
governing b(z, θ, t1):

Lcoob = P̂∞
0

(
Ux −U∞

d

)
. (4.8)

Rather than solving directly for b, we introduce a normalised Brenner field bN � b −
〈b〉z,θ P̂

∞
0 , which satisfies

〈bN 〉z,θ = 0. (4.9)

The governing equation for bN takes the same form as that for b:

LcoobN = P̂∞
0

(
Ux −U∞

d

)
. (4.10)

The period-averaged dispersivity is defined as

D∞
T � lim

t0→∞
1
2

∂

∂t0

(
M̂2 − M̂2

1

)
. (4.11)

This expression can be simplified using (3.21), yielding

D∞
T = Dt + lim

t0→∞

(〈
Ux P̂1

〉
z,θ

− M̂1
∂ M̂1

∂t0

)
. (4.12)
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Substituting (4.5) and (4.6) into (4.12), we arrive at the final expression for the period-
averaged dispersivity:

D∞
T = Dt + 〈UxbN 〉z,θ . (4.13)

The preceding derivation can be viewed as an extension of the framework presented by
Brenner & Edwards (1993, ch. 6), which addresses scenarios without coupling between
fluxes in the global and local spaces. In contrast, our formulation incorporates the
coupling between the global flux in the streamwise direction (x) and the local flux in
the cross-section-orientation space (z, θ), arising from the swimmers’ self-propulsion.
In the absence of such coupling, the analysis simplifies considerably, as P̂∞

0 becomes
independent of t1.

The long-time asymptotic period-averaged drift and dispersivity predicted by the GTD
theory can be alternatively derived using a two-time-scale homogenisation method, as
detailed in Appendix B. However, neither approach has, to the best of our knowledge, been
extended to characterise the long-time asymptotic periodic (phase-dependent) dispersivity.

4.3. Long-time periodic dispersivity
To proceed further, we integrate (4.6) over the (z, θ) phase space to obtain〈

P̂1
〉
z,θ ∼ 〈

P̂∞
0

〉
z,θU

∞
d t0 + 〈b〉z,θ + e.d.t. (4.14)

Thus the long-time asymptotic periodic dispersivity can be calculated using (3.20) and
(4.14):

D∞
T (t1)�

1
2

lim
t0→∞

d
dt

(
〈P2〉z,θ − 〈P1〉2

z,θ

)

= 1
2

⎛
⎜⎝∂

〈
P̂2

〉
z,θ

∂t0
+ ω

∂
〈
P̂2

〉
z,θ

∂t1

⎞
⎟⎠ −

〈
P̂1

〉
z,θ

〈
Ux P̂

∞
0

〉
z,θ

= Dt + 〈(
Ux −U∞

d

)
bN

〉
z,θ , (4.15)

where we have used the conservation condition in the (z, θ) space:〈
P̂∞

0

〉
z,θ

= 1. (4.16)

The above equation is deduced as follows. First, we have

∂ P̂∞
0

∂t0
= 0. (4.17)

Integrating (4.17) over (z, θ) phase space yields

∂
〈
P∞

0
〉
z,θ

∂t0
= 0. (4.18)

Substituting (4.18) into (3.20) with n = 0 results in

∂
〈
P∞

0
〉
z,θ

∂t1
= 0. (4.19)

Thus
〈
P∞

0
〉
z,θ must be a constant. Applying the normalisation condition (3.17), we arrive

at (4.16).
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Figure 3. Comparison of the results obtained from the moments equations, GTD and BD simulations over an
oscillation period long after the initial release (t ∈ [14T, 15T ]): (a) drift Ud , (b) dispersivity DT . Note that
quantities obtained with moment equations and GTD are expressed with the single original time variable t
using the substitutions t0 −→ t and t1 −→ ωt . The parameters are consistent with those used in figure 2.

We validate our GTD solutions for the periodic drift and dispersivity by comparing
them with BD simulations and method of moments. Figure 3 presents the same case as
in figure 2, but with a time far from the initial release for the method of moments and
BD simulations, as the GTD solutions are intended for long times. Once again, we find
good agreement between the results from GTD theory, the method of moments, and BD
simulations.

5. Results and discussion
We use a practical parameter space, as listed in table 1, referencing the model organisms
Chlamydomonas augustae with relaxation on the shape (Bretherton parameter α0) to
encompass a broader range of micro-organisms, such as chain-forming micro-algae
(Lovecchio et al. 2019) and bacteria (Ran & Arratia 2024). To clarify how oscillatory
shear modulates the dispersion of swimmers by influencing their local rotation, we also
present the results for the solute. The solute diffusivity is set equal to the steady effective
diffusivity of two-dimensional non-gyrotactic swimmers in an unbounded quiescent fluid,
given by Pe2

s/(n
2 − n) + Dt (Cates & Tailleur 2013), where n = 2 denotes the number of

spatial dimensions. For simplicity, we adopt a uniform line release:

Iini = 1
2π

. (5.1)

In the following, we present all results using the original single-time-variable system.
Quantities derived using the method of moments, which formally depend on both t0 and
t1, are now expressed with the original single time variable t . Quantities obtained from the
GTD theory, which periodically depend on t1, are presented as functions of the original
time variable modulo the oscillation period, i.e. t mod T .

5.1. Effects of swimming ability and oscillatory flow strengths
In this subsection, we investigate the effects of swimming ability, Pes , and oscillatory
flow strengths, Peof , on both the transient and long-time asymptotic dispersion. We focus
on spherical non-gyrotactic swimmers (SNS), where the distribution in (z, θ) space
remains uniform for the uniform line release (5.1) under reflective boundary conditions,
i.e. P̂0(z, θ, t1) = 1/(2π) (Jiang & Chen 2021). As a result, the transient drift Ud and the
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Parameter Symbol Value/range Units

Channel width W ∗ 0.94 cm
Characteristic mean flow velocity of the steady pressure gradient U∗

s 0–0.063 cm s−1

Characteristic mean flow velocity of the oscillatory pressure gradient U∗
o 0–0.063 cm s−1

Kinematic viscosity of water ν∗ 0.01 cm2 s−1

Angular frequency of oscillation ω∗ 0.0067–0.67 rad s−1

Swimming speed of swimmers V ∗
s 0.0063 cm s−1

Gravitactic reorientation time B∗ 3.4–∞ s
Rotational diffusivity of swimmers D∗

r 0.067 rad s−1

Translational diffusivity of swimmers D∗
t 0 cm2 s−1

Flow Péclet number of the steady pressure gradient Pesf 0–1
Flow Péclet number of the oscillatory pressure gradient Peof 0–1
Dimensionless angular frequency of oscillation ω 0.1–10
Womersley number Wo 0.172–5.441
Swimming Péclet number Pes 0.1
Bretherton parameter α0 0–1
Gravitactic bias parameter λ 0–2.19
Dimensionless translational diffusivity Dt 0

Table 1. Parameters used for swimmers in this work. The values of V ∗
s , B∗ and D∗

r are based on the model
organisms Chlamydomonas augustae (data primarily sourced from Pedley & Kessler (1990) and Hwang &
Pedley (2014a,b)). Note that since constant values of W ∗, ν∗ and D∗

r are used, the Womersley number Wo is
uniquely determined by the relation Wo = 1.72

√
ω.

long-time asymptotic periodic driftU∞
d are identical for solute and SNS, perfectly tracking

the instantaneous mean flow speed, as seen in figures 4(a) and 4(c).
As shear disrupts the cross-sectional migration of swimmers in an oscillatory manner,

their dispersivity behaves differently from the solute, which undergoes simple molecular
diffusion across the cross-section. Figures 4(b) and 4(d) show the subtle differences in the
time evolution of dispersivity of SNS compared to the solute. Initially, following release,
DT of the solute starts at its molecular diffusivity Dt = 0.005, whereas DT of SNS begins
at zero and gradually approaches that of the solute. This can be attributed to the fact
that the mean square displacement of SNS exhibits Brownian diffusive behaviour with
diffusivity Dt (set to zero in our work) at very short time scales in the absence of flow
(Bechinger et al. 2016). Beyond this initial stage, the difference in DT between solute and
SNS becomes most pronounced at Peof = 1, where the flow dominates swimming (Peof �
Pes); in other cases, the oscillatory behaviour of DT remains relatively weak. The most
notable differences appear at the peaks and troughs of the oscillatory DT – i.e. DT of SNS
exceeds that of the solute at the peaks, but falls below it at the troughs. This phenomenon
can be interpreted as follows. When the flow develops strongly in one direction, SNS
are dispersed more effectively due to suppressed cross-streamline migration under Jeffery
orbits, which is reminiscent of the inverse dependence of Taylor dispersivity on molecular
diffusivity in steady flows. However, when the flow reverses direction, SNS tend to return
more closely to their initial position compared to the solute, as their ability to diffuse across
the cross-section is limited. For both solute and SNS, the emergence of negative DT arises
from our use of the widely adopted definition of σ 2, which involves averaging across the
cross-section before computing the mean square displacement, rather than the alternative
definition proposed by Yasuda (1984), which calculates mean square displacement at each
streamline first.
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Figure 4. (a,b) Transient drift Ud and dispersivity DT of solute and SNS over the first three periods following
a uniform line release for several oscillatory flow Péclet numbers Peof . (c,d) Long-time asymptotic periodic
drift U∞

d and dispersivity D∞
T of solute and SNS over one period for several oscillatory flow Péclet numbers

Peof . Parameters for flow: Pesf = 0, ω = 1, Wo = 1.72. Parameters for solute: Pes = 0, α0 = 0, λ= 0, Dt = 0.005.
Parameters for SNS: Pes = 0.1, α0 = 0, λ= 0, Dt = 0.

At long times, D∞
T becomes periodic for both solute and SNS. Furthermore, figure 4(d)

reveals that the actual period of D∞
T is T/2, due to the two symmetrical dispersion cycles

that occur when the mean flow velocity points in opposite directions, which is in line
with the preliminary conjecture of Chatwin (1975) and the more formal results given by
Yasuda (1984). The two dispersion cycles are identical in the variations of D∞

T , which is
independent of phase of the initial release. Each cycle can be further separated into two
intervals: one with positive D∞

T , corresponding to the attenuation of mean flow velocity
in one direction, and one with negative D∞

T , corresponding to the strengthening of mean
flow velocity in the opposite direction. Moreover, the integration of D∞

T over time during
the positive interval outweighs the integration during the negative interval, leading to a
positive period-averaged dispersivity.

The long-time asymptotic period-averaged dispersivity D∞
T is plotted in figure 5 as

functions of Pes and Peof . Note that the period-averaged drift U∞
d is always zero for both

solute and SNS due to the uniform distribution in the (z, θ) space, so it is not shown here
for conciseness. Increasing trends of D∞

T with Pes and Peof are observed, indicating the
positive influences of swimming ability and oscillatory flow strength on the dispersion
at the period-averaged level over asymptotically long times. Furthermore, in figure 5(b),
we observe that as Peof increases, D∞

T of the solute exceeds that of SNS, indicating a net
weakening effect of motility on dispersion in oscillatory flow. However, we speculate that
this trend may not hold across a broader range of oscillation frequency ω.
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Figure 5. Long-time asymptotic period-averaged dispersivity D∞
T as functions of (a) the swimming Péclet

number Pes and (b) the oscillatory flow Péclet number Peof . Parameters for flow: Pesf = 0, ω = 1, Wo = 1.72.
Parameters in (a): α0 = 0, λ= 0, Dt = 0. Parameters in (b): Pes = 0, α0 = 0, λ= 0, Dt = 0.005 for solute,
Pes = 0.1, α0 = 0, λ= 0, Dt = 0 for SNS.
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Figure 6. (a,b) Transient drift Ud and dispersivity DT of solute and SNS over the first three periods following
a uniform line release for several oscillation frequencies ω. (c,d) Long-time asymptotic periodic drift U∞

d and
dispersivity D∞

T of solute and SNS over one period for several oscillation frequencies ω. Parameters for solute:
Pes = 0, α0 = 0, λ= 0, Dt = 0.005. Parameters for SNS: Pes = 0.1, α0 = 0, λ= 0, Dt = 0.

5.2. Effects of oscillation frequency
In this subsection, we examine the previous conjecture regarding the influence of the
oscillation frequency ω on active dispersion in oscillatory flows. Figure 6 presents the
transient and long-time asymptotic periodic drift and dispersivity for several values of ω,
with comparisons between solute and SNS. While both Ud and U∞

d continue to follow
the instantaneous mean flow velocity, their magnitudes decrease and their phases shift
rightwards as ω increases. This behaviour reflects the increasing influence of fluid inertia,
characterised by the Womersley number Wo.
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Figure 7. Long-time asymptotic period-averaged dispersivity D∞
T as a function of oscillation frequency ω.

The parameters for solute and SNS are consistent with those used in figure 6.

The amplitude of dispersivity oscillations diminishes more noticeably with increasing
ω, due to the quadratic dependence of dispersivity on the flow velocity. At the
lowest oscillation frequency considered (ω = 0.1), the transient dispersivity of SNS is
significantly larger than that of the solute, except at the troughs, where the two values
nearly converge. At ω = 1, the dispersivity curves of SNS and solute nearly overlap, with
only minor differences at the peaks and troughs. At the highest oscillation frequency (ω =
10), the dispersivity of SNS is consistently smaller than that of the solute. The complex
influence of oscillation frequency is illustrated more clearly from a long-time asymptotic
period-averaged perspective. As shown in figure 7, although the dispersivity D∞

T for both
SNS and solute declines rapidly with increasing ω, D∞

T for SNS exceeds that of the solute
at relatively low oscillation frequencies ω < 0.3, but becomes smaller at higher oscillation
frequencies ω > 0.3. Since ω is defined as the ratio of dimensional oscillation frequency
to the rotational diffusivity, this observation underscores the intricate coupling between
swimming dynamics and oscillatory shear in determining the dispersion of SNS.

5.3. Effects of superimposed steady component on dispersion in oscillatory flows
This subsection investigates the effects of a superimposed steady component on dispersion
in oscillatory flows. Figure 8 presents the transient and long-time asymptotic variations of
drift and dispersivity for several steady flow Péclet numbers Pesf , with a fixed oscillatory
flow Péclet number Peof = 1. The combination of oscillatory flow and steady flow does not
alter the uniform distribution in the (z, θ) space; therefore, the drift remains equivalent
to the instantaneous mean flow velocity, contributed by both the steady and oscillatory
components. In terms of dispersivity, the presence of a steady flow leads to an increased
oscillation amplitude – specifically, the peaks rise more than the troughs fall. Additionally,
only a single dispersion cycle occurs over an asymptotic oscillation period, unlike the two
cycles observed previously when Pesf = 0.

The introduction of a steady component also results in a more complex variation in
the dispersivity of SNS. As illustrated in figure 9, there is a dual effect of an oscillatory
component on the dispersion of SNS when a steady component is present: at small Pesf ,
oscillation enhances dispersion, whereas at large Pesf , oscillation inhibits it. In contrast,
for the solute, the addition of oscillation consistently enhances dispersion compared with
purely steady flow.
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Figure 8. (a,b) Transient drift Ud and dispersivity DT of solute and SNS over the first three periods following a
uniform line release for several steady flow Péclet numbers Pesf . (c,d) Long-time asymptotic periodic drift U∞

d
and dispersivity D∞

T of solute and SNS over one period for several steady flow Péclet numbers Pesf . Parameters
for flow: Peof = 1, ω = 1, Wo = 1.72. Parameters for solute: Pes = 0, α0 = 0, λ= 0, Dt = 0.005. Parameters for
SNS: Pes = 0.1, α0 = 0, λ= 0, Dt = 0.
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Figure 9. Long-time asymptotic period-averaged dispersivity D∞
T plotted against the steady flow Péclet

number Pesf . Parameters for flow: ω = 1, Wo = 1.72. The parameters for solute and SNS are consistent with
those used in figure 8.
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Figure 10. (a,b) Transient drift Ud and dispersivity DT of solute, SNS, SGS and ENS over the first three
periods following a uniform line release. (c,d) Long-time asymptotic periodic drift U∞

d and dispersivity D∞
T

of solute, SNS, SGS and ENS over one period. Parameters for solute: Pes = 0, α0 = 0, λ= 0, Dt = 0.005.
Parameters for SNS: Pes = 0.1, α0 = 0, λ= 0, Dt = 0. Parameters for SGS: Pes = 0.1, α0 = 0, λ= 2.19, Dt =
0. Parameters for ENS: Pes = 0.1, α0 = 1, λ= 0, Dt = 0.

5.4. Effects of gyrotaxis and elongation
This subsection discusses the effects of gyrotaxis and elongation on oscillatory dispersion.
Figure 10 compares the transient and long-time asymptotic periodic drift and dispersivity
for solute, SNS, spherical gyrotactic swimmers (SGS), and elongated non-gyrotactic
swimmers (ENS). While ENS slightly always drift slower than the instantaneous mean
flow, SGS exhibit more pronounced variations – drifting faster during upward flow, and
slower during downward flow. This behaviour is not attributed to the well-known response
of SGS to shear flow: in steady conditions, SGS typically undergo gyrotactic focusing
near the centre or walls of the channel for downwelling or upwelling flows, resulting
in concentration accumulations significantly exceeding the mean, and causing enhanced
drift during downward flow, and reduced drift during upward flow. However, in oscillatory
flows, the cross-sectional concentration distribution of SGS cannot immediately follow
the time-varying shear profile due to the constraints of weak swimming strength (Pes =
0.1) and limited gyrotactic reorientation. As shown in figure 11(a), the cross-sectional
concentration profile of SGS remains relatively flat in the central region over a period,
with notable gradients only occurring near the walls – starkly contrasting with the steady-
flow case. Figure 11(c) further presents the long-time asymptotic periodic local mean
swimming direction component along the cross-section

〈
p∞

z

〉
θ

of SGS over a period.
Significant gradients in

〈
p∞

z

〉
θ

are again confined to the near-wall region, suggesting
corresponding localised concentration variations.

A full sampling of the non-uniform shear field is crucial to the shear-induced trapping of
ENS, which typically requires a long time and streamwise distances (Rusconi et al. 2014;
Vennamneni et al. 2020). Moreover, the concentration enhancement in steady flow remains
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Figure 11. Long-time asymptotic periodic cross-sectional distribution 〈P∞
0 〉θ �

∫ 2π

0 P∞
0 dθ , and local mean

swimming direction components along the cross-section 〈p∞
z 〉θ � (

∫ 2π

0 P∞
0 sin θ dθ)/(

∫ 2π

0 P∞
0 dθ) and along

the streamwise direction 〈p∞
x 〉θ � (

∫ 2π

0 P∞
0 cos θ dθ)/(

∫ 2π

0 P∞
0 dθ) over one period: (a,c,e) SGS, (b,d, f )

ENS. Flow parameters: Pesf = 0, Peof = 1, ω = 1, Wo = 1.72. Particle parameters are consistent with those used
in figure 10.

of the same order as the mean concentration. As shown in figure 11(b), the cross-sectional
concentration profiles of ENS are even more uniform, with only weak gradients near
the walls. Figures 11(d) and 11( f ) present the long-time asymptotic periodic local mean
cross-sectional and streamwise swimming direction components over a period,

〈
p∞

z

〉
θ

and〈
p∞
x

〉
θ
, respectively, further confirming the weak accumulation and alignment of ENS in

oscillatory flows.
The stronger response of SGS in terms of concentration distribution and mean

swimming direction to oscillatory flow leads to its distinct dispersivity compared with
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Figure 12. Long-time asymptotic period-averaged drift U∞
d and dispersivity D∞

T as functions of (a,c)
gravitactic bias parameter λ, and (b,d) Bretherton parameter α0. Flow parameters are consistent with those
used in figure 11.

other types of particle. In contrast, the relatively uniform and weak responses of ENS
result in dispersivity characteristics more similar to those of solute and SNS, as shown in
figures 10(b) and 10(d).

Figure 12 presents the long-time asymptotic period-averaged drift U∞
d and dispersivity

D∞
T as functions of the gravitactic bias parameter λ and Bretherton parameter α0.

Gyrotaxis is found to induce a negative mean drift velocity, which can be explained by the
steady upward streamwise alignment observed in figure 11(e). It also weakens the overall
dispersivity. Elongation, on the other hand, does not produce a net drift for non-gyrotactic
swimmers, but slightly enhances U∞

d for gyrotactic swimmers. For both swimmer types,
elongation leads to a modest increase in D∞

T .

6. Concluding remarks
This work combines a two-time-variable expansion for the transient dispersion and the
GTD theory for the long-time asymptotic periodic dispersion to investigate the Taylor–
Aris dispersion of active particles in oscillatory channel flows. The two-time-variable
expansion, which is introduced to capture the periodicity in transient evolution to the
Taylor regime due to oscillation of the flow, gains deeper interpretation through the lens
of GTD theory: in the long-time asymptotic limit, the dispersion problem simplifies to a
periodic problem governed solely by the oscillatory time variable t1 = ωt .

Traditional approximating models based on orientation–position separation, such as
the two-step GTD model (Bearon, Hazel & Thorn 2011), typically assume a quasi-
steady and quasi-uniform shear. These models solve the equilibrium orientation pointwise,
then compute the drift velocity and diffusivity tensor in position space. However, such
assumptions break down in flows with strong spatial inhomogeneity (Bearon et al.
2011; Jiang & Chen 2020; Wang et al. 2022a). Recently, Caldag & Bees (2025) also
demonstrated the failure of the two-step GTD model at high oscillation frequencies,
where flow conditions deviate significantly from quasi-steady assumption. At the other
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end of the oscillation spectrum, while these models may provide accurate predictions
for very low-frequency oscillations, they often require prohibitively long simulations and
large computational domains to reach the asymptotic Taylor regime (Caldag & Bees
2025). In contrast, our transient dispersion framework efficiently captures key statistical
features in terms of moments, without resolving the full concentration field explicitly.
This makes it particularly suitable for low-frequency oscillatory flows as well. Therefore,
compared to traditional approximating models, our method accommodates a broader range
of oscillation frequencies ω, offering a promising tool for understanding and controlling
dispersion of active particles in oscillatory flows.

Employing both approaches, we conduct detailed analyses of swimmer dispersion
following release from a uniform line source, considering potential additional effects from
gyrotaxis and elongation. For spherical non-gyrotactic swimmers, although their zeroth-
order moment remains uniform – similar to that of the solute – the presence of oscillatory
flow can either enhance or reduce their dispersion relative to the solute with comparable
molecular diffusivity. The enhancement, which occurs at low frequencies, is attributed
to the swimmers’ reduced effective ability to migrate across streamlines, as described by
the Jeffery equation, which captures the linear dependence of rotation on shear rate for
spherical particles. In contrast, the reduction at high frequencies is due to the near resetting
of swimmers’ streamwise positions after each short oscillation cycle, a consequence of
limited cross-sectional homogenising. The case of superimposing a steady component
onto an oscillatory flow is also investigated, revealing a dual effect of oscillation on
swimmer dispersion, in contrast to the monotonic enhancement observed for solute. Two
potential terms in the Jeffery orbit with bias to gravity and rate-of-strain – gyrotaxis and
elongation – are subsequently considered. While both induce non-uniform cross-sectional
distributions, only gyrotaxis significantly alters the dispersion characteristics, owing to its
higher sensitivity to shear. By contrast, although elongation allows swimmers to respond to
shear gradients, their trapping in high-shear regions requires extended time and distance.
Consequently, in an oscillatory environment, where such sustained exposure is absent,
shear-induced trapping fails to develop appreciably as in steady flows, thus has a limited
effect on dispersion.

This work assumes an extremely dilute suspension, neglecting swimmer–swimmer
interaction. In practice, for naturally buoyant swimmers (typically 5 % denser than water),
buoyancy-driven effects dominate swimmer–swimmer interactions in steady gyrotactic
plumes (Fung et al. 2020). In oscillatory flows, the development of gyrotactic plumes
is hindered, weakening both buoyancy effects and far-field interactions. If buoyancy–flow
coupling becomes non-negligible, then local swimmer accumulation may alter density
distributions, resulting in a more pronounced phase lag between flow velocity and pressure
gradient. Additionally, considering far-field interactions for puller-type swimmers may
increase the effective viscosity (Saintillan 2018), further amplifying this phase lag.

Swimmer–boundary interactions represent another important factor that can influence
active particle dispersion in oscillatory flows. The reflective boundary conditions
employed in the current study do not capture wall accumulation effects, which may lead
to an underestimation of near-wall concentrations. Previous studies have shown that wall-
accumulating swimmers exhibit reduced dispersivity in moderate steady flows (Jiang &
Chen 2019). In contrast, in strong steady flows, the dispersivity approaches that of non-
accumulating swimmers due to the suppression of wall polarisation by shear. In oscillatory
flows, we speculate that wall accumulation could be more pronounced than in steady flows,
owing to the reduced shear rate near the wall. Such enhanced accumulation may further
suppress dispersion.
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The current work can be extended to other periodic processes beyond oscillatory
flows. Recent studies (Omori et al. 2022; Walker et al. 2022b) suggest that the periodic
variations in swimming speed and body shape may explain the experimentally observed
rheotaxis and centreline migration of swimmers. Additionally, based on this work, a
multiple-time-variable expansion can be employed to address the situations when multiple
time-periodic processes coexist, each with distinct base frequencies. Further development
could involve constructing a period-resolved transport model capturing the full regimes
of concentration evolution. Although applying the long-time asymptotic period-averaged
one-dimensional dispersion equation (B16) avoids the singularity associated with
transient negative diffusivity, it resolves none of the cross-sectional concentration, the
characteristics within the period, and the transient dynamics. A potential improvement
would be to approximate the concentration distribution by fully utilising the transient
concentration moments at each streamline, such as applying the Edgeworth expansion
(Chatwin 1970; Wang & Chen 2017; Guo, Jiang & Chen 2020; Li et al. 2023; Guan &
Chen 2024) or Gill’s generalised dispersion model (Gill 1967a,b), both of which have
been shown to be efficient in solute dispersion.
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Appendix A. The BD simulations
We use BD simulations to validate our solutions for the transient moment equations and
the long-time asymptotic GTD theory. The simulations are performed using the Langevin
equation for the single-particle motion:

dx =U dt + Pes cos θdt + σx dWx , (A1a)
dz = Pes sin θdt + σz dWz, (A1b)

dθ = θ̇dt + σr dWθ . (A1c)

Here Wx , Wz and Wθ are independent standard Brownian motions, σx = σz = √
2Dt and

σr = √
2.

After discretising (A1a)–(A1c) using the Euler–Maruyama forward scheme, we
simulate 105 trajectories of swimmers with time step 
t = 10−4T . For swimmers
outside the boundary z ∈ [0, 1], a reflection operation on both position and orientation
is performed with respect to the adjacent wall, ensuring consistency with the reflective
boundary conditions given in (2.13). Concentration moments and distributions are then
extracted to validate the theoretical models.

Here, we perform more comprehensive validations of the moment equation solutions
using BD simulations, covering a wide range of oscillation frequencies (ω = 0.1, 1, 10)
and various particle types. As shown in figure 13, the results from the BD simulations and
the moment equations show good agreement, confirming that the validity of the two-time-
variable expansion method is independent of the oscillation frequency.
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Figure 13. Comparison of the results obtained from moments equations (ME) and BD simulations over the
first two oscillation periods: (a,c,e) first-order total moment 〈P1〉z,θ ; (b,d,f ) mean square displacement of
the cross-section-averaged concentration σ 2; for (a,b) ω = 0.1, (c,d) ω = 1, (e,f ) ω = 10. Note that quantities
obtained with moments equations are expressed with the original single time variable t using the substitutions
t0 −→ t and t1 −→ ωt , and the hat symbols are simultaneously removed. Parameters for flow: Pesf = 0, Peof = 1.
Parameters for solute: Pes = 0, α0 = 0, λ= 0, Dt = 0.005. Parameters for SNS: Pes = 0.1, α0 = 0, λ= 0,
Dt = 0. Parameters for SGS: Pes = 0.1, α0 = 0, λ= 2.19, Dt = 0. Parameters for ENS: Pes = 0.1, α0 = 1,
λ= 0, Dt = 0. The initial condition is Iini = 1/(2π).

Appendix B. Two-time-scale homogenisation for the long-time asymptotic
period-averaged drift and dispersivity
In this appendix, we present a two-time-scale homogenisation method for determining
the long-time asymptotic period-averaged drift and dispersivity. The single-time-scale
homogenisation method (Pavliotis & Stuart 2008, ch. 12) has been widely applied to
dispersion in steady flows (Pavliotis 2005; Chen & Thiffeault 2021; Wang et al. 2022b;
Guan et al. 2024), and is equivalent to the small wavenumber expansion in the complex
Fourier space (Peng & Brady 2020; Peng 2024). Here, due to the inherent unsteadiness of
the forcing flow, a two-time-scale homogenisation is needed.

We first rewrite (2.9) in a co-moving streamwise coordinate, x0 � x −U∞
d t , where U∞

d
is the period-averaged drift:
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∂P

∂t
+

(
Ux −U∞

d

) ∂P

∂x0
− Dt

∂2P

∂x2
0

+LcoP = 0. (B1)

Note that while we use the same symbol U∞
d here, its value is yet to be determined from

the perturbation equations, distinct from its previous use in § 4.
We then consider the two time scales

τ0 � t, τ1 � ε2t, (B2)

where τ0 represents the fast time scale compared with the slow diffusive time scale τ1,
since ε is a small parameter. Equation (B1) is rewritten as

∂ P̃

∂τ0
+ ε2 ∂ P̃

∂τ1
+

(
Ux −U∞

d

) ∂ P̃

∂x
− Dt

∂2 P̃

∂x2 +Lco P̃ = 0, (B3)

where P̃(x, z, θ, τ0, τ1) = P(x, z, θ, t).
We next introduce the typical diffusive length scaling

ξ = εx0, (B4)

where ε is a small parameter, which can be interpreted as W ∗/L∗, with L∗ denoting
the characteristic streamwise length scale of the dispersing swimmer patch. Under this
rescaling, the transport equation becomes

∂ P̃

∂τ0
+ ε2 ∂ P̃

∂τ1
+ ε

(
Ux −U∞

d

) ∂ P̃

∂ξ
− ε2Dt

∂2 P̃

∂ξ2 +Lco P̃ = 0. (B5)

We expand P̃ as a regular perturbation series in powers of ε:

P̃ = P̃0 + ε P̃1 + ε2 P̃2 + O(ε3). (B6)

To ensure solvability at each order, we impose the solvability conditions∫ 1

0

∫ 2π

0
P̃1 dθ dz = 0, (B7a)∫ 1

0

∫ 2π

0
P̃2 dθ dz = 0, (B7b)

together with periodicity conditions on P1 and P2 in τ0, each with period T .
The perturbation equations at successive orders of ε are obtained by substituting (B6)

into (B5) and collecting terms of the same order.

O(1) : ∂ P̃0

∂τ0
+Lco P̃0 = 0. (B8a)

O(ε) : ∂ P̃1

∂τ0
+

(
Ux −U∞

d

)∂ P̃0

∂ξ
+Lco P̃1 = 0. (B8b)

O
(
ε2) : ∂ P̃2

∂τ0
+ ∂ P̃0

∂τ1
+

(
Ux −U∞

d

)∂ P̃1

∂ξ
− Dt

∂2 P̃0

∂ξ2 +Lco P̃2 = 0. (B8c)

The leading-order solution P̃0 is assumed to take the separable form

P̃0(ξ, z, θ, τ0, τ1) = g0(z, θ, τ0)C(ξ, τ1), (B9)
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where g0 represents the conditional probability density in the (z, θ, τ0) space, and C
denotes the streamwise, period- and cross-section-averaged concentration. Substituting
this ansatz into the O(1) perturbation problem yields the governing equation for g0:

∂g0

∂τ0
+Lcog0 = 0, (B10)

with periodic conditions g0|τ0 = g0|τ0+T .
The first-order correction P̃1 is assumed to take the form

P̃1(ξ, z, θ, τ0, τ1) = χ(z, θ, τ0)
∂C

∂ξ
+ g0(z, θ, τ0) h(ξ, τ1), (B11)

where χ satisfies the same boundary and periodic conditions as g0. Substituting this
expression into the O(ε) perturbation equation yields the cell problem for χ :

∂χ

∂τ0
+Lcoχ =

(
U∞
d −Ux

)
g0. (B12)

Integrating the above equation over τ0 ∈ [0, T ], z ∈ [0, 1] and θ ∈ [0, 2π] eliminates the
left-hand side by boundary and periodic conditions, leading to the expression for the
period-averaged drift:

U∞
d = 1

T

∫ T

0

∫ 1

0

∫ 2π

0
Uxg0 dθ dz dτ0. (B13)

Applying the solvability condition, i.e. integrating the O(ε2) perturbation e-
quation (B8c) over τ0 ∈ [0, T ], z ∈ [0, 1] and θ ∈ [0, 2π], yields the effective
one-dimensional dispersion equation

∂C

∂τ1
= D∞

T
∂2C

∂ξ2 , (B14)

where D∞
T denotes the period-averaged effective dispersivity with the same symbol as in

§ 4. The expression for D∞
T is given by

D∞
T = Dt + 1

T

∫ T

0

∫ 1

0

∫ 2π

0

[
(U∞

d −Ux )χ
]

dθ dz dτ0. (B15)

Comparing the governing equations and resulting expressions (B10) and (B12)–(B14) with
their counterparts in the GTD framework, specifically (4.1), (4.4), (4.10) and (4.13), it
becomes evident that the two-time-scale homogenisation method is formally equivalent
to the GTD theory in capturing the long-time asymptotic period-averaged drift and
dispersivity. However, we note that the current two-time-scale homogenisation method
cannot capture the temporal variations of drift and dispersivity within a period. Such
variations, which are retained in our extended GTD formulation, are averaged out in the
homogenisation framework.

It is also important to distinguish the current two-time-scale homogenisation from the
two-time-variable expansion introduced in § 3. In the two-time-variable expansion, t0
and t1 do not necessarily have different orders of magnitude, no perturbation analysis is
required, and the solutions for the transient moments equations are exact. In contrast, the
two-time-scale homogenisation method aims to capture the long-time asymptotic period-
averaged dispersion behaviour by introducing two time scales of different orders: the
normal time scale τ0, and the asymptotic effective diffusive time scale τ1, given that ε

is a small parameter.
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Converting back to the original coordinate, (B14) becomes the period-averaged one-
dimensional dispersion equation

∂C

∂t
=U∞

d
∂C

∂x
+ D∞

T
∂2C

∂x2 , (B16)

which is valid in the long-time asymptotic limit.
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