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ON REGULATING SETS AND THE DISPARITY 
OF PLANAR CUBIC GRAPHS 

BY 

HERBERT FLEISCHNER 

I. Introduction and preliminary statements. The goal of this paper is to relate 
plane cubic graphs which are not bipartite to plane bipartite cubic graphs which 
have properties (face-coloring with three colors, existence of two-factors whose 
cycles are boundaries of faces) characterizing this class of graphs. Using such 
characteristic properties in connection with the concept of regulating sets of 
plane cubic graphs, we find conditions under which a considered cubic graph has 
a specific property. Also, the concept of regulating sets generalizes the concept of 
1-factors for planar cubic graphs (see Theorem 1). Furthermore, the concept of 
the disparity is a certain measure for a planar cubic graph G which determines 
"how far G is from being bipartite." 

The concepts used in this paper are identical with those used in [2] if not de­
fined in another way. The boundary of a face L is denoted by dL. 

The short and simple proof of the following lemma was related to the author 
by C. St. J. A. Nash-Williams. 

LEMMA 1. Let G be a connected graph with m points and let V0={vi9 wt | i= 
1 , . . . ,n} be a set of 2n arbitrarily chosen distinct points of G, 2<2n<m. Then 
G contains an acyclic subgraph H with V0^ V(H), and v G V(H) has odd degree in H 
if and only ifv G V0, and H has no isolated points. 

Proof. It suffices to prove the lemma for a tree G with m>2n>2 points. For 
every i = l , . . . , n, let pi be a path joining v{ and wt in G. Denote P— ULi/7*» 
and denote by H the subgraph of P consisting of all lines of P which belong to an 
odd number of paths pi9 and all points of P incident to one such line. Denote by 
degfc x the degree of x e V(P) in the path/?*.. Then A(x)= 2 L i degfc x is odd if and 
only if x e V0. On the other hand, if me denotes the number of paths pi which con­
tain the line e, then A(x)=Hlme, where the sum is taken over all lines e incident 
to x. By construction, H has no isolated points, and since e $ E{H) for e e E{P) 
if and only if me is even, therefore, A(y)== deg^ v mod 2 for any v G V(H) (degjy v 
denotes the degree of v in H). This proves the lemma. 

Clearly, for a disconnected graph, G, Lemma 1 is true as long as one assumes 
that each component of G contains an even number of points of V0. 

DEFINITION 1. Let G be a plane cubic graph containing a 2-factor TF such that 
a cycle in TF or the disjoint union of such cycles (in case G is disconnected) is a 
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boundary of a face of G. Then we call this TF a BTF (eoundary-fwo-yhctor). 
If every cycle of a BTF is bipartite, then we call this BTF a BBTF (èipartite-
èoundary-/wo-/actor). These two concepts have been defined already in [1] and 
are denoted there by LQF, PLQF respectively. 

By [1, Theorem 2], a plane cubic graph is bipartite if and only if it contains a 
BBTF; and if a connected plane cubic graph G has a BBTF, then it has exactly 
three such 2-factors which are induced by the color classes of the three-face-
coloring of G (in fact, if G is a planar bipartite cubic graph, then different em-
beddings of G in the plane in general yield different three-face-colorings, even if 
G is connected). 

We note that a regular bipartite graph cannot have a cutpoint since it is 1-factor­
able; therefore, a bipartite cubic graph is bridgeless. 

Of course, in general a plane cubic graph has no BTF (e.g., the tetrahedron or 
the dodecahedron). However, if a connected, non-bipartite, plane, cubic graph 
has a BTF, then this BTF is unique. This is expressed in the following lemma. 
In connection with a BTF F of the plane cubic graph G we call a line e an F-bridge 
if e is not a line of a cycle of F. The faces of G whose boundaries belong to F, 
are called the F-islands (of G). 

LEMMA 2. If the connected, plane, cubic graph G contains two different BTF, 
F} and F2, then G is bipartite. 

Proof. Let B0 be a cycle of Fl9 denote by el9 . . . , ek the ^-bridges which have 
a point in common with B0, and denote by Bl9. . . , Bm, m<k, the boundaries 
(of faces of G) distinct from BQ which do not contain any ei9 z = l , . . . , k9 but 
have a point with at least one e{ in common. Then Bl9... , Bm belong to F±. 
Now we consider each of the Bu . . . , Bm as we did for B09 a.s.o. Since G is con­
nected and finite this procedure ends at the boundary of an i^-island from which 
every Ivbridge yields to an /^-island whose boundary has been determined before 
as belonging to Fv That is, knowing one F risland, one knows the whole BTF F±. 
Therefore, by hypothesis, Fx and F2 have no cycle in common. By this and the 
fact that G is connected we conclude that G is 2-connected. Therefore, if the 
boundary of a face of G does not belong to Fl9 then it is an even cycle (see the 
proof of Theorem 2 in [1] and Figure 1 there). That is, both F1 and F2 are BBTF. 

COROLLARY 1. If Gis a disconnected plane cubic graph containing a BTF and if no 
component of G is bipartite, then this BTF is unique and induces a {unique) BTF in 
the components ofG. 

The proof of Corollary 1 is trivial. 

REMARK 1. A simple example for a plane cubic graph with a bridge and a BTF 
is constructed as follows : Take two copies of the cube and embed them in the plane 
in such a way that the exterior face has a disconnected boundary B. Now sub­
divide in each cycle of B exactly one line by exactly one point xl9 x2 respectively, 
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and draw the line [xl9 x2]. This plane cubic graph G has the bridge [xl9 x2] and 
obviously, it has a (unique) BTF. If we embed in the exterior face of G a third 
copy of the cube, then we obtain a nonbipartite, plane, cubic graph having exactly 
two BTF. This shows the necessity for no component being bipartite as stated in 
Corollary 1. 

II. Regulating sets of plane, cubic graphs. 

DEFINITION 2. Let G be a plane cubic graph, e=[x9y] a line of G. Denote 
the points different from y{x) and adjacent to x{y) by ^(y*), / = 1 , 2, correspond­
ing to their cyclic order (possibly x2==y1 or x1=y2). Now we form G0=G—{JC, y) 
and obtain the plane cubic graph G(e) from G0 by introducing in G0 four new 
points»,, y = 1 , . . . , 4, and the lines [vi9 x{]9 [v2+i,yi],i=l,2, [vj9vj+1]9j=l9...949 

letting v5=vx (we place these points and lines in the face containing xi9 y{). 
We say G(e) is obtained from G by a g-extension of e (quadrangular extension). 
Analogously, if S is an independent set of lines of the plane cubic graph G, then 
G(S) denotes the graph obtained by applying the g-extension to all elements of S. 

DEFINITION 3. An independent set of lines R of the plane cubic graph G is said 
to be a regulating set of G if G(R) is bipartite. In such a case, we call G(R) the 
associated graph of G (with respect to R) and denote it shortly by G*. 

REMARK 2. Although Definitions 2 and 3 are related to a plane graph G, i.e., to 
an actual embedding of a planar graph H9 a. regulating set S of an embedding of 
H is a regulating set for any embedding of H since G(S) is bipartite, independent 
of the fact of its being an actual embedding of a planar, bipartite graph. However, 
since we connect in the following regulating sets with 3-face-colorings (for which 
we need plane graphs), we shall speak of regulating sets of plane graphs. 

The existence of a regulating set for a large class of plane cubic graphs is provided 
by: 

THEOREM 1. If the plane cubic graph G contains a linear factor L9 then R=L 
is a regulating set ofG. 

Proof. Form G*=G(L) which has a BBTF consisting of the quadrangles ob­
tained by g-extensions from the lines of L. By [1, Theorem 2], G* is bipartite, 
i.e. G* is the associated graph of G with respect to the regulating set L. 

The following lemma is obviously true. 

LEMMA 3. A plane cubic graph contains a regulating set if and only if each of its 
components does. 

Because of Lemma 3 we restrict ourselves from now on to connected graphs 
without losing generality. 

Another similarity between linear factors and regulating sets is expressed in the 
next theorem. 
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THEOREM 2. IfR is a regulating set of the plane cubic graph G, then R contains 
all bridges of G. 

Proof. As stated before, a regular bipartite graph has no outpoints. Since 
the associated graph G* of G (with respect to R) could have a bridge b if and only 
if b is a bridge of G, and since G* is bipartite, the truth of Theorem 2 is proven. 

The graphs in Figure 1 and Figure 2 demonstrate that the question, which plane 
cubic graphs have regulating sets and which have not, will not have a simple answer. 
Using Theorem 2, one can prove easily that the graph of Figure 1 has no regulating 
set, and by the same theorem, one easily finds a regulating set in the graph of Figure 
2. In addition, the block-cutpoint-graphs of these two graphs are isomorphic. 

Figure 2 also shows that the converse of Theorem 1 is not true. But if we assume 
that G has a linear factor, is then every regulating set a subset of some linear 
factor? A negative answer is given by the choice of R={[vi9 wj / /=l , . . . , 6} 
in the dodecahedron (see Figure 3). Since all points adjacent to c are incident to 
lines of R9 there is no linear factor L with R^L. However, the following theorem 
gives a sufficient condition to answer the above question positively. 

THEOREM 3. A regulating set R is a subset of some linear factor L of the plane 
cubic graph G if the quadrangular faces obtained from the elements of R belong to 
at most two color classes in a given 3-face-coloring of G*. 

Proof. Suppose the quadrangular faces obtained from the elements of R belong 
to at most two color classes in a given 3-face-coloring CF of G*. Denote the color 
classes of CF by (1), (2), (3). We construct a 3-line-coloring CE of G* with the 
color classes (1'), (2'), (3') (/=/', /=1 , 2, 3) by coloring the line e of G* with the 
color k' if the faces for which e is a boundary line, have color /, j respectively, 
where {i9j9 k'}={\9 2, 3}. By this, for any face B of G*, the lines of dB are alter-
natingly colored with 2' and 3' if B e (1), and so on. Without loss of generality, 
none of the considered quadrangular faces belongs to (3). Then, by construction, 
any such quadrangle is line-colored with Y and 3' or 2' and 3' in CE. Following 
the construction of these quadrangles from lines of R, we obtain a 3-line-coloring 
CQ from CE such that the lines [vl91>4] and [v29 v2] always belong in CQ to (3'), 
by eventually commuting the line-coloring of the considered quadrangles. By 
identifying these lines [vl9 v^]9 [v2, vz] for each quadrangle, the linear factor 
(3') of G* is transformed into a linear factor L of G. 

However, for Theorem 3, the converse is not true. This is shown in the graph G 
of Figure 4, where the lines [vi9 wj, /=1 , . . . , 5, and the lines [p9 q], [r, s] form 
a linear factor L for which the subset R={[vi9 wj//=l, 3, 5} is a regulating set of 
G. But in G*, each of the three quadrangular faces obtained from the elements of 
R9 belongs to a different color class in the 3-face-coloring of G*. 

DEFINITION 4. Let R be a regulating set of the plane cubic graph G. Similar to 
the above we declare a face B of G to be an iWsland if dB contains an endpoint of 
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a line e of R but e $ dB. Now we define the graph G' whose points are the R-
islands of G, and two points of G' are joined by exactly so many lines as there are 
lines in R joining the corresponding i?-islands (by this, G' can have multiple lines 
and/or loops). This graph G' is called the regulator of G (with respect to R) and 
denoted by reg#(G). 

THEOREM 4. The 2-connected plane, cubic graph G has a BTF if and only if G 
contains a regulating set R such that the R-islands of G become faces ofG* belonging 
to the same color class of the 3-face-coloring ofG*. 

Proof. (A) Suppose G has a BTF F. Then we form the half-reduced graph GJF 
by contracting the cycles of F to the points of GjF. The lines of the linear factor 
LF=E(G)—E(F) become the lines of GjF. (For an exact definition of GjF, see 
[1, Definition 1]). Since G is connected, so is GjF. By Lemma 1, GIF contains an 
acyclic subgraph Tin which exactly those points have odd degree which have odd 
degree in GjF. Denote Rr=E(T), and let R^LF be the line set corresponding to 
R'. If S is a face of G with dS eF such that dS contains k endpoints of lines of 
R9 and if \E(dS)\=y9 then we have for the corresponding face S* in G(R) the 
equation \E(dS*)\=y+k (since for any dSeF, no line of dS belongs to R); 
i.e., F becomes a BBTF F* of G(R), i.e., G(R)=G* is the associated graph of G 
with respect to the regulating set R since k is odd if and only if y is odd. By our 
introductory statement on the relation between a BBTF and a 3-face-coloring C 
of G*, and since by construction of G* the boundaries of the i^-islands of G be­
come elements of i7*, the i?-islands ofG necessarily become faces belonging to the 
same color class of C. 

(B) Suppose the faces of G* corresponding to the ^-islands of G belong to the 
color class (1) of the 3-face-coloring C of G*. Denote by F* the BBTF of G* 
corresponding to (1). Then i7* corresponds to a set F of boundaries of faces in G 
since G is 2-connected. Clearly V(F)=V(G) since V(F*)=V(G*)9 and for 8 ^ , 
dS2eF, dS± n dS2=cf> must hold; otherwise, dSx n dS2 would contain a line 
e= [x, y] e R for which each of dS(x), dS(y) of the i?-islands S(x), S(y) has a line 
in common with each of dS± and dS2. Since S*(x) and S*(y)—the faces of G* 
corresponding to S(x), S(y) respectively—belong to (1), the contradiction to the 
3-face-coloring C is obtained. That is, F is a BTF of G. 

The following result is an application of Theorem 4. 

THEOREM 5. Let G be a 2-connected plane, cubic graph containing at most 
three triangles. IfvQgR(G) is connected for some regulating set R, then G is A-face-
colorable. 

Proof. Consider G* and a 3-face-coloring C of G*, and let *S* be a face of G* 
corresponding to an i?-island S of G. Without loss of generality 5* e ( l ) c C , 
Consider a face S* of G* which corresponds to an i?-island S1 of G such that St 

corresponds in reg^(G) to a neighbor of the point representing S. Then also S* 
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belongs to (1), and so on; i.e., the i^-islands of G become faces of G* belonging 
to the same color class (1) of C. By Theorem 4, G contains a BTF F which clearly 
must contain all triangles of G. Now consider D{G)9 the dual graph of G, and let 
DF be the subgraph of D(G) which is induced exactly by the points corresponding 
to the faces (of G) whose boundaries do not belong to F. Since G contains at most 
three triangles, so does DF. By Grunbaum's Theorem [2, Theorem 12.8], DF has 
a 3-point-coloring CD with the color classes (1'), (2'), (3'). By coloring in G the 
faces whose boundaries form F, with color 4 and by coloring the other faces with 
1, 2, 3 corresponding to CD9 a 4-face-coloring of G is given. 

COROLLARY 2. If H is a component ofregR(G), then the faces ofG* corresponding 
to the points ofH, belong to the same color class of the 3-face-coloring ofG*. 

(The proof of Corollary 2 is immediate from the proof of Theorem 5.) 
From Corollary 2 and Theorem 4 the following corollary is immediate. 

COROLLARY 3. If G is a 2-connected, plane, cubic graph and if*sgR(G) is connected 
for some regulating set R9 then G has a BTF, 

The following theorem is the basis for another definition. 

THEOREM 6. For every regulating set R of the plane cubic graph G, there is a subset 
Ra of R such that Ra is a regulating set and reg^ (G) is acyclic. 

Proof. Suppose regR(G) contains a cycle K with the points bl9... , bP9 p>l, 
corresponding to their cyclic order in K. Then, in G there is a line [vl9 w2] joining 
points of dB1 and dB29. . . , and [vP9 w j joining points of dBv and dBv Denote 
RK={[vi, wi+1]/i=l9... ,/?;/?+1 = 1} and R0=R—RK. By definition, R0 also 
is a regulating set. Since R0 is a proper subset of R and since G is finite, the proof 
is complete. 

DEFINITION 5. A regulating set R of the plane cubic graph G is said to be a 
minimally regulating set if no proper subset of R is a regulating set of G. 

THEOREM 7. Given the plane cubic graph G; then a regulating set R is a minimally 
regulating set if and only ifTQgR(G) is acyclic. 

The proof of Theorem 7 is obvious. 

REMARK 3. It can happen that—starting from the same regulating set R of G— 
one obtains minimally regulating sets of different cardinality. This fact is demon­
strated in the following graph: Replace each point in the tetrahedron A with a 
triangle, thus obtaining the cubic graph G which contains a BTF of four triangles. 
Take as R the lines not in the BTF. Let RX^R consist of three lines which corre­
spond to a spanning star of A; and R2

c:R consists of two lines which correspond 
to a linear factor of A. Both Rl9 R2 are minimally regulating sets of G, but \R2\ < 
|JRX|. Also, Figure 3 shows that a minimally regulating set does not have to be a 
subset of a linear factor. 
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III. The disparity of a plane cubic graph and open questions. 

DEFINITION 6. We say the plane cubic graph G has disparity m if G contains a 
regulating set of m elements, and if any other regulating set of G contains at 
least m elements; we write shortly disp G=m. For plane cubic graphs G having 
no regulating set we define disp G=oo. 

From Definition 6 and the previous results we obtain immediately the next 
theorem. 

THEOREM 8. For any plane cubic graph G with disp G< oo, 

^ < d i s P G < ! ^ 
2 " 2 

where F0 is the number of faces S for which \E{dS)\ is odd. 

The tetrahedron shows that these bounds for disp G are sharp. 
In view of Remark 3, the problem of determining the exact value of disp G seems 

to be rather difficult. However, for graphs containing a BTF, the following theorem 
expresses a better upper bound for disp G than Theorem 8. 

THEOREM 9. Let G be a plane, cubic graph containing a BTF which has n cycles. 
Then disp G<n—\. 

Proof. Theorem 9 is an immediate consequence of part (A) of the proof of 
Theorem 4. 

Concerning regulating sets and disparity, the following problems seem to be of 
interest. 

(1) Find a necessary and sufficient condition for a plane cubic graph to have a 
regulating set. 

(2) Find a necessary and sufficient condition for a regulating set (of the plane, 
cubic graph G) to be a subset of some linear factor (of G). 

(3) Describe the class of plane, cubic graphs such that every regulating set is 
a subset of some linear factor. 

(4) Describe the class of plane, cubic graphs G such that every minimally regu­
lating set R of G fulfills |i*|=disp G. 

(5) Is there an integer M such that disp G<M for any plane, 2-connected, 
cubic graph G? If not, describe the function/^)=| V{G)\j{2 • disp G), where 
G is chosen among the plane, 2-connected, cubic graphs with In points such 
that its disparity is maximal. 

(6) Does a plane, 2-connected, cubic graph G exist different from the tetra­
hedron, with disp G=|F(G)|/2? If so, does there exist another G with F0/2= 
dispG=|F(G)|/2? 

IV. An application to plane triangular graphs. It is a well-known fact that a 
graph DT*KZ is a plane triangular graph if and only if D is the dual graph of a 
plane, cubic 3-connected graph. 
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DÉFINITION 7. For a plane triangular graph D, we obtain the plane triangular 
graph Z)4(V), e eE(D), by subdividing e with exactly one point v and joining v 
by a line to x, y respectively, which are the boundary points opposite to e in the 
boundaries containing e. We define analogously D±{S) for S<^E(D), where no 
boundary of D contains more than one line of S. 

THEOREM 10. Let D be a plane triangular graph. Then one can find R'={e'l9 . . . , 
e'd}

 CZE(D) with no two lines of R' belonging to a boundary of D, such that DA(R') 
is Eulerian; andd=disip G, where D is the dual graph ofG. Furthermore, if we denote 
by et the line of G corresponding to e\ e R', then R={e1, . . . , ed} is a (minimally) 
regulating set ofG. 

Proof. Consider the graph G. If G is bipartite, then R'=(f> and i)=Z)4(JR
,). 

Therefore, assume disp G>0. 

Since G is 3-connected, we have d=disp G<co; i.e., G contains a regulating 
set R={el9... , ed}; and there is a 1-1-correspondence between the lines of G 
and the lines of D. Denote the line set corresponding to R by R' = {e[, . . . , e'd). 
Since R is an independent set of lines, no two lines of R' belong to a boundary of 
D. 

In G* = G(R) we have for every ei e R a quadrangle. Forming D*—the dual 
graph of G*—we see immediately that D*c±D4i(R'). This proves the theorem. 
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