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ABSTRACT. In this study, we use MM5 weather-forecast model output and observed surface weather
data from 11 stations in the western Himalaya to develop a statistical downscaling model (SDM) to
better predict precipitation, 10m wind speed and 2m temperature. The analysis covers three
consecutive winters: 2004/05, 2005/06 and 2006/07. The performance of the SDM was assessed using
an independent dataset from the 2007/08 winter season. This assessment shows that the SDM technique
substantially improves the forecast over specific station locations, which is important for avalanche-
threat assessment.

INTRODUCTION
With advances in computational power and modelling
techniques, numerical weather prediction has undergone
revolutionary development during the last few decades.
Foremost in this development is the advent of regional or
limited-area models (LAMs) which can be used to simulate
weather conditions in snow-covered and mountainous areas
where accurate and timely forecasts of avalanche hazard are
important for safety and commerce. LAMs predict fields at
gridpoint locations that represent a volume average (Pielke,
2002).

In this study, we explore the use of LAM forecasts as a
means of making better predictions of key avalanche-
relevant meteorological parameters (precipitation, 10m
wind speed and 2m temperature) at 11 locations in the
western Himalaya (Fig. 1). The 11 locations are where the
Snow and Avalanche Study Establishment (SASE) of India
maintains surface weather stations used to both study
avalanche hazards and create avalanche-hazard forecasts
for the area. The key scientific question addressed in this
study is the problem of downscaling model forecast
variables from the 10 km�10 km grid resolution available
from the LAM to the small surface-station scale, i.e. to
conditions at the 11 surface stations. Our approach is to
develop multiple linear regression formulae that express
how surface station data are related to the model forecasts at
24, 48 and 72hour lead times. These formulae are empiric-
ally based mappings between forecast variables on the
10 km� 10 km grid of the LAM and the data measured by
the specific surface stations where accurate weather predic-
tion for avalanche hazard assessment is required. The
purpose of this paper is to describe the model, the data
and the methods used to develop the multiple linear
regression formulae.

DATA AND METHODS
For the past three winter seasons, SASE has been using a
LAM, the fifth-generation Mesoscale Model version 3.6
(MM5) (Grell and others, 1995; Srinivasan, 2006), to
simulate avalanche-prediction related variables of the
western Himalayan weather as a means of improving
avalanche danger assessment. Each day, the LAM model
provides a ‘prediction’ of weather variables at three future

forecast times (24, 48 and 72hours into the future) on a
10 km� 10 km grid of the study area. The three time series
of daily forecasts are then compared with measured
conditions at the 11 surface weather stations (Fig. 1) to
create three sets of regression formulae. Each set of formulae
represents the best estimator of the three key avalanche-
prediction parameters (precipitation, 10m wind speed and
2m temperature) at each of the 11 stations using either day
1, day 2 or day 3 of the LAM forecast (24, 48 and 72hours,
respectively).

The model is run using a 30 km�30 km ‘mother grid’
which contains a 10 km by 10 km ‘nested grid’. Each day, the
model produces a 120hour forecast simulation from which
output is extracted and stored at 24, 48 and 72hours. (Data
at 96 and 120hours were also stored, but were not used in
this study.) Twenty-six parameters were extracted from the
model forecasts to be used as predictors to develop the
statistical equations. These parameters are listed in Table 1.
The 26 predictors corresponding to 24, 48 and 72hour
forecast length are used to predict the parameters at
respective forecast lengths. The observed data (predictands)
collected over 11 surface weather stations of SASE (Fig. 1)
were used to develop the regressions, and are summarized
(by winter season averages) in Table 2. The 11 stations fall
under lower Himalayan and middle Himalayan zones as
characterized by Sharma and Ganju (2000).

In all, there are a total of 99 regression equations for three
parameters at three different forecast hours (day 1, day 2 and
day 3) over 11 stations. The model output data for three
consecutive winters (November–April) from 2004 to 2007
were used to develop these multiple regression equations.

There are several approaches to the development of the
statistical regressions (see, e.g., Klein and others, 1959;
Glahn and Lowry, 1972). In our study, the selected 26
forecast predictors listed in Table 1 were made orthogonal
and independent using the empirical orthogonal function
(EOF) technique. Multiple linear regression analysis was
then used to estimate the relationship between the
predictands (the three variables at the 11 stations) and the
principal components resulting from the EOF analysis. The
multiple linear regression equation is given by

Y ¼ Ax,

where Y is a vector of three components (the predictand), x is
a vector of 26 components (the predictor) and the 3� 26
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rectangular matrix A is the matrix of regression coefficients
that map x into Y. A separate matrix A is developed for each
of the 11 stations. The goal of the method is to determine the
matrix elements A using linear regression in order to
minimize some performance index, such as J= (Y0 –Y).
(Y0 –Y) is the error between observation and prediction,
where Y0 are the observed values of Y derived from station
data.

It is also important to evaluate the performance of the
statistical model. This is accomplished by computing the
root-mean-square error (RMSE) of the statistical downscaling
model (SDM) developed with the above method and
comparing the result with the intrinsic RMSE of the MM5
model itself. The comparison of the two RMSEs was done
with the 3 year dataset used for computing the regression
coefficients, as well as with an independent dataset of the
2007/08 winter season derived from the same MM5 model
output. The data from three consecutive winters (2004/05,
2005/06 and 2006/07) extracted from model output were

used to develop the statistical model along with the
observations. In order to test the developed SDM, an
independent dataset of the 2007/08 winter of model output
is reserved. RMSEs of the SDM were computed with both
the three winter seasons’ data and the independent data of
the 2007/08 winter. The results are discussed in the next
section.

RESULTS AND DISCUSSION
The computed RMSEs of the SDM, MM5 and observed
standard deviation with respect to 24 hour forecast (day 1)
of 2m temperature, precipitation and 10m wind speed for
the 11 stations are given in Figure 2. It is clear that the SDM
shows a reduction in RMSE for all three parameters. RMSEs
associated with the SDM are also less than the observed
standard deviation (a measure of station weather vari-
ability), which shows that the SDM skill is acceptable as a
means for improving the forecast at all 11 stations.

Fig. 1. A map showing the 11 station locations for which the SDM has been developed.

Table 1. Twenty-six parameters used to develop the statistical downscaling model (SDM)

No. Parameter No. Parameter No. Parameter

1. Accumulated non-convective
precipitation (cm)

10. Precipitable water (cm) 19. Divergence (s–1) at 500mbar

2. Sensible heat flux (Wm–2) 11. Mid-cloud fraction 20. u-component of wind (m s–1) at 300mbar
3. Latent heat flux (Wm–2) 12. High cloud fraction 21. v-component of wind (m s–1) at 300mbar
4. 2m temperature (K) 13. u-component of wind (m s–1) at 500mbar 22. Vertical velocity (m s–1) at 300mbar
5. 2m mixing ratio (kg kg–1) 14. v-component of wind (m s–1) at 500mbar 23. Temperature (8C) at 300mbar
6. 10m u-component of wind (m s–1) 15. Vertical velocity (m s–1) at 500mbar 24. Mixing ratio (kg kg–1) at 300mbar
7. 10m v-component of wind (m s–1) 16. Temperature (8C) at 500mbar 25. Vorticity (s–1) at 300mbar
8. Integrated cloud liquid water (cm) 17. Mixing ratio (kg kg–1) at 500mbar 26. Divergence (s–1) at 300mbar
9. Integrated rainwater (cm) 18. Vorticity (s–1) at 500mbar
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Although the RMSE of the precipitation forecast is less than
the observed standard deviation, the SDM RMSEs are
comparable to the intrinsic variability of the MM5. For
temperature and wind, the SDM shows good skills over
MM5. Similar results were found for 48 hour forecast
(day 2) and 72 hour forecast (day 3) regression formulae.
For brevity these figures are omitted.

In Figure 3, the computed RMSEs of the independent
dataset (2007/08 winter) derived from the MM5 are
compared with the SDM results. Even with the independent
dataset, the SDM shows a reduction in RMSEs for all the
stations relative to the forecast error of MM5. The SDM also
shows a good model skill, except for wind at one station
(Banihal; labelled 3 in Fig. 1). Statistically, if the computed
RMSEs are less than the observed standard deviation, the
performance/skill of the model in prediction is good. Similar
results were observed for day 2 (48 hour) and day 3

Table 2. Climatological values of three parameters (averaged over
four winter seasons) used in avalanche hazard assessment

2m temperature Precipitation 10m wind speed

8C mmd–1 m s–1

Manali 5.0 4.17 1.58
Dhundi 2.15 6.68 6.22
Banihal –0.3 4.30 59.76
Gulmarg –2.17 4.88 1.69
Stage2 0.13 6.68 1.19
Haddan –2.24 6.05 7.78
Pharkiyan –1.05 5.83 5.15
Z-Gali –3.60 6.21 16.09
Kanzalwan –2.94 6.29 2.34
Sonamarg –2.94 4.69 4.03
Drass –6.94 1.95 3.71

Fig. 2. Comparison of RMSEs of three parameters predicted by MM5 and the SDM, along with the observed standard deviation with respect
to 24 hour forecast (day 1), computed with three consecutive winters’ data (2004/05, 2005/06, 2006/07).
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(72 hour) forecasts of the parameters. For brevity, the figures
corresponding to these results are not shown; however, the
result indicates that use of a regression formula with any
forecast, i.e. day 1, day 2 or day 3, provides a benefit for
more accurate prediction of avalanche-related weather
variables at the station locations.

With the 3 year dataset used for computing the regression
coefficients, the RMSEs averaged over 11 stations for the
24 hour forecast of the three parameters are shown in
Table 3. From this table it is evident that the reduction of
RMSEs in the SDM over MM5 is beneficial and acceptable
for two of the parameters, 2m temperature and wind;
however, for precipitation the performance of the SDM is
more marginal.

CONCLUSION
In this study, we have demonstrated that a statistical
regression approach to statistical downscaling (SDM) of
MM5 model results yields significant improvements in the

forecast of three avalanche-relevant weather parameters at
11 surface weather stations (field sites) where avalanche
hazard prediction is needed on a day-to-day basis. The study
demonstrates that SDM is superior to raw, unprocessed
MM5 model results for forecasts extending 24, 48 and
72 hours into the future. While excellent results were
obtained using the SDM for 10m wind speed and 2m
temperature, forecast of precipitation using the SDM was

Fig. 3. Same as Figure 2 but computed with independent dataset (winter season 2007/08).

Table 3. Average RMSEs of the three parameters for 24 hour forecast
(day 1) with different models.

MM5 SDM % reduction

2m temperature (8C) 6.33 2.43 62
Precipitation (mm) 11.53 9.58 17
10m wind speed (m s–1) 6.71 0.79 88
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more marginal, reflecting the local complexity of meteoro-
logical conditions in mountainous terrain. Overall, our study
shows that detailed comparison of surface weather-station
data, such as those collected by SASE for 11 sites in the
western Himalaya, with limited-area weather-forecast mod-
els can yield statistically derived forecast improvements that
can enhance the quality of avalanche hazard assessment.
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