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Abstract Over the moduli space of smooth curves, the double ramification cycle can be defined by
pulling back the unit section of the universal jacobian along the Abel–Jacobi map. This breaks down

over the boundary since the Abel–Jacobi map fails to extend. We construct a ‘universal’ resolution of

the Abel–Jacobi map, and thereby extend the double ramification cycle to the whole of the moduli of
stable curves. In the non-twisted case, we show that our extension coincides with the cycle constructed

by Li, Graber, Vakil via a virtual fundamental class on a space of rubber maps.
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332 D. Holmes

1. Introduction

Fix integers g, n > 0 satisfying 2g− 2+ n > 0, and integers a1 . . . an and k such that∑
i ai = k(2g− 2). Over the moduli stack Mg,n we have the universal curve Cg,n with

tautological sections x1, . . . , xn . Write J for the universal jacobian (an abelian scheme

over Mg,n) and σ for the section of J given by the line bundle ω⊗k(−
∑

i ai xi ) on Cg,n .

The pullback of the unit section along σ defines a codimension-g cycle class on Mg,n ,

the double ramification cycle (DRC). The problem of producing a ‘reasonable’ extension

of the DRC to the Deligne–Mumford–Knudsen compactification Mg,n , and computing

the class of the resulting cycle in the tautological ring, was proposed by Eliashberg.

In the case k = 0, an extension of the class to the whole of Mg,n was constructed by

Li [25], [26], Graber and Vakil [12]. This class was computed in the compact-type case

by Hain [15], and this was extended to tree-like curves with one loop by Grushevsky and

Zakharov [13]. More recently, Janda, Pandharipande, Pixton and Zvonkine [20] computed

this class on the whole of Mg,n , proving a conjecture of Pixton.

A construction for arbitrary k was proposed by Guéré [14], but the situation here is

more complicated. Pixton’s conjecture makes sense for all k, but is purely combinatorial

in origin. A more geometric conjecture is given by Janda, Pandharipande, Pixton, and

Zvonkine in the appendix of [6] for k = 1, generalised by Schmitt [32] to all k > 1; their

formulae are moreover conjectured to coincide with Pixton’s. However, it is at present

unclear whether Guéré’s construction is compatible with these conjectures.

In this paper we give a simple construction of an extension of the DRC for arbitrary

k, and for k = 0 we verify that it agrees with the construction of Li, Graber and Vakil.

Given the situation described above, it seems very interesting to know whether it coincides

with the construction of Guéré when k is arbitrary; this is the subject of current work

in progress. Our construction is valid in arbitrary characteristic, and produces a class in

CH(Mg,n); we do not need to work with rational coefficients.

Kass and Pagani [21] have recently constructed large numbers of extensions of the

DRC (for every k ∈ Z). In [18] we show that certain of their classes coincide with the one

constructed in this article.

Statement of main results

We write J/Mg,n for the unique semiabelian extension of the universal jacobian (also

denoted above by J ), and ω for the relative dualising sheaf of the universal stable curve

over Mg,n . The section σ = ω⊗k(−
∑

i ai xi ) does not in general extend over the whole

of Mg,n . This can be partially resolved by blowing up Mg,n . Let f : X →Mg,n be a

proper birational map from a normal stack (a ‘normal modification’). The section σ is

then defined on some dense open of X . We write
◦

X for the largest open of X on which

this rational map can be extended to a morphism, and σX :
◦

X → J for the extension.

We define the double ramification locus DRLX �
◦

X to be the schematic pullback

of the unit section of J along σX , and the double ramification cycle DRCX to be the

cycle-theoretic pullback, as a cycle supported on DRLX (actually we pull back the unit

section in J ×Mg,n

◦

X along the induced map
◦

X → J ×Mg,n

◦

X , since the latter is a regular
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closed immersion). Now the map
◦

X →Mg,n is rarely proper, but the map DRLX →Mg,n
is quite often proper. More precisely, we have:

Theorem 1.1 (Theorem 6.5). In the directed system of all normal modifications of Mg,n ,

those X such that DRLX →Mg,n is proper form a cofinal system.

Now DRCX is supported on DRLX , so when the map DRLX →Mg,n is proper, we can

take the pushforward of DRCX to Mg,n . Writing πX ∗ DRCX for the resulting cycle on

Mg,n , we might hope that these cycles ‘converge’ in some way as we move up in the

tower of modifications. In fact, this is true in a very strong sense:

Theorem 1.2 (Theorem 6.7). The net πX ∗ DRCX is eventually constant in the Chow ring

CH(Mg,n). We denote the limit by DRC.

In other words, there exists a normal modification X →Mg,n such that, for every

normal modification X ′ dominating X , we have πX ∗ DRCX = πX ′∗ DRCX ′ . Since every

two normal modifications can be dominated by a third, this implies the existence of a

uniquely determined ‘limit’ of this collection of πX ′∗ DRCX ′ , and we denote this limit by

DRC.

Theorem 1.3 (Theorem 7.4). Suppose that k = 0. The class DRC coincides with the

extension of the double ramification cycle defined by Li, Graber and Vakil [12] (and

computed by [20]).

Strategy of proof

The proofs of Theorems 1.1 and 1.2 proceed by constructing a ‘universal’ stack over Mg,n
making the map σ extend. More formally, we call a morphism t : T →Mg,n σ -extending

if the section σ can be extended to J after pulling back to T . For this to make sense we

need the pullback of Mg,n to be dense in T , and we also require T to be normal and to

admit a resolution of singularities (the latter being automatic in characteristic zero by

[16]).

Our universal resolution of the Abel–Jacobi map will then be a terminal object in the

category of σ -extending morphisms. In Corollary 4.6 we prove existence; we denote this

object by M♦g,n . The section σ extends over M♦g,n by definition, and moreover M♦g,n is the

‘universal’ stack over Mg,n over which σ extends. Note that M♦g,n depends non-trivially

on the ramification data a1, . . . , an .

The proof of existence of M♦g,n is constructive, and equips it with a logarithmic

structure making it logarithmically étale over Mg,n . The construction is given locally

using toric geometry; we write down explicit combinatorial recipes for the fans of toric

varieties, and glue them to build M♦g,n . The combinatorial recipe is unavoidably rather

complicated, but is amenable to implementation on a computer; in this way we produced

Figure 1 showing one of these fans.
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Figure 1. Slice of F0 .

In § 5.2 we also give an explicit description of the universal line bundle on the universal

curve over M♦g,n in terms of this toric data, and in § 5.3 we use this to prove the key

properness result needed for Theorem 1.1 (though in characteristic zero there is a simpler

proof, see § 5.1).

The morphism M♦g,n →Mg,n may be viewed as a universal resolution of the

indeterminacies of the Abel–Jacobi map. This solves a problem proposed by Grushevsky

and Zakharov [13, Remark 6.3]. Together with our other results, it seems also to solve a

problem of Cavalieri, Marcus and Wise proposed in [2, § 1.4].

To conclude the proofs of the main results, we will choose a suitable compactification

M�g,n of M♦g,n . Now if X →Mg,n is any normal modification which factors via a map

f : X →M�g,n , we will verify that

◦

X = f −1M♦g,n, DRLX = f ∗ DRLM�
g,n
, and f∗ DRCX = DRCM�

g,n
.

(Here
◦

X still denotes the largest open of X on which the rational map σ can be extended

to a morphism.) We will establish that DRL♦ is proper over Mg,n , whereupon the

analogous properness result will hold for any normal modification which factors via

M�g,n , establishing Theorem 1.1. Theorem 1.2 will then follow fairly formally. Finally,

when k = 0 we use the deformation-theoretic tools of Marcus, Wise and Cavalieri to

establish Theorem 1.3.

A simple formula for the double ramification cycle. Suppose we work over a

field of characteristic zero, or perhaps more generally over a ring R such that resolution

of singularities is known for all schemes of finite type over R. Then there is a simpler way

to prove the existence of the universal σ -extending morphism: the normalisation of the

closure of the schematic image of σ in J satisfies the universal property (details are given

in § 5.1). This does not tell us a huge amount since we have no explicit description of this

closure; for example, it is a priori far from clear that it admits a log structure making it
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log étale over M. However, it does allow us to simplify the proof of Theorem 1.1; details

are given in § 5.1.

This allows us to give a very simple formula for the extension of the double ramification

cycle. We define DRnaive to be the cycle on Mg,n obtained by pulling back the schematic

image of σ along the unit section. Still in characteristic zero, a small argument with the

projection formula (of which details can be found in [18]) shows that the resulting cycle

is equal to the one constructed in this paper, and hence also to that of Li, Graber and

Vakil.

Note that we do need resolution of singularities since, in order to verify that the

normalisation of the closure of σ is σ -extending, we need in particular that it admits a

(local) resolution of singularities, which is in general far from clear. Of course, one could

drop from the definition of σ -extending that T admit a local resolution of singularities,

but then our methods break down (in particular we are no longer able to prove the critical

Lemma 4.3), so we can no longer give an explicit description of the universal object, or

equip it with a natural logarithmic structure etc.

Conjectural relationship to a cycle of Pixton

Given the data g, n, k and a, Pixton introduced a cycle Pg,k
g (A) in the tautological ring

of Mg,n , given in terms of decorated graphs – here A = (a1+ k, . . . , an + k); the details

of the construction can be found in [20, § 1.1]. The main result of [20] shows that, when

k = 0, there is an equality of cycles

DRCa = 2−g Pg,0
g (A)

(here we write DRCa to make the dependence on a = (a1, . . . , an) explicit). Now that we

have a construction of DRCa valid for all k, it seems natural to propose the following.

Conjecture 1.4. For all k, there is an equality of cycles

DRCa = 2−g Pg,k
g (A)

in CHg(Mg,n).

Some evidence for this conjecture is given in the following section.

Multiplicativity of the double ramification cycle

In [19] we use the results of this paper to construct an extension of the double ramification

cycle to the small b-Chow ring of Mg,n – this is the colimit of the Chow rings of the

smooth blowups of Mg,n , with transition maps given by pulling back cycles. Note that

the ‘asymptotic’ approach we adopt here is essential for this construction. Given vectors

a, b of ramification data, we will show that the basic multiplicativity relation

DRCa ·DRCb = DRCa ·DRCa+b (1)

holds in the small b-Chow ring of Mg,n , but fails in the Chow ring of Mg,n .

One consequence of this is that, if Conjecture 1.4 is true, the relation (1) should

also hold for Pixton’s cycles on the locus of compact-type curves. This relation can

https://doi.org/10.1017/S1474748019000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000252


336 D. Holmes

be independently checked using known relations in the tautological ring (see [19]), which

may be seen as evidence for Conjecture 1.4.

Conjectural relationship to a cycle of Janda, Pandharipande, Pixton, and

Zvonkine

In the appendix of [7], Janda, Pandharipande, Pixton, and Zvonkine define a cycle Hg,a
in the tautological ring of Mg,n in the case where k = 1 and at least one ai < 0, and

conjecture that Hg,a coincides with Pixton’s cycle Pg,k
g (A). We are currently engaged

(jointly with Johannes Schmitt) in verifying the equality Hg,a = DRCa , which may

be viewed as a step towards Conjecture 1.4, or towards the conjecture of Janda,

Pandharipande, Pixton, and Zvonkine, or both.

Comparison to the approach of Li, Graber and Vakil

The approach of Li [25], [26], Graber, and Vakil [12] when k = 0 is based on thinking

of the DRC as the locus of curves admitting a map to P1 with specified ramification

over 0 and ∞. They define a stack of stable maps to ‘rubber P1’, i.e. to [P1/Gm]. They

then define the DRC as the pushforward of a virtual fundamental class from this stack

of stable maps. This enables them to apply the well-developed machinery of virtual

classes and spaces of stable maps. In contrast, our approach is in a sense very naive;

using blowups to resolve the indeterminacies of rational maps goes back to classical

algebraic geometry (and in the non-proper case to Raynaud and Gruson [30]). The more

elementary nature of our approach makes it very easy to extend to the case k 6= 0, and we

hope will allow further extensions; we are particularly interested in developing further the

Gromov–Witten theory of BGm , extending the results of [9] beyond the ‘admissible’ case.

Comparison to the cycle of Kass and Pagani

The preprint [21] of Kass and Pagani (posted on the same day as the first version of this

preprint) gives a very different approach to resolving the Abel–Jacobi map, by studying

families of stability conditions on the space of rank 1 torsion-free sheaves. Moving through

a suitable family produces a series of flips of a certain compactified jacobian, after which

the Abel–Jacobi map extends over Mg,n (this series of flips depends on the ramification

data). In essence, we modify the source of the Abel–Jacobi map, whereas Kass and

Pagani modify the target. In this way, they produce a number of different extensions of

the DRC. In [18] we show that, for certain choices of stability conditions, the resulting

double ramification cycle coincides with that given in this article.

Comparison to some other recent results

More recently, Marcus and Wise [28] have given another approach to resolving the

Abel–Jacobi map when k = 0, rather closer in spirit to the present preprint. They also

use logarithmic geometry to modify Mg,n , but their construction is based on stacks of

stable maps rather than a universal property as in the present preprint. We hope to

understand the relation between these approaches more fully in future.
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An extension of the Abel–Jacobi map over a large locus in Mg,n (when k = 0) was

produced some time ago by Dudin [5]. His locus depended on a choice of ramification

data, as in our construction. But he did not make modifications of Mg,n , and so was not

able to extend over the whole of the boundary.

2. Notation and setup

Base ring

We work over the fixed base scheme 3 := SpecZ equipped with the trivial log structure.

The reader who prefers to take 3 = SpecC can freely do so with no modifications to what

follows, and a substantial simplification to the proofs of Proposition 5.3 and Lemma 6.1.

All our constructions commute with arbitrary base change over 3.

Remark 2.1. It seems that the definition of the double ramification cycle given in [12]

can readily be extended over Z, though we have not verified this. The computation of [20]

is carried out over C, and gives the class of the double ramification cycle as the value at

zero of a polynomial P in a variable r . The value of P at a given value of r is computed

using rth roots of line bundles (cf. Chiodo’s formulae [3]), which may give problems in

characteristic dividing r . But in fixed characteristic `, the polynomial P is completely

determined by its values on integers coprime to `, so this problem can be circumvented

(the author is grateful to Felix Janda for pointing this out). So it remains likely that the

results of [20] can be extended to arbitrary characteristic.

Stack of weighted stable curves

For us, ‘curve’ means proper, flat, finitely presented, with reduced connected nodal

geometric fibres. Rather than treating each Mg,n and weighting a1, . . . , an separately,

we denote by M the stack of stable pointed curves together with a k-twisted integer

weighting – in other words, points of M consist of tuples

(C, x1, . . . , xn, a1, . . . , an, k)

where the xi are the marked sections of our stable curve, and the ai and k are integers

satisfying ∑
i

ai = k(2g− 2).

This stack is smooth over 3, but is far from being connected – it is a countably infinite

disjoint union of substacks, each proper over 3.

We write C/M for the universal curve, and J = Pic0
C/M for the universal jacobian

(a semiabelian scheme, the fibrewise connected component of the identity in PicC/M).

Let M denote the open substack of M parametrising smooth curves. We write xi for

the tautological sections, and Σ for the Cartier divisor on C given by
∑

i ai xi . Then

σ ∈ JM(M) denotes the tautological section given by ω⊗k
C (−Σ).
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Log structures

We work with log structures in the sense of Fontaine–Illusie, using Olsson’s generalisation

to stacks [29]. We put log structures on C/M following Kato [22], and the log structure

on M will be denoted by αM : PM→ OM, etc.

If P is a (sheaf of) monoid(s), we write P̄ := P/P×; this notation does not sit well with

the notation M for the moduli stack of stable curves, but both are very standard, and

there is no actual ambiguity.

Weightings on a graph

A graph consists of a finite set V of vertices, a finite set H of half-edges, a map ‘end’ from

the half-edges to the vertices, an involution i on the half-edges, a genus g : V → Z>0,

and a twist k ∈ Z. Graphs are assumed connected unless stated otherwise, and the genus

of a graph is its first Betti number plus the sum of the genera of the vertices.

Self-loops are when two distinct half-edges have the same associated vertex and are

swapped by i . We define edges as sets {h, h′} (of cardinality 2) with i(h) = h′. Legs are

fixed points of i . A directed edge h is a half-edge that is not a leg; we call end(h) its

source and end(i(h)) its target, and sometimes write it as h : end(h)→ end(i(h)). We

write E = E(0) for the set of edges, and
→

E for the set of directed edges.

The valence val(v) of a vertex is the number of non-leg half-edges incident to it, and

we define the canonical degree κ(v) = 2g(v)− 2+ val(v), so that

2g(0)− 2 =
∑
v

κ(v).

A closed walk in 0 is a sequence of directed edges so that the target of one is the source

of the next, and which begins and ends at the same vertex. We call it a cycle if it does

not repeat any vertices or (undirected) edges.

Definition 2.2. A G-weighting is a function w from the half-edges to a group G such that:

(1) If i(h) = h′ and h 6= h′ then w(h)+w(h′) = 0;

(2) For all vertices v,
∑

end(h)=v w(h)+ kκ(v) = 0.

When the twist k = 0, a G-weighting can be thought of as a flow of an incompressible

fluid around the graph.

A G-leg-weighted graph is a graph together with a function from the legs to G, such

that the sum over all the legs is −k(2g(0)− 2). If 0 is a G-leg-weighted graph we write

W (0) for the set of weights on 0 which restrict to the given values on the legs. It is easy to

see that W (0) is never empty (this uses the running assumption of connectedness). After

choosing an oriented basis of H1(0,Z), the set W (0) becomes a torsor under H1(0,G).
In this article we will use only the cases G = Z and G = Q. We will refer to weightings

taking values in Z just as weightings.
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Combinatorial charts

If p : Spec k →M is a geometric point, we have an associated graph 0p. If a node of the

curve over p has local equation xy− r for some r ∈ Oet
M,p

, then the image of r in the

monoid P̄M,p is independent of the choice of local equation. In this way we define a map

` : E(0p)→ P̄M,p, recalling that edges of the graph correspond to nodes of the curve.

This is a logarithmic version of the labelling defined in [17].

Given a leg-weighted graph 0 with edge set E , set M0 = Spec3[NE
], equipped with

the toric divisorial log structure. As usual we write α : PM0
→ OM0

for the map from

the sheaf of monoids to the structure sheaf.

To any point p in M0 we associate the graph 0p obtained from 0 by contracting

exactly those edges e such that the corresponding basis elements of NE specialise to

units at p. We define a map ` : E(0p)→ P̄M0,p
by sending an edge e to the image of

the associated basis element of NE . The map naturally lifts to PM0,p
, and does not send

any edge to a unit, by definition of 0p.

A combinatorial chart of M consists of a leg-weighted graph 0 and a diagram of log

stacks

M f
←− U

g
−→M0

satisfying the following five conditions:

(1) U is a connected log scheme;

(2) g : U →M0 is strict and log smooth;

(3) f : U →M is strict and log étale;

(4) the image of g meets the minimal stratum of M0.

Let p : Spec k → U be any geometric point, yielding natural maps

P̄M, f ◦p
f [
→ P̄U,p

g[
← P̄M0,g◦p.

(5) We require the existence of an isomorphism

ϕp : 0 f ◦p → 0g◦p

such that f [(`(e)) = g[(`(ϕp(e))) for every edge e (which necessarily makes this ϕp
unique if it exists). Moreover, the map ϕp sends the leg-weighting on 0 f ◦p coming

from the −ai to the leg-weighting on 0g◦p coming from that on 0.

It is clear from [23] that M can be covered by combinatorial charts. We will first

construct M♦0 over the M0, and then descend it to M.

3. Construction of M♦

The cone cw associated to a weighting

For the remainder of this subsection we fix a combinatorial chart with leg-weighted

graph 0, writing E for the edge set. To a weighting w ∈ W (0) we will associate a

rational polyhedral cone cw inside the positive orthant of ZE
⊗ZQ. Recalling that
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M0 = Spec3[NE
], such a cone will induce an affine toric scheme over M0 in the usual

way, cf. [11]. Such an object has a natural log structure. We will build M♦0 by glueing

together affine patches of this form.

Fix a weighting w ∈ W (0) and let γ be an oriented cycle in 0. If e is a directed edge

appearing in γ , we define wγ (e) to be the value of w on the first half-edge of e – we might

think of this as the flow along e in the direction given by γ .

Definition 3.1. Let t ∈ QE
>0; we refer to such an element as a thickness. We say t is

compatible with w if for every cycle γ we have∑
e∈γ

wγ (e)t (e) = 0. (2)

One checks easily that the set of all thicknesses t which are compatible with a given

weighting w form a rational polyhedral cone in QE
>0, which we denote by cw.

Lemma 3.2. Suppose w,w′ ∈ W (0) and that cw ∩ cw′ contains a thickness t which does

not vanish on any edge. Then w = w′.

Proof. Writing w̃ = w−w′, we see that w̃ is a ‘weighting’ for the graph 0 with all the leg

decorations removed; we can think of this w̃ as a flow of an incompressible fluid around

0, with no sources and sinks. Suppose that w̃ is not everywhere zero. We then claim that

there exists a directed cycle γ in 0 such that, for every directed edge e ∈ γ , we have

w̃γ (e) > 0. To build such a cycle, we begin on any directed edge with positive flow w̃.

The incompressibility condition then implies that we can continue the path along another

edge, still having w̃ > 0. Continuing in this way, the finiteness of the graph forces this

path to intersect itself at some point. Possibly discarding the beginning of this path, we

have the desired cycle γ . Then ∑
e∈γ

w̃γ (e)t (e) = 0,

but all the t (e) > 0, and all the w̃γ (e) > 0, a contradiction.

Definition 3.3. We write F0 for the set of faces of the cones cw as w runs over weightings
in W (0).

Remark 3.4 (Example: 2-gon, k = 0). Suppose the graph 0 has two edges and two

(non-loop) vertices u and v. Suppose the leg-weighting is +n at u and −n at v. Weightings

consist of a flow of a along one edge from u to v, and n− a along the other (again from u
to v), for a ∈ Z. The cone cw is non-zero if and only if both a and n− a are non-negative,

and for such a the cone cw is the ray in Q2
>0 through the point (n− a, a). Thus we get

exactly n+ 1 rays in the positive quadrant. This is the fan F0.

Remark 3.5 (Example: 3-edge banana, k = 0). Suppose again that the graph has two

vertices u and v, but now three edges between them. Suppose that the weighting is +10
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on u and −10 on v. Figure 1 shows the slice through the (incomplete) fan F0 ⊆ Q3
>0

where the sum of the values of the thickness on the edges is 1.

In the next subsection we will verify that F0 is a finite fan (in the sense of toric

geometry). The reader might prefer to skip the details, as they play little role in what

follows.

F0 is a finite fan

Lemma 3.6. Let w1, w2 ∈ W (0) be two weightings. Then the intersection of the cones

cw1 and cw2 is a face of cw1 .

Proof. Let t ∈ cw1 ∩ cw2 . For an edge e with t (e) 6= 0 we claim w1(e) = w2(e). To see this,

let 0t be the graph obtained from 0 by contracting those edges on which t vanishes.

Then each wi |0t is a weighting compatible with t |0t , and the latter does not vanish on

any edge, so w1|0t = w2|0t by Lemma 3.2.

Define

E= = {e ∈ E(0) : w1(e) = w2(e)}, E 6= = E(0) \ E=.

Writing 0= for the graph obtained from 0 by contracting E 6=, and set w= := w1|0= =

w2|0= . Define c= to be the cone in QE=
>0 corresponding to the weighting w=. By the claim

above we see that every t ∈ cw ∩ cw′ vanishes on every edge of E 6=.

I now claim that cw1 ∩ cw2 = c=×{0}, where 0 is the zero vector in QE 6=
>0. Well, it is

clear that cw1 ∩ cw2 ⊆ c=×{0} by definition of E= and E 6=. For the other inclusion, let

t ∈ c=×{0}, and let γ be a cycle in 0. Write γ= for the closed walk in 0= resulting from

contracting γ . By definition of c= we have that∑
e∈γ ′

w=(e)t (e) = 0,

and t vanishes on E 6=, so we see∑
e∈γ

w1(e)t (e) = 0 =
∑
e∈γ

w2(e)t (e) = 0

as required.

Now we know that any two cw intersect in a face. The following well-known lemma

shows that F0 is a fan.

Lemma 3.7. Let 80 be a set of cones in Qn , and assume that for all C , C ′ ∈ 80, the

intersection C ∩C ′ is a face of C . Let 8 be the set of all faces of cones in 80. Then 8 is

a fan.

Lemma 3.8. The set of cones {cw : w ∈ W (0)} is finite.

Proof. The proof is by induction on h1(0). Recalling that W (0) is a torsor under H1(0,Z),
we see that W is finite whenever h1(0) = 0, so in this case there is nothing to prove.
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In general, we say that a weighting w on 0 admits a positive cycle if there exists a cycle

γ in 0 such that w(e) > 0 for every e ∈ γ . In the next two lemmas, we will show the

following.

(1) For fixed 0, all but finitely many weightings admit a positive cycle (Lemma 3.9).

(2) If γ is a positive cycle for w and 0/γ is the graph obtained from 0 by contracting

every edge in γ , then

cw = cw|0/γ ×{0},

where cw|0/γ ⊆ QE(0/γ )
>0 is the cone associated to the restricted weighting w|0/γ , and

0 is the zero vector in QE(γ )
>0 (Lemma 3.10).

Now there are only finitely many cycles in 0, and for every cycle γ we have that h1(0/γ ) <

h1(0); hence by our induction hypothesis we have that there are only finitely many cones

for 0/γ . Putting these ingredients together concludes the proof.

Lemma 3.9. For fixed 0, all but finitely many w admit a positive cycle.

Proof. Step 1: setup.

Fix a weighting w, and fix a basis B of H1(0,Z) consisting of cycles. We can think of

b ∈ B as a function from the set
→

E of directed edges of 0, sending a directed edge e to

0 is e /∈ b, and ±1 otherwise (depending on whether the orientation of e agrees with b).

Given an element v ∈ ZB , we define cycle(v) to be the function
→

E→ Z given by
∑

b vbb.

This is somewhat clumsy notation, as it would be nicer just to think of v as an element

in the cycle space, but distinguishing carefully between v and cycle(v) seems important

to avoid confusion in this proof. In this way we see that every weighting on 0 is of the

form w+ cycle(v) for a unique v ∈ ZB .

Define recursively a function ϕ : Z>0 → Z by setting ϕ(0) = 1 and ϕ(n) =
∑

06 j<n ϕ( j).
Write m := maxe∈E(0)|w(e)|, and h := h1(0). Define N = mϕ(h) (this is rigged exactly to

make step 3 of this argument work). Define

B(N ) =
{

v ∈ ZB
: max

b∈B
|vb| 6 N

}
,

a finite set. In the remainder of this argument, we will show that for every v ∈ ZB
\ B(N ),

the weighting w+ cycle(v) admits a positive cycle. To this end, we fix for the remainder

of the argument a v ∈ ZB
\ B(N ).

Step 2: ordering the vb.

Up to changing the orientations of the elements of B, we may assume that all the

integers vb are non-negative. Put an ordering on B so that the vbi are in increasing order:

0 6 vb1 6 vb2 6 · · · 6 vbh ,

with vbh > N .
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Step 3: choosing a critical br .

We now show by a small computation that there exists 1 6 r 6 h such that

m+
∑

16i6r−1

vbi < vbr .

Indeed, suppose no such r exists. Then for each 1 6 j 6 h we have

m+
∑

16i6 j−1

vbi > vb j ,

and induction on j yields vb j 6 mϕ( j) for all 1 6 j 6 h, contradicting our assumption

that vbh > N = mϕ(h).
From now on, we fix such an r .

Step 4: finding the positive cycle γ .

Define a function f :
→

E→ Z sending a directed edge e to

∑
r6 j6h


1 if e ∈ b j and has same direction as b j
−1 if e ∈ b j and has opposite direction to b j
0 otherwise (i.e. e /∈ b j )


In the remainder of this step we will show that there exists a cycle γ with f (e) > 0 for

every directed edge e ∈ γ . In step 5 we will see that any such γ is necessarily a positive

cycle.

First, because the b j are part of a basis, we see that f is not identical to zero. Hence

there is a directed edge e with f (e) > 0. We build a path in 0 starting with e by the

following procedure: whenever we hit a vertex v, choose an edge ev out of v such that

f (ev) > 0. Why is this always possible? Note that the sum over all edges e′′ into v of

f (e′′) is necessarily zero, and since we arrived at v along an edge with f > 0, there must

also be an edge leaving v with f > 0.

Since 0 is finite, this path must eventually meet itself, say at a vertex v0. Deleting the

start of the path up to v0 yields the cycle γ that we sought.

Step 5: showing that γ is indeed a positive cycle for the weighting w+ cycle(v).
Choose any γ as in step 4. Define functions F , G :

→

E→ Z by the following formulae:

F(e) =
∑

r6 j6h


vb j if e ∈ b j and has same direction as b j
−vb j if e ∈ b j and has opposite direction to b j

0 otherwise (i.e. e /∈ b j )



G(e) = w(e)+
∑

16 j6r−1


vb j if e ∈ b j and has same direction as b j
−vb j if e ∈ b j and has opposite direction to b j

0 otherwise (i.e. e /∈ b j )

 .
Observe that F +G = w+ cycle(v) as functions

→

E→ Z. Let e ∈ γ be a directed edge; we

will show that F(e)+G(e) > 0 as required.
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Define ε = m+
∑

16i6r−1 vbi (cf. step 3). Note that f (e) > 1, and F(e) > ε f (e) > ε
since vb j > ε for every j > r . Now

|G(e)| 6 m+
∑

16 j6r−1

vb j = ε,

hence

(w+ cycle(v))(e) = F(e)+G(e) > ε− ε = 0.

Lemma 3.10. Fix a weighting w. If γ is a positive cycle for w and 0/γ is the graph

obtained from 0 by contracting every edge in γ , then

cw = cw|0/γ ×{0},

where cw|0/γ ⊆ QE(0/γ )
>0 is the cone associated to the restricted weighting w|0/γ , and 0 is

the zero vector in QE(γ )
>0 .

Proof. The inclusion

cw ⊇ cw|0/γ ×{0}

follows easily from the definition of the cone of a weighting, since every cycle in 0/γ

arises by restricting some cycle in 0.

We need to show the other inclusion, so let t ∈ cw be a thickness. The t satisfies the

equation ∑
e∈γ

t (e)w(e) = 0,

and since all the w(e) are positive this forces all the t (e) to vanish.

Putting together Lemmas 3.6–3.8 we immediately deduce:

Corollary 3.11. The set of cones F0 is a finite fan inside QE
>0.

The construction of M♦

Definition 3.12. We define M♦0 to be the toric scheme over M0 defined by the fan F0.

We equip it with the toric log structure.

If w ∈ W (0) we define M♦w to be the affine toric variety associated to cw, an affine

patch of M♦0 .

Remark 3.13. It follows from [11] that M♦0 →M0 is separated, of finite presentation,

and normal. It is moreover logarithmically étale, since it is given by patches of toric

blowups.

Given a combinatorial chart M← U →M0 we define M♦U by pulling back M♦0 from

M0. Such U form an étale cover of M, and the collection of M♦U is easily upgraded to

a descent datum.
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Definition 3.14. We define π♦ : M♦→M to be the algebraic space obtained by

descending the M♦U .

Theorem 3.15. The stack M♦ is normal, and the map π♦ : M♦→M is separated,

of finite presentation, relatively representable by algebraic spaces, birational, and

logarithmically étale.

Note that π♦ is almost never proper.

Proof. Toric varieties in this sense are always normal, see [11]. The properties of π♦ are

all local on the target, so it is enough to check them for the M♦0 →M0. Separatedness

and logarithmic-étaleness are automatic for toric varieties (in the sense of Fulton), finite

presentation follows from the finiteness of the fans, see Corollary 3.11. The maps are

clearly isomorphisms over the locus M of smooth curves, hence are birational.

4. Universal property of M♦

Definition 4.1. We say a stack T is locally desingularisable if étale-locally it admits a

proper surjective finitely presented map T ′→ T with T ′ regular and T ′→ T inducing

an isomorphism between some dense open substacks of T ′ and T .

For example, this is true in characteristic zero, and for arithmetic surfaces and

threefolds, and for log regular schemes. We can now give a more precise variant of the

notion of a σ -extending morphism from the introduction. Recall that σ :M→ J is the

morphism given by ω⊗k(−
∑

i ai xi ).

Given any map t : T →M, we can consider the open subset t−1M = T ×MM ↪→ T ,

and the semiabelian scheme t∗J = T ×M J over T . We denote by t∗σ the canonical map

idT × σ : t−1M→ t∗J .

Definition 4.2. We say a map t : T →M is non-degenerate if T is normal and locally

desingularisable, and t−1M is dense in T . We say t is σ -extending if in addition the

section t∗σ ∈ (t∗J )(t−1M) admits a (necessarily unique) extension to t∗J (T ).

For example, the open immersion M→M is clearly σ -extending, and in general

the identity on M is not σ -extending. In this section we will show that M♦→M is

σ -extending, and moreover that M♦ is universal with respect to this property: that it is

terminal in the 2-category of σ -extending morphisms (Corollary 4.6). Our main technical

result is the following:

Lemma 4.3. Fix a combinatorial chart M← U →M0, and let t : T → U be such that

the composite T →M is non-degenerate. The following are equivalent:

(1) Locally on T there exists a weighting w on 0 such that T →M0 factors via M♦w →
M0.

(2) T →M is σ -extending.
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Before giving the proof we set up a little notation, which will also be useful in § 5. The

map T →M defines a stable curve over T , which we shall denote by C . For each edge

e ∈ E = E(0) we define `(e) ∈ OM0
(M0) to be the image of the standard basis vector

δe ∈ NE under the log structure map. If w ∈ W (0) is a weighting and γ ⊆ 0 a cycle, we

let

δγ =
∏
e∈γ

δ
wγ (e)
e ∈ NE

where wγ (e) ∈ Z is the value of w on e in the direction dictated by γ . One easily verifies

the following lemma.

Lemma 4.4. The dual cone c∨w ⊆ ZE is the intersection of ZE with the rational span of

the positive orthant in ZE together with the δγ for γ running over cycles in 0.

Proof of Lemma 4.3. (1) H⇒ (2): we may assume T is local, since an extension is unique

if it exists. Perhaps shrinking the combinatorial chart we may assume that 0 is the graph

over the closed point of T .

The map T →M0 corresponds to a map t#
: 3[NE

] → OT (T ), and each t#δe is a unit

on t−1M. For each cycle γ we obtain an element t#δγ ∈ FracOT (T ), and the factorisation

of t via M♦w says that t#δγ ∈ OT (T ) ⊆ FracOT (T ). If we write i(γ ) for the cycle with the

same edges as γ but in the reverse direction, we see that t#δi(γ ) = t#δ−1
γ in FracOT (T ),

and hence that actually each t#δγ is a unit, i.e. lies in OT (T )× ⊆ OT (T ).

Since the product around each cycle in 0 of the t#δ
wγ (e)
e lies in OT (T )×, we can choose

elements rv ∈ FracOT (T )× for each vertex v of 0 such that for each directed edge e : u → v

we have
ru

rv
= t#δ

wγ (e)
e · (unit in OT (T )). (3)

For a vertex v, write ηv for the generic point of the component of the special fibre of

C corresponding to v. Now we define a Weil divisor Y on C by specifying that Y is

trivial over t−1M, and that locally around ηv it is cut out by rv. Then (3) and a small

computation implies that Y is actually a Cartier divisor.

Now we claim that the line bundle ω⊗k
C (Σ + Y ) defines an extension of σ in t∗ J =

Pic0
C/T . Clearly it coincides with σ over t−1M, so all we need to check is that Σ + Y

has degree zero on every irreducible component of the special fibre of C . Fix a vertex

v. We need to check that the degree of OC (Y ) on the component Cv of the special fibre

corresponding to v is exactly the sum of the weights of the non-leg half-edges out of v.

After adjusting Y by the pullback of a divisor on T we may assume that rv = 1. Let

e : u → v be an edge out of v. Then the completed étale local ring at the singular point

corresponding to e is isomorphic to

ÔT (T )et [[x, y]]/(xy− t#δe),

where we take x to be the coordinate vanishing on Cv and y to be vanishing on Cu .

We may assume that ru is given by t#δ
w(e)
e (since we can ignore T -units), so Y is locally

defined by yw(e), and the order of vanishing on Cv is exactly w(e) as required.
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(2) H⇒ (1): Again, we may assume T is local. We consider first the case where T is

regular. The argument above is almost reversible; we are assuming this extension of σ

exists, and it is necessarily given by a line bundle L of degree 0 on every irreducible

component of every fibre. Then L (−Σ) = O(Y ) for some vertical Cartier divisor Y . For

each vertex v of 0, let rv ∈ FracOT (T )× be a local equation for Y at ηv.

By the regularity of T we can apply [17, Theorem 4.1] to see that for each directed

edge e : u → v, an equation of the form

ru/rv = t#δa
e · (unit in OT (T )) (4)

holds for some a ∈ Z. Assigning to the directed edge e the integer a is easily verified to

give a weighting w on 0, and for each cycle γ we see that
∏

e∈γ t#δ
wγ (e)
e ∈ FracOT (T )×

actually lies in the subgroup OT (T )× ⊆ FracOT (T )×. Hence the map

3[c∨w] → FracOT (T )

δe 7→ t#δe

factors via OT (T ) ⊆ FracOT (T ), and we are done.

It remains to reduce the general case to the case when T is regular. So assume T is

local, normal and (locally) desingularisable, and let T ′→ T be a desingularisation, so T ′

is regular and T ′→ T is proper, surjective, and birational. By Zariski’s Main Theorem,

the fibres of T ′→ T are connected. Write t for the closed point of T .

Since we know the result in the regular case, we can apply this to T ′ to find an open

cover {Vi }i∈I of T ′, and weightings wi on the Vi , such that each Vi →M0 factors via

M♦wi
→M0. Adjusting the cover, we may assume that each Vi is connected and meets

the fibre T ′t of T ′ over the closed point of T . If 0′ is the graph over t, the weightings wi
on 0 need not be unique, but their restrictions to the contracted graph 0′ are unique.

To simplify the notation we will assume 0′ = 0, since the value taken by the weightings

on the contracted edges never plays any role.

Now T ′t is connected and is covered by the Vi ∩ T ′t , and the weightings wi must agree

on overlaps of the Vi ∩ T ′t , so we see that actually all the wi are equal. Write w for this

weighting; we will show that T →M0 factors via M♦w →M0.

Note that each t#δe is a regular element in OT (T ) since its restriction to t−1M is

invertible. We write div(t#δe) for the associated Cartier divisor on T .

Fix a directed loop γ in 0. By a similar argument as in the regular case, to construct

the map T →M♦w it is enough to show that, for each cycle γ we have∑
e∈γ

wγ (e) div(t#δe) = 0. (5)

But we know that (5) holds on each Vi after pulling back (since we have maps

Vi →M♦w) so the result follows from [17, Lemma 2.23].

Corollary 4.5. Let t : T →M be any σ -extending morphism. Then t factors uniquely via

M♦→M.

Proof. Uniqueness is clear since the map is determined on M, whose pullback is dense

in T . Existence then follows immediately from Lemma 4.3, since M♦0 is formed by
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glueing together the M♦w, and the uniqueness ensures that the maps we obtain glue

on overlaps.

Corollary 4.6. M♦→M is the terminal object in the 2-category of σ -extending

morphisms to M.

Proof. We know by Theorem 3.15 that M♦ is normal, and it is locally desingularisable

by [24] since it is locally toric (log regular). Applying Lemma 4.3 we see that M♦→M
is σ -extending, since M♦w →M0 is clearly w-aligned. Corollary 4.5 then shows that it

is terminal.

5. Properness of DRL♦

Write σ ′♦ :M
♦
→ J for the extension of σ (we reserve the notation σ♦ for the induced

map M♦→M♦×M J ). Write DRL♦ for the schematic pullback of the unit section of

the universal jacobian along σ ′♦, so DRL♦ is a closed substack of M♦. We will show that

DRL♦ is proper over M (recalling that the map M♦→M is in general far from proper,

cf. Figure 1).

5.1. In characteristic zero

Over a field of characteristic zero (or more generally, over a ring over which all schemes

of finite type admit a resolution of singularities) this result can be proven more directly.

Namely, we will show that M♦ coincides with the normalisation of the closure of the

image of σ in J , from which properness follows immediately. More precisely, it is the

underlying scheme of M♦ which is given by this construction, since the normalisation of

the closure does not come with a natural logarithmic structure.

Write S for the schematic image of the section σ in J (in other words, for the closure

of the image, with suitable reduced structure), and S′ for its normalisation. We will show

that S′ is a universal σ -extending morphism. Indeed, the pullback of M is evidently

dense in S′, and S′ is automatically normal, and admits a resolution of singularities by

[16] (here we use characteristic zero). Moreover, S′ comes with a map to J making it

σ -extending.

Suppose T →M is also σ -extending, then the map T → J factors via the inclusion

S � J by definition of the schematic image, and the resulting map T → S lifts to S′

since T is assumed normal. We thus see that S′ is the universal σ -extending morphism,

and so is canonically isomorphic to M♦.

To prove properness of DRL♦ over M we simply observe that S′→ S is proper, so DRL♦
is proper over the intersection of S with the unit section in J , and that intersection is

automatically proper over M since it is closed in the image of the unit section.

In positive characteristic, we do not know that S′ is σ -extending (Definition 4.2),

since we do not know if it admits a resolution of singularities. In the remainder of

this section we will give a more hands-on proof of properness in this case. Some of

the details (in particular the description of the universal line bundle) may also be of

independent interest.
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5.2. The universal line bundle

Before giving the proof in the general case, we describe a certain line bundle on the

universal curve over M♦, which will play a crucial role in the proof – this may be of

some independent interest. The proof itself is then mainly a matter of keeping careful

track of isomorphisms and valuations. To simplify the notation, we write ω for the relative

dualising sheaf of the universal curve over M.

Let p : Spec k →M♦ be a geometric point, and write C p for the stable curve

over k. The map σ ′♦ : M
♦
→ J determines an isomorphism class of line bundles on

C p (necessarily with degree zero on every component). In this section we will give

representatives of this isomorphism class.

Remark 5.1. In fact, we do not need to assume that the field k is algebraically closed; it

is enough to assume that all irreducible components of C p are geometrically irreducible,

and that all preimages of all nodes in the normalisation of C p are k-rational points.

Choose a combinatorial chart M0 ← U →M containing p, and such that 0 is the

graph of C p. Let w be the weighting on 0 such that p lies in M♦w. If v is a vertex of 0,

write Cv for the corresponding irreducible component of C p, and define a line bundle Fv

on Cv by the formula

Fv = ω
⊗k
|Cv

(∑
e

w(e) · [ev]

)
. (6)

Here the sum runs over directed edges e out of v, and ev is the point on Cv corresponding

to the node e on C p. If e is a self-loop then the point ev is not a Cartier divisor on

Cv, but (by the definition of a weighting) it appears with coefficient 0 in the above

formula, so we do not worry about this. Writing C̃v for the normalisation of Cv, we have

ω|C̃v
= �C̃v

(
∑

e[ev]) (where the sum runs over all directed edges with an end at v), and

the restriction of the latter to any node ev is canonically trivialised by the residue map.

Now we need to glue the Fv together along the non-self-loop edges e to give a line

bundle on C p. If e : u → v is a non-self-loop edge then we see

Homk(Fv|ev ,Fu |eu ) =
(
ω⊗k
|Cv (w(e)[ev])

)∣∣∣⊗−1

ev
⊗

(
ω⊗k
|Cu (−w(e)[eu])

)∣∣∣
eu

= OCv (w(e)[ev])|
⊗−1
ev ⊗OCu (−w(e)[eu])|eu

=

(
OCv ([ev])|ev ⊗OCu ([eu])|eu

)⊗−w(e)
.

(7)

By the deformation theory of stable curves the vector space OCv ([ev])|ev ⊗OCu ([eu])|eu

is naturally a sub-space of the tangent space to p in M. The choice of combinatorial

chart then yields a canonical generator of this summand of the tangent space, giving us

a canonical isomorphism

OCv ([ev])|ev ⊗OCu ([eu])|eu
∼
−→ k. (8)

We can use this to explicitly describe how to glue the Fv together to a line bundle on

C p. The map p : Spec k →M♦w corresponds to a map p#
: 3[c∨w] → k, and for each cycle
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γ we see p#δγ ∈ k×. Choose a function

λ :
→

E→ k× (9)

such that λ(i(e)) = λ(e)−1 and such that for every cycle γ we have∏
e∈γ

λ(e)w(e) = p#δγ . (10)

For an edge e : u → v, the −w(e)th power of the element λ(e) ∈ k× gives (via (8) and

(7)) an isomorphism Fv|ev
∼
−→ Fu |eu . We use these isomorphisms to glue the Fv to a

line bundle on the whole of C p (cf. [8]), which we denote by Fλ. Clearly Fλ depends on

the choice of λ, but a different choice of λ will yield an isomorphic Fλ.

Proposition 5.2. The isomorphism class [Fλ(−Σ)] of line bundles on C p corresponds to

the image of the section σ ′♦ in Pic0
C p/k .

Proof. This follows by a rather messy unravelling of the constructions in § 3.

5.3. The proof of properness in general

Proposition 5.3. The map DRL♦→M is proper.

Proof. Step 1: Setup.

The map is clearly separated and of finite presentation since the same holds for

M♦→M. We need to show that the dashed arrow in the following diagram can be

filled in:

η DRL♦

T Mt

(11)

where T is a strictly hensellian trait with generic point η and closed point p. Choose a

combinatorial chart M0 ← U →M containing p, and such that 0 = 0p is the graph of

C p.

We write 0η for the graph over η, with edge set Eη and vertex set Vη, and similarly

over p, so we have a contraction map 0p → 0η, and Eη ⊆ E p. Given v ∈ Vη we define

Cv to be the corresponding irreducible component of Cη.

Let wη be a weighting on 0η such that η lands in M♦wη .
Step 2: Extending the weighting to 0p.

Because the trait T is strictly hensellian, we know that all irreducible components of

Cη are geometrically irreducible, and all nodes and their tangent directions are rational

over η. Because of this, by Remark 5.1, we can apply Proposition 5.2 over η. Accordingly,

we choose
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• a line bundle L on Cη;

• for each v ∈ Vη an isomorphism

L |Cv
∼
−→ ω⊗k

|Cv

(∑
v

w(e)[ev]

)
= Fv. (12)

• an isomorphism

L (−Σ)
∼
−→ OCη ; (13)

(the last is possible exactly because η lands in DRL♦). Putting together (13) and (12)

we obtain for each e : u → v an isomorphism

Fv|ev
∼
−→ Fu |eu . (14)

Perhaps after replacing η by a finite extension, we can choose elements λ(e) ∈ OT (η) as

in (9), satisfying (10) and inducing via (7) and (8) the isomorphisms (14).

We write C̄v for the closure of Cv in the curve C = CT (so the C̄v are the irreducible

components of C), and we write F̄v for the line bundle on C̄v given by

F̄v = ω
⊗k
|C̄v

(∑
s

w(e)[ev]

)
, (15)

where now we view ev as an element of C̄v(T ) (cf. (6)). Putting together (13) and (12)

again we obtain trivialisations Fv(−Σ)⊗ω
⊗−k ∼
−→ OCv , which we can think of as being

trivialisations of F̄v(−Σ)⊗ω
⊗−k over η, which yield Cartier divisors Yv on C̄v supported

on the special fibre.

If v′ ∈ Vp is a vertex mapping to v ∈ Vη, we define Y(v′) to be the multiplicity along

the generic point of Cv′ of the divisor Yv; this gives a function Y : Vp → Z. Given e : u →
v ∈ E p \ Eη we define

w(e) =
Y(v)−Y(u)
thickness(e)

∈ Z. (16)

One now checks easily that this w extends the weighting wη to a weighting w onto the

whole of 0p.

Step 3: Computing ordT λ(e).
Let e : u → v ∈ Eη, so we have λ(e) ∈ OT (η) giving the glueing Fv|ev

∼
−→ Fu |eu . Over

T we have isomorphisms

F̄v(Yv)|ev = F̄v(−Σ + Yv)|ev
a
→ ω⊗k

|ev = ω
⊗k
|eu

b
→ F̄u(−Σ + Yu)|eu = F̄u(Yu)|eu ,

where the isomorphisms a and b come from the definition of Yv. Now e ∈ Eη lifts to a

unique edge e′ ∈ E p, and we write v′ ∈ Vp for the endpoint of e′ which maps to v, and

similarly define u′. A small computation then shows that

ordT λ(e) = Y(v′)−Y(u′). (17)

Step 4: Constructing a lift T →M♦w.
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We want to construct a map 3[c∨w] → OT (T ) (recall the description of c∨w from § 4).

The map 3[NE p ] → OT (T ) vanishes exactly on δe for e ∈ Eη ⊆ E p, so we have a map

3[ZE p\Eη ] → OT (η), which we extend to a map ϕ : 3[ZE p ] → OT (η) by sending δe to

λ(e) for each e ∈ Eη.
Let γ be a cycle in 0p. Then∑

(e : u→v)∈γ

ordT ϕ(δe)
wγ (e) =

∑
(e : u→v)∈γ

Y(v)−Y(u) = 0,

so ϕ : 3[ZE p ] → OT (η) restricts to a map 3[c∨w] → OT (T ) as required.

Step 5: Verifying the valuative criterion.

We have constructed a map T →M♦ over t whose restriction to η is as in (11).

Since the inclusion DRL♦→M♦ is proper it follows that T →M♦ factors via DRL♦ as

required.

6. Proof of Theorems 1.1 and 1.2

We now have all the tools to easily prove Theorems 1.1 and 1.2. We begin by giving

slightly more precise statements.

An admissible modification of M is a morphism x : X →M satisfying:

• x is proper and surjective;

• x is birational (i.e. there exists a dense open U ⊆M such that x−1U is dense in X and

x−1U → U is an isomorphism);

• X is normal and locally desingularisable (Definition 4.1).

Admissible modifications together with maps over M form a directed system. We check

that M♦ can be compactified to an admissible modification (perhaps after modification

of M♦ itself):

Lemma 6.1. There exist a proper birational map M̃♦→M♦, an admissible modification

M�→M, and an open immersion M̃♦→M� over M. In characteristic zero we may

take M̃♦ =M♦.

Note that this M̃♦ is then the largest open of M� which admits a map to M♦ over M.

Proof. We begin by giving a simple argument in characteristic zero. First construct some

compactification M� of M♦→M following [31, § 6], then apply Hironaka [16] to see

that M� is desingularisable hence M�→M is an admissible modification.

In arbitrary characteristic the proof is slightly more involved. It is enough to treat the

connected components of M separately, so we fix one such component; abusing notation,

we will still write it as M, and similarly write M♦→M.

Choose a finite cover U = {Ui →M} by combinatorial charts (each Ui having graph

0i ), then choose a finite cover V = {V j → U×M U} of U×M U by combinatorial charts,

each V j having graph 0′j . For each Ui we have a fan Fi in QE(0i ) from Definition 3.3, and

similarly for each V j a fan F ′j in QE(0′j ).

https://doi.org/10.1017/S1474748019000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000252


Extending the double ramification cycle by resolving the Abel-Jacobi map 353

Fix a V j . Recalling that combinatorial charts are by definition connected, composing

the map V j → U×M U with one of the projections yields a map V j → Ui for some i .

This yields maps 0i → 0′j , E(0′j )→ E(0i ), and QE(0′j )→ QE(0i ), and Fi necessarily

pulls back to F ′j (we say the Fi are ‘compatible on overlaps’).

For each i we can choose a finite refinement F̄i of Fi which is complete in the sense

that it fills the positive orthant. Hence if M�i /Ui is the toric variety associated to F̄i

then the map M�i → Ui is proper. If we write F̃i for the fan obtained by restricting F̄i

to the support of Fi then the associated toric variety M̃♦i over Ui is a blowup of M♦Ui

and has a natural open immersion to M�i . Since toric varieties are desingularisable we

have proven the lemma ‘locally on M’.

Since the transition maps QE(0′j )→ QE(0i ) are just inclusions of coordinate sub-spaces,

it is not hard to check that the F̄i can be chosen to be compatible on overlaps, whence

they will glue to give a global construction.

Definition 6.2. Given an admissible modification x : X →M, the map σ induces a map

σ ′ : X ×MM→ J . We write
◦

X for the largest open of X over which the closure of the

graph of σ ′ inside X ×M J is flat. We write σ ′X :
◦

X → J for the induced map (informally,

we call
◦

X the ‘largest open of X over which σ extends’). Clearly
◦

X contains x−1M. We

write e for the unit section in the jacobian, and DRLX := (σ
′

X )
∗e for the pullback as a

closed subscheme of
◦

X .

The induced map σX :
◦

X → J ×M
◦

X is then a regular closed immersion, since J ×M
◦

X

is smooth over
◦

X . We denote by eX the unit section
◦

X → J ×M
◦

X . Then we can pull

back the fundamental class of eX to a cycle class DRCX := σ
!

X [eX ] on

◦

X ×
σX ,J×M

◦

X,e

◦

X = DRLX .

Remark 6.3. In the above construction, we could alternatively have defined DRCX by

pulling back the class of σX along eX . The resulting cycle would be the same. To see this,

note first that, since σX and eX are regular closed immersions, the fundamental class
of

◦

X is exactly the refined gysin pullback (along either σX or eX ) of the fundamental

class of J ×M
◦

X . We then apply the commutativity of the intersection pairing, see [33,

Theorem 3.13], cf. [10, Theorem 6.4].

Remark 6.4. In general
◦

X is strictly smaller than X . For example, if X = M̄g,n itself

then
◦

M̄g,n contains the compact-type (even tree-like) locus, but need not be the whole of

M̄g,n . If g = 1, n = 2, and a1 = −a2 = 2 then
◦

M̄g,n is the complement of the boundary

point corresponding to a pair of P1s glued at 0 and ∞. If we take X to be the blowup

of Mg,n at that point then
◦

X will be the complement of the two singular points in the

boundary that are contained within the exceptional curve of the blowup.
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Given any M� as in Lemma 6.1, note that
◦

M� = M̃♦. The inclusion
◦

M� ⊃ M̃♦ holds

because M♦ and hence M̃♦ are σ -extending. For the other implication, let x ∈
◦

M�, and

let T be a trait in
◦

M� through x with generic point lying over M. Since T is σ -extending

it lifts to M♦, and because M̃♦→M♦ is proper it lifts further to M̃♦, so x ∈ M̃♦.

Theorem 6.5. Choose any M� as in Lemma 6.1. Let X →M be an admissible

modification which factors via M�→M. Then DRLX →M is proper.

Proof. Write f : X →M� for the factorisation. Since M♦ is σ -extending we see that

f −1M̃♦ ⊆
◦

X . In fact they are equal; let x ∈
◦

X , and choose a trait T in
◦

X through x with

generic point lying over M. Then T is σ -extending hence lifts to M♦, and it lifts further

to M̃♦ since M̃♦→M♦ is proper.

Write
◦

f :
◦

X →M♦ for the restricted map (which is proper since f is proper). Then

DRLX =
◦

f −1 DRL♦, so we have a proper map
◦

f : DRLX → DRL♦. By Proposition 5.3

we know DRL♦→M is proper, so we are done.

Observing that the admissible modifications which factor via M� form a cofinal system

among all admissible modifications, we have established Theorem 1.1.

Whenever DRLX →M is proper, we can form the pushforward of DRCX to M; write

π∗ DRCX for this cycle on M. We defined DRL♦ at the beginning of § 5 as the schematic

pullback of the unit section e of J along the section σ ′♦ :M
♦
→ J , just as in Definition 6.2.

Definition 6.6. Write σ♦ : M♦→M♦×M J for the section induced by σ ′♦, a regular

closed immersion, and write [e♦] for the fundamental class of M♦, viewed as a cycle on

M♦×M J via the map e♦. Then define DRC♦ := σ !♦[e♦], as a class on DRL♦, the refined

gysin pullback in the pullback diagram

DRL♦ M♦

M♦ M♦×M J.

σ ′

e′ e♦

σ♦

This is exactly the cycle as we would obtain applying Definition 6.2 with X =M�.

Since DRC♦ is a cycle class on DRL♦, we can define DRC as the pushforward of this cycle

to M.

Theorem 6.7. Choose any M� as in Lemma 6.1. If an admissible modification x : X →M
factors via M�, then π∗ DRCX = DRC.

This would be a formality if we could pull back the cycle DRC♦ to X , but since M♦
and X may be singular we must take some care with pulling back cycles.

Proof. For simplicity we give the proof only in the case where M̃♦→M♦ is an

isomorphism, i.e. we have an open immersion M♦→M� (this can always be arranged
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in characteristic zero). To extend to the general case one uses a very similar argument to

show that π∗ DRC♦ = π∗ DRCM� .

As in the proof of Theorem 6.5, the factorisation f : X →M� restricts to a proper map
◦

f :
◦

X →M♦. Write JM♦ := J ×MM♦, and J ◦
X
:= J ×M

◦

X . Then we can view σM♦ as

a section of the projection JM♦ →M♦, and similarly for
◦

X . And we write eM♦ for the

unit section of JM♦ , and similarly for
◦

X . Writing f J for the induced map JX → JM♦ ,

we obtain a commutative diagram

J ◦
X

JM♦

X M♦

f J

f

σX eX

σM♦ eM♦

Note that the upward-pointing arrows are closed immersions, so we can see them

as algebraic cycles. Since f is proper and birational, we see immediately that

f J ∗[eX ] = [eM♦ ]. By the commutativity of proper pushforward and the refined Gysin

homomorphism ([33, Theorem 3.12], cf. [10, Theorem 6.2(a)]), we see that

σ !M♦ f J ∗[eX ] = f∗σ !X [eX ]

hence

DRC♦ = σ !M♦ [eM♦ ] = σ
!

M♦ f J ∗[eX ] = f∗σ !X [eX ] = f∗ DRCX .

This immediately implies Theorem 1.2, and shows moreover that the limit is given by

the pushforward of DRL♦.

7. Proof of Theorem 1.3

In this section, we will use results of Cavalieri, Marcus, and Wise [2, 27] to check that our

double ramification cycle DRC coincides with the cycle constructed in [12] and computed

in [20]. We will temporarily denote the latter cycle by DRCLGV . Their construction only

applies in the ‘non-twisted’ case k = 0, so for the remainder of this section we restrict to

that case without further comment.
We begin by briefly recalling the setup and notation from [27]. We denote by J the

universal (semiabelian) jacobian over M. Over M they construct a stack M̄(P) of stable

maps to (expansions of) P := [P1/Gm]. We will see in the next proposition that M̄(P)→

M is birational, and their constructions yield a map M̄(P)→ J , extending the map σ

on M (if M̄(P) were normal we would call it σ -extending). Writing e :M� J for the

closed immersion from the unit section ([27] denote this by Z), we define M̄(P/BGm) to

be the fibre product of e and M̄(P) over J .

Since e : M� J is a regular closed immersion (say with ideal sheaf I), it comes

with a natural perfect relative obstruction theory, namely the cotangent complex Le/J =

ι∗I/I2
[1] itself. The associated relative virtual class is just the fundamental class [e] as

a cycle on e (cf. [1, Example 7.6]).
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In [2] they construct directly a perfect relative obstruction theory for M̄(P/BGm)→

M̄(P), and show (see [2, Remark after Proposition 3.5]) that it coincides with the

pullback of Le/J in the fibre product diagram

M̄(P/BGm) M

M̄(P) J.

e

The remaining key properties we need are summarised below.

Proposition 7.1.

(1) M̄(P)→M is birational.

(2) M̄(P/BGm) is proper over M.

(3) The pushforward along M̄(P/BGm)→M of the class associated to the pullback

of Le/J to M̄(P/BGm)→ M̄(P) is the double ramification cycle DRCLGV of [12].

Proof.

(1) This is easy from the construction; it can be found in [2, Proposition 3.4].

(2) This is stated in the third bullet point on page 958 of [2] (just above proposition

3.4).

(3) This is [27, theorem, top of p. 9].

Remark 7.2 (On the characteristic of the base ring). Write M̄(P)′ for the normalisation

of M̄(P). In this section we need that M̄(P)′→ M̄(P) is proper, and that M̄(P)′ is

locally desingularisable. If we work over a field of characteristic zero both conditions

clearly hold. More generally, the finiteness of normalisation holds if we work over any

universally Japanese base ring, for example Z. In general resolution of singularities is

more difficult outside characteristic zero. However, in [28] (which appeared after the first

version of the present article) it is shown that M̄(P) is log regular (at least under mild

assumptions on the base scheme), hence it is locally desingularisable. With this new

reference available, the comparison results in this section are valid over Z.

Write M̄(P/BGm)
′ for the fibre product of M̄(P)′ with M̄(P/BGm) over M̄(P).

Because M̄(P)→M admits an extension of the section σ , the same holds for its

normalisation M̄(P)′, so the latter is σ -extending. Hence can apply Corollary 4.6 to

obtain a canonical map M̄(P)′→M♦ (we cannot work directly with M̄(P) since it

might not be normal). Recalling that DRL♦ is the pullback of the unit section e from J
to M♦, we obtain a diagram

M̄(P/BGm)
′ DRL♦ M

M̄(P)′ M♦ J

f♦

e (18)
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where both squares are fibre products.

The perfect relative obstruction theory Le/J for e :M� J pulls back to both the other

vertical arrows, yielding a class κ on DRL♦, and a class D′ on M̄(P/BGm)
′.

Lemma 7.3. We have an equality κ = DRC♦ of classes on DRL♦.

Proof. We begin by recalling the construction of the class κ from the relative perfect

obstruction theory of e/J . The perfect obstruction theory of e/J is the cotangent complex

Le/J = ι
∗I/I2

[1] (where I is the ideal sheaf of e in J ), which we pull back to DRL♦. We

then embed in this the relative intrinsic normal cone of DRL♦ over M♦. This is just the

classical cone (as used by Fulton for schemes, and Vistoli for stacks); following [1] we are

supposed to take the stack quotient by the relative tangent bundle of M♦ over M♦, but

this is of course trivial. The class κ is then obtained by intersecting this cone with the

zero section of the cotangent complex (a vector bundle in a single degree).

Next we compare this to our class DRC♦. The key pullback square is

DRL♦ M♦

M♦ M♦×M J,

σ ′

e′ e♦

σ♦

where both σ♦ and e♦ are regular closed immersions. To define DRC♦, we take [M♦]
as a class in the Chow ring of M♦, and then apply the refined gysin pullback σ !♦ to get

a class on DRL♦ (this is equivalent to taking e!♦, see Remark 6.3). How is this refined

gysin pullback defined? Using that e♦ is a regular closed immersion, we take its normal

bundle in M♦×M J , which is just the pullback of the normal bundle of e :M→ J . We

then pull back further to DRL♦, and embed the normal cone of e′ : DRL♦→M♦ inside

it, and intersect with the zero section. This is precisely the same as the definition of the

class κ above, and we are done.

The above proof was just a matter of checking that Behrend–Fantechi’s relative virtual

class construction degenerates in our setting to Fulton’s intersection product. We could

have saved ourselves the effort of writing this proof if we had worked throughout with

the language of Behrend–Fantechi, but we wished to emphasise that in our situation this

construction is essentially classical.

Now apply Costello’s theorem [4, Theorem 5.0.1] to the left hand square in the diagram

(18). The bottom horizontal arrow is birational, and the top arrow is proper since both

the source and target are proper over M. Hence we find that f♦∗D′ = DRC♦ as classes

on DRL♦.

We can make another commutative diagram

M̄(P/BGm)
′ M̄(P/BGm) M

M̄(P)′ M̄(P) J

f

e
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where again both squares are fibre products. Note that M̄(P)′→ M̄(P) is birational,

since it is an isomorphism over the locus of smooth curves. Write D for the class on

M̄(P/BGm) arising by pulling back the perfect relative obstruction theory Le/J from

e :M� J . Another application of Costello’s theorem yields that f∗D′ = D.

Theorem 7.4. We have an equality of classes on M:

DRCLGV = DRC.

Proof. This follows immediately from the above discussion by pushing forward in the

commutative diagram

M̄(P/BGm)
′ M̄(P/BGm)

DRL♦ M.

f

Theorem 1.3 follows immediately.
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